
Fuzzy Data Deduplication at Edge Nodes in
Connected Environments

Sylvana Yakhni1, Joe Tekli1*, Elio Mansour2, and Richard Chbeir3

1 E.C.E. Department, Lebanese American University, 36 Byblos, Lebanon
silvana.yakhni@lau.edu, joe.tekli@lau.edu.lb

2 Scient Analytics, 75007 Paris, France

elio.mansour@scient.io

3 University of Pau and Pays Adour, 64600 Anglet, France
richard.chbeir@univ-pau.fr

Abstract. The Internet of Things (IoT) is ushering-in the era of connected
environments, i.e., networks of physical objects that are embedded with sensors and
softwar, connecting and exchanging data with other devices and systems. The huge
amount of data produced by such systems calls for solutions to reduce the amount of
data being handled and transmitted over the network. In this study, we investigate
data deduplication as a prominent pre-processing method that can address such a
challenge. Data deduplication techniques have been traditionally developed for data
storage and data warehousing applications, and aim at identifying and eliminating
redundant data items. Few recent approaches have been designed for sensor networks
and connected environments, yet existing solutions mostly rely on crisp thresholds
and provide minimum-to-no expert control over the deduplication process,
disregarding the domain expert’s needs in defining redundancy. In this study, we
propose a new approach for Fuzzy Redundancy Elimination for Data Deduplication
in a connected environment. We use simple natural language rules to represent
domain knowledge and expert preferences regarding data duplication boundaries. We
then apply pattern codes and fuzzy reasoning to detect duplicate data items at the
outer-most edge (sensor node) level of the network. This reduces the time required to
hard-code the deduplication process, while adapting to the domain expert’s needs for
different data sources and applications. Experiments on a real-world dataset highlight
our solutions’ potential and improvement compared with existing solutions.

Keywords. Connected Environments, Fuzzy Reasoning, Data Redundancy, Data
Deduplication, Internet of Things (IoT), Wireless Sensor Networks.

1 Introduction

The Internet of Things (IoT) is ushering-in the era of connected environments, i.e., networks
of physical objects that are embedded with sensors, software, and other technologies for the
purpose of connecting and exchanging data with other devices and systems (e.g., smart
hospitals, smart buildings, and smart cities) [1, 2]. According to a recent survey conducted
by VoucherCloud in [3], 2.5+ quintillions of sensory data are currently generated every day,
and over 123109 IoT devices are expected to be connected within the next 10 years [4].
This huge amount of data highlights several challenges including network bandwidth,
consumption of network energy, cloud storage, and I/O throughput. These call for data pre-
processing and filtering techniques to reduce the amount of data being handled and
transmitted over the network. In this study, we investigate data deduplication as a prominent
pre-processing method that can address such challenges. Data Deduplication techniques
have been traditionally developed for data storage and data warehousing applications, and

* Corresponding author

aim at identifying and eliminating redundant data items, where only one unique copy of the
data is stored [5]. Similarly, data deduplication in connected environments aims at
eliminating redundant measurements produced by sensing devices. For instance, there is no
need to store and transmit similar temperature measurements produced by a sensor if they
are almost identical within a given timespan. Such measurements would be considered
redundant and need to be eliminated, where only relevant changes are processed by the
system. In this context, few recent approaches have been designed for handling data in
connected environments, e.g., [5-9], yet most existing solutions rely on crisp evaluation
thresholds and provide the domain expert with minimum-to-no control over the
deduplication process (i.e., which data need to be duplicated and which data should be kept
intact) hence overlooking the expert’s requirements and application needs in defining
redundancy, e.g., [6, 9].

In this study, we propose a new approach for Fuzzy Redundancy Elimination for Data
Deduplication (FREDD) in a connected environment. It uses simple natural language rules
to represent domain knowledge and expert preferences regarding data duplication
boundaries. It then applies pattern codes and fuzzy reasoning to detect duplicates on the
edge of the network. This reduces the time required to hard-code the deduplication process,
while adapting to the domain expert’s needs and application requirements. Experiments on
a real-world dataset highlight our solution’s potential and improvement compared with
existing approaches.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
related works. Section 3 describes our framework. Section 4 describes our experimental
evaluation and results, before concluding in Section 5 with ongoing directions.

2 Related Works

Data deduplication techniques have been initially developed for data storage and data
warehousing systems, e.g., [10-12], and have been recently investigated in the context of
IoT and connected environments.

In [9], the authors address data redundancies at the core of the network using a
supervised machine learning solution based on Support Vector Machines (SVM). They
build an aggregation tree for the given size of the network and then apply SVM to recognize
data redundancies. The authors target temporal and spatial redundancies once the data is
consolidated in a central node, which provides a redundancy-free data repository that can be
mined using dedicated data processing techniques (cf. challenge 1). However, redundancies
are not handled at the edge level, and data exchange between devices at the edge remains
costly due to unnecessary communications. In [13], the authors provide a data deduplication
technique in healthcare-based IoT, and introduce a Controlled Window-size based Chunking
Algorithm (CWCA) to identify cut-points in sensor data distributions. Yet similarly to [9],
the solution in [13] only performs data deduplication at sink nodes and does consider
redundancies at edge devices (cf. challenge 1). In [14], the authors focus on the spatial
distribution of sensors in the environment, and how it can be managed to prevent
redundancies. The authors build a graph of nodes and events in order to detect “redundant”
nodes: i.e., nodes producing identical events. Redundant nodes are either relocated or put
into sleep mode using a circle packing technique to enhance coverage, while minimizing
energy usage during relocation. This work only handles redundancy from a sensor
deployment perspective (i.e., avoiding deploying sensors that provide the same type of data
in the same area).

In a continuous sensing setup, triggering mechanisms are available to restrict the
number of transmissions between the sensor node and the monitoring node without
degrading the tracking of the sensed measurements, e.g., [15, 16]. These mechanisms can
also be used for filtering redundant spatial-temporal data, in order to trigger transmissions

from sensor node (edge) to monitoring node (sink) only when there are changes in the sensed
measurements. These approaches fall into the category of edge-based data deduplication
solutions, and rely on a simple crisp deviation threshold v. More recently, the authors in [6,
17] proposed a Data Redundancy Management Framework (DRMF) that handles data
redundancies at the edge device level considering both static and mobile devices. It clusters
the data based on expert/system defined crisp deviation threshold, while also keeping track
of the temporal and spatial-temporal spread (or coverage) of each cluster (i.e., sets of
redundant data). The algorithm sorts all data tokens and checks if the current token belongs
to the current cluster by comparing it with the cluster’s centroid, considering a expert-
defined deviation threshold 𝛿𝑣. Otherwise, a new cluster is created with the current data
item added as its centroid. In another relevant study in [18], the authors introduce the
Redundancy Elimination Data Aggregation (REDA) algorithm to perform deduplication at
individual edge nodes and also among nodes in the same cluster. Assuming that data is
presented as a set of scalar values (e.g., temperature, humidity), the range of numbers is
divided into crisp intervals that depend on the domain expert requirements, then a lookup
table is generated for each cluster containing the ranges of each interval and their associated
pattern codes (e.g., 10-15C are associated with pattern code 1, 16-20 are associated with
pattern code 2). Note that both [6, 18] rely on crisp deviation thresholds, and share the same
limitations of crisp processing.

Discussion: Few recent solutions have been designed to handle data deduplication in
connected environments. They utilize crisp thresholds where even the slightest variations in
the sensed measurements are processed similarly to extremely large variations (e.g., given
a temperature variation threshold v = 1C, variations of 1.5 C and 20.5 C are processed
exactly the same). Similarly, variations which are slightly below the threshold are entirely
ignored (e.g., given a temperature variation threshold v=1C, a variation of 0.99 C goes
unprocessed). Relying on crisp thresholds leads to i) missing certain relevant redundancies
or ii) removing certain data values that might not be redundant. Also, existing solutions
provide minimum-to-no expert intervention and adaptability in the deduplication process.

3 FREDD Framework

Fig. 1. Simplified diagram describing FREDD’s architecture

To address the aforementioned challenges, we introduce FREDD: a new framework for
Fuzzy Redundancy Elimination for Data Deduplication in a connected environment.
FREDD detects data duplicates at edge (source) nodes, in order to minimize network traffic
and bandwidth consumption. It combines simple natural language rules with a fuzzy
inference mechanism designed to adapt the deduplication process following the expert’s
needs. FREDD’s core architecture is depicted in Fig. 1. It consists of six main modules: i)
sensor data representation which defines the spatial and temporal representations of data

measurements/items, ii) measurement separation which separates the input data into
measurement-based data collections, iii) pattern code generation which associates data
items with pattern codes based on expert-defined lookup tables, iv) duplicate candidate
filtering which determines whether data items are candidates for fuzzy duplication, v) fuzzy
redundancy detection which identifies duplicate data items using fuzzy reasoning based on
expert-defined condition-action rules, and vi) redundancy removal which eliminates
redundant data items and produces deduplicated data.

3.1. Sensor Data Representation

Connected environments contain diverse devices each embedding one or more sensors that
provide data from the real world. Static devices are immobile; therefore, the data generated
by such devices can be redundant temporally. Mobile devices produce data while moving
around the environment, which potentially generates spatial-temporal redundancies. Here,
we restrict our presentation to static devices dealing with temporal redundancies, and report
spatial-temporal redundancies to a later dedicated study. We adopt a set of formal definitions
from [6] that allows us to describe data items considering the temporal dimension:

Definition 1 - Data Items: A data item d is defined as a 4-tuple:

d = m ; v ; t ; s (1)

where m is the data measurement, v is the data value, t is the creation temporal stamp of d
(cf. Definition 2), and s is the data source that sensed/created d 

Definition 2 - Temporal Stamp: A temporal stamp t is defined as a single discrete temporal
value represented as a 2-tuple:

t = format ; value (2)

where format is a string indicating the format of the date-time value of t (e.g., "dd-MM-
yyyy hh:mm:ss"), and value is the timestamp value (e.g., 10-11-2020 15:34:23 following
the sample time format mentioned above) 

Table 1. Sample sensory data items

Measurement m Value v
Time stamp 𝒕

Source s
format value

Humidity 92 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 S1
Temperature 16 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 S1

Humidity 94 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1
Temperature 19.5 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1
Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 S1

Humidity 103 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1
Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1

Humidity 104 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 S1

Consider the motivating example of a smart building, hosting a set of static sensing

devices that provide humidity and temperature measurements (among others) from the
environment. Devices have built-in memories to buffer chunks of sensory data before
transmission to the network’s sink nodes. Table 1 shows the representation of sample
sensory data after being sensed/produced by an edge device (source) S1 embedding two
sensors producing humidity and temperature measurements respectively.

3.2. Measurement Separation

Since the device can embed various sensors, its internal memory might store different
measurements (i.e., features such as humidity and temperature in Table 1). Therefore, in
order to detect redundancies in the data stored locally on the edge device, we start by
filtering the data into collections having the same measurements. To illustrate the
measurement filtering process, the data shown in Table 1 produces two distinct data
collections: the first for humidity data (first four tuples - cf. Table 2), and the second for
temperature data (containing the last tuples). Consequently, the measurement data
collections are processed separately for data deduplication. Note that the domain expert
decides about the selection of measurements to be processed for deduplication.

Table 2. Measurement separation of the data from Table 1

a. Humidity data collection

Measurement m Value 𝒗
Time stamp 𝒕 Source

𝒔 format value

Humidity 92 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 S1

Humidity 94 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1

Humidity 103 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1

Humidity 104 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 S1

b. Temperature data collection

Measurement m Value 𝒗
Time stamp 𝒕

Source 𝒔
format value

Temperature 16 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 S1

Temperature 19.5 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 S1

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1

3.3. Pattern Generation Code

The pattern code generation module transforms ranges of data item values for a given
measurement (e.g., humidity, temperature) into interval values that are defined based on
reference lookup tables. Edge and sink devices handling the same measurements refer to the
corresponding measurement lookup tables (e.g., humidity lookup table, or temperature
lookup table), where lookup tables are created based on expert preferences or application
requirements. Here, we distinguish between two kinds of lookup tables allowing: i) disjoint
data ranges, and ii) intersecting data ranges.

Table 3. Sample disjoint value lookup tables for humidity and temperature measurements,
considering ranges 90-110 µg/m 1 and 15-28 C respectively

a. Disjoint humidity data ranges b. Disjoint temperature data ranges

Interval
values

[90, 96]
µg/m3

]96, 104]
µg/m3

]104, 110]
µg/m3

Pattern
code

H1 H2 H3

Interval
values

[15-19]
C

]19-24]
C

]24-28]
C

Pattern
code

T1 T2 T3

1 Microgram Per Cubic Meter

Table 4. Sample intersecting value lookup tables for humidity and temperature
measurements, considering ranges 90-110 µg/m3 and 15-28 C respectively

a. Intersecting humidity data ranges b. Intersecting temperature data ranges

Interval
values

[90, 98]
µg/m3

[94, 106]
µg/m3

[102, 110]
µg/m3

Pattern
code

H1 H2 H3

Interval
values

[15-20]
C

[18-25]
C

[23-28]
C

Pattern
code

T1 T2 T3

Disjoint data ranges (cf. Table 3) allow simple pattern code generation, yet they produce
disconnected pattern codes where values on the range boundaries might be misrepresented
(e.g., it is not clear which pattern code can be assigned with values 96.2 µg/m3 or 104.7
µg/m3 following Table 3). Intersecting data ranges (cf. Table 4) allow the generation of
combined pattern codes when the target value belongs to more than one range (e.g., humidity
values 103, 104, and 105 µg/m3 belong to both H2 and H3 pattern codes following Table 4).

In this study, we consider intersecting ranges to allow more efficient processing
(duplicate candidate filtering, cf. Section 3.4) and more accurate data deduplication (fuzzy
redundancy detection, cf. Section 3.5)

Table 5 shows the pattern codes generated for the data items from our running
example in Table 2, considering the above look-up tables.

Table 5. Value, zone, and combined pattern codes for sample data from Table 1

a. Humidity data collection

Measurement m Value 𝒗
Value

Pattern
Code

Time stamp 𝒕
Source 𝒔

format value

Humidity 92 µg/m3 {H1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 S1

Humidity 94 µg/m3 {H1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1

Humidity 103 µg/m3 {H2,H3} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1

Humidity 104 µg/m3 {H2,H3} dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 S1

b. Temperature data collection

Measurement m Value 𝒗
Value

Pattern
Code

Time stamp 𝒕
Source 𝒔

format value

Temperature 16 C {T1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 S1

Temperature 19.5 C {T1,T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 S1

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1

3.4. Duplicate Candidate Filtering

Since sensor data items are produced and ordered per sensing time stamp, each data item to
be deduplicated is evaluated with its previous one to check if the data is duplicate or not.
Our duplicate candidate filtering algorithm is depicted in Fig. 2. It accepts as input two
consecutive data items and produces as output a decision of whether the data items are
duplicates, non-duplicates, or candidates for deduplication, based on the following rules: i)
if two data items share one value-zone pattern code, then they are considered duplicates (cf.
Fig. 2, lines 4-5), ii) if the data items share one or more value-zone pattern codes, they are
considered as candidates for deduplication (lines 6-7), and iii) if the data items do not share
any value-zone pattern code, they are considered as non-duplicates (lines 8-9),

Table 6 shows the output of the filtering algorithm applied on the input data from Table
5, where 6 data items are identified as either duplicates/non-duplicates, such that 2 of the

original 8 items need to be further considered for fuzzy deduplication. Depending on the
data patterns generated in the target connected environment, duplicate filtering can
significantly reduce the number of data items to be processed for fuzzy redundancy
detection, thus significantly improving overall processing performance especially at the
device level (cf. experimental results in Section 4).

Algorithm 1 – Duplicate Candidate Filtering

Input: DataItem1, DataItem2
Output: DeduplicationStatus

Begin
1 pattern1  pattern code for DataItem1
2 pattern1  pattern code for DataItem2
3 interLen  length of intersection between DataItem1 and DataItem2
4 if (pattern1 = pattern2) and (interLen =1) then
5 DeduplicationStatus  Duplicates
6 else if interLen > 1 then
7 DeduplicationStatus  Candidates
8 else
9 DeduplicationStatus  NotDuplicates
End

Fig. 2. Pseudocode of our duplicate candidate filtering algorithm

Table 6. Output of the filtering algorithm applied on input data from Table 5

a. Humidity data collection

Measurement m Value 𝒗
Value

Pattern
Code

Time stamp 𝒕
Source

 s format value

Humidity 92 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 S1

Humidity 94 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1

Humidity 103 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1

Humidity 104 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 S1

b. Temperature data collection

Measurement m Value 𝒗
Value

Pattern
Code

Time stamp 𝒕
Source

s format value

Temperature 16 C {T1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 S1

Temperature 19.5 C {T1,T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 S1

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1

3.5. Fuzzy Redundancy Detection

The fuzzy redundancy detection module’s overall process is shown in Fig. 3. It accepts as
input data items that are candidates for redundancy detection, and then produces as output
their deduplication status (i.e., duplicates or non-duplicates).

Duplicate Non-Duplicate Candidate for Deduplication

Duplicates

Non-Duplicates

Candidates

Candidates

Duplicates

Non-Duplicates

Fig. 3. Simplified diagram describing the fuzzy redundancy detection module’s process

Fuzzification: First, the scalar data item values are fuzzified, producing linguistic
values associated with fuzzy membership degrees (e.g., humidity value 103 µg/m3 becomes
75%H2 and 25% H3 following Fig. 4). The fuzzy partitions for every measurement are
defined based on the corresponding lookup table ranges, where the fuzzy membership
functions can be defined following the expert and application needs (cf. Fig. 4.a and b). The
output deduplication status variable represents a percentage value using one membership
function varying from 0-to-100% duplication (cf. Fig. 4.c).

a. Input humidity fuzzy partitions,
cf. Table 4.a

b. Input temperature fuzzy
partitions, cf. Table 4.b

c. Output deduplication status
fuzzy partitions

Fig. 4. Input humidity and temperature fuzzy partitions, and output deduplication status fuzzy
partitions defined using the trapezoidal function following the lookup tables in Table 4

Condition-action rules: As for the fuzzy agent’s condition-action rules, they reflect

the common sense logic applied by an domain expert to determine whether two data items
are duplicates or not, based on their measurement’s look-up tables:

Rule 1. IF (Humidity_Item1 is H1) AND (Humidity _Item2 is H1) THEN DedupStatus is Duplicate
Rule 2. IF (Humidity_Item1 is H2) AND (Humidity _Item2 is H2) THEN DedupStatus is Duplicate
Rule 3. IF (Humidity_Item1 is H3) AND (Humidity _Item2 is H3) THEN DedupStatus is Duplicate
Rule 4. IF (Temp_Item1 is T1) AND (Temp_Item2 is T1) THEN DedupStatus is Duplicate
Rule 5. IF (Temp_Item1 is T2) AND (Temp_Item2 is T2) THEN DedupStatus is Duplicate
Rule 6. IF (Temp_Item1 is T3) AND (Temp_Item2 is T3) THEN DedupStatus is Duplicate

Inference: Fuzzy inference consists in applying the concerned condition-action rules

on the fuzzified data in order to produce fuzzy outputs. The logical connectors in the
condition-action rules are translated into mathematical formulas that operate on the fuzzy
data. In our agent, we adopt Mamdani’s implication operator as the default inference
function given its common usage in the literature [19, 20].

Aggregation: It allows grouping the outputs of multiple inference operations executed
on multiple condition-action rules, in order to produce on single fuzzy output result. In our
agent, we adopt the maximization aggregation function (Formula 5) given its usage in the
literature [19, 21]. Others formulas like bounded sum and weighted sum can be utilized.

0

0.2

0.4

0.6

0.8

1

90 94 98 102 106 110Fu
zz
y
M
em

b
e
rs
h
ip

Humidity

H1 H2 H3

0

0.2

0.4

0.6

0.8

1

15 18 21 24 27Fu
zz
y
M
em

b
e
rs
h
ip

Temperature

T1 T2 T3

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Fu
zz
y
M
em

b
e
rs
h
ip

DeduplicationStatus

Duplicate

1. Fuzzification: Given case 1’s input data: Humidity_DataItem1 = 103 µg/m3 and Humidity_DataItem2 = 104 µg/m3, we
compute the corresponding fuzzy membership values following the humidity fuzzy functions in Fig. 4.a (reported below):

- For Humidity_DataItem1:
fH1 (103) = 0, fH2 (103) = 0.75, and fH3 (103) = 0.25

- For Humidity_DataItem2:
fH1 (104) = 0, fH2 (104) = 0.5, and fH3 (104) = 0.5

2. Condition-Action rules: Based on the input membership values, the following condition-action rules are invoked:

- Rule 2: H2(Humidity_DataItem1) ∧ H2(Humidity_DataItem2) ⇒ Duplicate(DedupStatus)
- Rule 3: H3(Humidity_DataItem1) ∧ H3(Humidity_DataItem2) ⇒ Duplicate(DedupStatus)

4. Inference and Aggregation: By applying Mamdani’s
inference mechanism and the maximization aggregation
function, Fagg = Fmax = max(fRule2, fRule3), the agent produces
the fuzzy coverage areas subsumed by the inference
membership functions (represented in grey color).

4. Defuzzification: The center of gravity defuzzification
function is applied on the fuzzy coverage area to compute
the center of gravity point (represented as a red dot), and
then identify the corresponding deduplication status (on
the x axis) as the agent’s output = 76%.

6. Result: Given dedupthreshold = 75% in our running example, and since the output of the defuzzification step is 76% 
dedupthreshold, the agent’s final output becomes: dedupStatus = duplicates

Fig. 5. Fuzzy redundancy detection process for the humidity sample case (cf. Table 6)

Deduplication: It allows transforming the fuzzy output produced by the aggregation
function into a crisp output that represents the final result of the agent. In our agent, we
adopt center of gravity (Formula 6) given its common usage in the literature [19, 21]. Other
formulas like maximum to the left and maximum to the right can be utilized.

Mamdani’s implication:

Given fuzzy sets f1, f2 :

f1  Mamdani f2  f1  f2
 min(f1, f2)

where  is the AND
fuzzy logic operator1

(4)

Maximization
aggregation:

Given fuzzy sets f1,
f2, …, fn:

Fagg= FMax =
max(f1, f2, …, fn)

(5)

Center of gravity
defuzzification:

Given aggregate fuzzy
set FAgg:

× ×

×

 ()

()

agg

agg

x F x dx
x

F x dx




ൌ

(6)

Computation example: We consider in Table 6 two cases for humidity and temperature

measurements studied in our motivation scenario. The detailed computation process for
humidity described in Fig. 5 (a similar computation process is executed for temperature).

1 The AND fuzzy logic operator can be any t-norm function, including min which is commonly adopted in the literature.

0

0.2

0.4

0.6

0.8

1

90 92 94 96 98 100 102 104 106 108 110Fu
zz
y
M
em

b
er
sh
ip

Humidity

H1 H2 H3

0

0.2

0.4

0.6

0.8

1

90 92 94 96 98 100 102 104 106 108 110Fu
zz
y
M
em

b
er
sh
ip

Humidity

H1 H2 H3

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Fu
zz
y
M
em

b
er
sh
ip

DeduplicationStatus

Duplicate

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Fu
zz
y
M
em

b
e
rs
h
ip

DeduplicationStatus

Duplicate

Fagg Fagg

The agent recommends that input 103 µg/m3 and 104 µg/m3 data values are duplicates with
a 76% fuzzy membership degree, which seems reasonable given the humidity lookup tables
and value ranges defined in Table 4 (H2 and H3 fuzzy partitions intersect between [102,
106] µg/m3, where 103 is much closer to the 102 µg/m3 boundary of H2 than to the 106
µg/m3 boundary of H3, but also 103 µg/m3 and 104 µg/m3 are close to each other). Given
our running example data from Table 6, the identified humidity and temporal redundancies
following the fuzzy redundancy detection process are shown in Table 7.

Table 7. Output of the fuzzy redundancy detection process applied on the data from Table 6

a. Humidity data collection

 Time stamp 𝒕

Measurement m Value v
Value

Pattern
Code

format value
Source

s

Humidity 92 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 S1

Humidity 94 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1

Humidity 103 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1

Humidity 104 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 S1

b. Temperature data collection

Measurement m Value v
Value

Pattern
Code

Time stamp 𝒕
Source

s format value

Temperature 16 C {T1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 S1

Temperature 19.5 C {T1,T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 S1

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1

3.6. Redundancy Removal

Once redundancies are identified, the redundancy removal process occurs. Here, domain
experts might have different needs for redundancy removal. This component summarizes a
sequence of redundancies into one representative data item following an expert-chosen
redundancy removal function (e.g., media, mean, maximum, minumum,) representative.
Experts provide their requirements in the form of simple consumer requests that the module
processes to execute the required redundancy removal functions. For instance, Table 8
shows the humidity and temporal redundancies that are removed using the median function.

Table 8. Output of redundancy removal using the median function applied on Table 7

a. Humidity data collection

Measurement m Value v
Time stamp 𝒕 Source

𝒔 format value

Humidity 92 g/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 S1

Humidity 103 g/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1

b. Temperature data collection

Measurement m Value v
Time stamp 𝒕 Source

𝒔 format value

Temperature 16 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 S1

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1

Duplicates

Duplicates

Duplicates

4 Experimental Evaluation

We have implemented our FREDD framework as a web-based application, using methods
from the jFuzzyLogic open source library [22, 23] in implementing our fuzzy logic agent, to
allow easy manipulation for domain experts in operating and evaluating the system1. We
considered Intel Lab Berkeley dataset [24] obtained from 54 Micra2Dot sensors providing
weather data including temperature, humidity, light, as well as the list of Cartesian
coordinates for each of the 54 sensors, and the time when each data measurement is
collected. In our empirical evaluation, we consider 20k humidity and temperature data
measurements collected from sensor S1 on 28/2/2004.

We utilize four evaluation metrics: i) deduplication accuracy (acc): time series
similarity between the original data and the deduplicated data [5], ii) data reduction ratio
(redu) is defined as the ratio of the difference between the original data and the duplicated
data, iii) size of transmitted data (|datatrans|) represents the size of the data transmitted from
the edge devices to the sink device (a good deduplication solution would reduce the size of
data transmitted over the network in order to gain in network bandwidth), and iv) size of
stored data (|datastored|) represents the size of the data stored at the sink device (a good
deduplication solution would reduce the size of the data stored at the sink to gain in
processing speed and throughput at the sink level). The system implementation,
experimental datasets, and test results are available online2.

4.1. Fuzzy Deduplication Threshold Evaluation

We vary the fuzzy deduplication threshold, allowing the fuzzy redundancy detection process
to decide on the deduplication status of candidate data items, and evaluate FREDD’s
behavior accordingly. Results in Fig. 6 show that when the threshold increases: i) acc
increases while ii) redu decreases. This is due to the fact that a higher deduplication
threshold means less candidate pairs are considered for duplication. Also, the size of data
transmitted to the sink (|datatrans|) and the size of data stored at the sink (|datastored|) are both
increased with the increase in deduplication threshold. This is mainly due to the decrease in
redu, resulting in more data being sent and processed at the sink node. Fine-tuning the
evaluation metric values can be handled automatically as a multi-objective optimization
problem, e.g., [25-27]. We report this to a dedicated study.

a. Acc and redu results b. Size of data transmitted to the
sink (|dataTrans|)

d. Size of data stored at the sink
(|dataStored|)

Fig. 6. Deduplication quality metrics obtained with varying fuzzy deduplication thresholds

1 We adopt a three-layer architecture: i) a Web API layer that allows client-side applications to communicate with

the server to request data, etc.; ii) a Business Logic layer where FREDD’s main decision making processes are
implemented; and iii) a Data Access layer where data storage and retrieval take place.

2 http://sigappfr.acm.org/Projects/FREDD/

0

0.2

0.4

0.6

0.8

1

0.7 0.73 0.75 0.8 0.85 0.9 0.94

R
at
io

Deduplication threshold

Acc Redu

0

0.4

0.8

1.2

1.6

0.7 0.75 0.8 0.85 0.9 0.95

|D
a
ta

Tr
a
n
s|

Deduplication threshold

0

0.4

0.8

1.2

1.6

0.7 0.75 0.8 0.85 0.9 0.95

|D
a
ta

St
o
re
d
|

Deduplication threshold

4.2. Baseline Comparisin with Existing Approaches

We conducted a comparative study to assess FREDD’s effectiveness with respect to recent
alternatives in the literature: i.e., REDA [18] and DRMF [6]. To test REDA, we consider
the crisp humidity ranges shown in Table 4. To test FREDD, we consider the fuzzy humidity
ranges in Fig. 4 and we set the deduplication threshold to 0.8. We also consider two
variations of DRMF: i) the first one with a deviation threshold equal to one quarter of the
width of the crisp range  = 3/4 (which we refer to as DRMF_1), and ii) the second one with
a deviation threshold equal to one eighth of the width of the crisp range  = 3/8 (which we
refer to as DRMF_2). Results in Fig. 7 show that FREDD consistently achieves the best acc
results across all data variations compared with both REDA and DRMF1/2. This is due to
FREDD’s fuzzy processing capability, allowing to detect approximate redundancies and
process them for deduplication, compared with the crisp decision-making processes
performed by REDA and DRMF.

To further explain the results in Fig. 7, we conduct a second experiment where we
compare the decision-making behavior of each algorithm applied on different pairs of
humidity data measurement; the first data item is fixed at a certain value, while the second
item is varied within a controlled range. Fig. 8 shows the percentage of deduplication
produced by each algorithm for a first humidity value of 39.5 g/m3, and the second value
with a variation range of  2.5 g/m3. Results for exising solutions show that all values that
lie between [38, 41] g/m3 are considered automatic duplicates (i.e., 100% duplicates).

a. Deduplication accuracy (acc)

b. Data reduction ratio (redu)

Fig. 7. Comparison of the deduplication quality metrics between RED, DRMF1/2 and
FREDD, when varying the number of data measurements of dataset1

Fig. 8. Percentage of deduplicates with first humidity data fixed at 39.5 g/m3 and varying
the second between [37, 42] g/m3

In contrast, each pattern code range in FREDD is divided into: i) a crisp range where

pairs are automatically considered duplicates (i.e., from [39, 40] g/m3), and ii) a fuzzy
range (i.e., between [37, 39] g/m3 and [40, 42] g/m3) where boundaries from different

0

0.15

0.3

0.45

0.6

1000 2000 3000 5000 8000 10000 12000 15000 17000 20000

A
cc

Size of data (# of items)

DRMF_1 DRMF_2 REDA FREDD

0

0.25

0.5

0.75

1

1000 2000 3000 5000 8000 10000 12000 15000 17000 20000

R
e
d
u

Size of data (# of items)

DRMF_1 DRMF_2 REDA FREDD

0

0.2

0.4

0.6

0.8

1

37 37.5 38 38.5 38.8 38.9 39 39.5 40 40.1 40.2 40.5 41 41.5 42

%
 o
f
d
u
p
lic
at
es

Second humidity data item (for a first item of 39 g/m3)

DRMF_1 DRMF_2 REDA FREDD

other ranges overlap. In the fuzzy range, the deduplication decision is made based on a
fuzzy inference system and a set of fuzzy rules, allowing the percentage of duplicates to
vary accordingly (e.g., for a second value of 38 g/m3, the percentage of duplicates is 70%).
Less duplicate pairs are considered automatic duplicates and the accuracy of the
deduplication process increases accordingly (as shown in Fig. 8).

4.3. Performance Evaluation

We have also compared FREDD’s time complexity with its recent alternatives, REDA,
DRMF_1 and DRMF_2. FREDD’s complexity simplifies to: O(N  E2) where N designates
the number of data items considered per edge device, and E the number of edge devices
considered per sink node. Tests were carried out on a PC with an Intel I7 system with 2.9
GHz CPU/16GB RAM. Fig. 9.a highlights the linear complexity of FREDD’s deduplication
process when varying the number of data items per edge node, reflecting O(N) time
complexity. Fig. 9.b shows running time results considering a fix data size per edge device
=1000 items and a fixed number of edges per sink node = 10. Results show that REDA is
the most efficient approach due to its fast and crisp pattern code assignment approach.
FREDD requires more processing time than REDA due to its fuzzy computation process.
DRMF is seemingly the most time consuming approach due to its data clustering process.

a. Edge-level processing time when varying the

number of data items
b. Time performance compared with its alternatives,
considering a fixed data size of 1000 items per edge

Fig. 9. Time performance results

5 Conclusion

This paper introduces a new approach for Fuzzy Redundancy Elimination for Data
Deduplication (FREDD) in a connected environment. It uses natural language rules to
represent domain knowledge and expert preferences regarding data duplication boundaries.
It then applies pattern codes and fuzzy reasoning to detect duplicates on the general network
infrastructure including both the edge level and the sink level of the network. Experiments
highlight our solution’s potential and improvement compared with existing solutions.

We are currently investigating the use of parametric learners [28, 29] and meta-heuristic
algorithms [30, 31] to (semi) automatically configure the pattern codes’ interval ranges and
their fuzzy rules based on expert or data related features. We are currently investigating data
deduplication at the sink level of the network [32], where data is aggregated from multiple
edge nodes, including edge node mobility, edge node coverage area overlapping, and inter-
edge collaboration. In the future, we plan to investigate data recovery [33, 34] in connected
environments, including damage assessment and recovery from deduplicated data.

References

[1] Nižetić S. et al., Internet of Things (IoT): Opportunities, Issues and Challenges towards a Smart and
Sustainable Future. Journal of Cleaner Production, 2020. 274: 122877.

0

2

4

6

8

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
u
n
n
ig
n
 t
im

e
 (
s)

Size of data (# of items)

50% overlap 20% overlap

0

1

2

3

4

5

6

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
u
n
n
in
g
tm

e
(s
)

Size of data (# of items)

REDA FREDD
DRMF_1 DRMF_2

[2] Lytras M., et al., Enabling Technologies and Business Infrastructures for Next Generation Social Media: Big
Data, Cloud Computing, IoT and VR. Journal of Universal Computer Science, 2015, 21(11): 1379-1384.

[3] VoucherCloud, The Uses of Big Data. www.vouchercloud.com/resources/everyday-big-data, 2018.
[4] IoT Analytics, State of IoT 2021. https://iot-analytics.com/number-connected-iot-devices/ (Feb. 2023), 2021.
[5] Ismael W., et al., An In-Networking Double-Layered Data Reduction for Internet of Things (IoT). Sensors,

2019. 19(4): 795.
[6] Mansour E., et al., Data Redundancy Management in Connected Environments. Inter. Confe. on Modeling,

Analysis, and Simulation of Wireless and Mobile Systems (Q2SWinet), 2020, 75-80.
[7] Qutub B., et al., Data Reduction in Low Powered Wireless Sensor Networks. Wireless Sensor Networks-

Technology and Applications, 2012. 10.5772/50178.
[8] Li S. et al., EF-Dedup: Enabling Collaborative Data Deduplication at the Network Edge. IEEE 39th

International Conference on Distributed Computing Systems (ICDCS), 2019. pp. 986–996.
[9] Patil P. and Kulkarni U., SVM-based Data Redundancy Elimination for Data Aggregation in Wireless Sensor

Networks. Advances in Comput., Comm. & Info. (ICACCI), 2013, 1309–1316.
[10] Christen P., A Survey of Indexing Techniques for Scalable Record Linkage and Deduplication. IEEE

Transactions on Knowledge and Data Engineering, 2012. 24(9): 1537-1555.
[11] Malhotra J. and Bakal J., A Survey and Comparative Study of Data Deduplication Techniques. Inter. Conf. on

Pervasive Computing (ICPC), 2015. pp. 1-5.
[12] Bhalerao A. and Pawar A., A Survey on Data Deduplication for Efficiently Utilizing Cloud Storage for Big

Data Backups. Trends in Electronics and Informatics (ICEI), 2017. pp. 933-938.
[13] Ullah A. et al., Secure Healthcare Data Aggregation and Deduplication Scheme for FoG-Orineted IoT. IEEE

Inter. Conf. on Smart Internet of Things (SmartIoT) 2019. pp. 314–319.
[14] Chowdhury S. and Benslimane A., Relocating Redundant Sensors in Randomly Deployed Wireless Sensor

Networks. IEEE Global Communications Conf. (GLOBECOM), 2018. pp. 1-6.
[15] Santini S. and Romer K., An Adaptive Strategy for Quality-based Data Reduction in Wireless Sensor Networks.

Inter. Conf. on Networked Sensing Systems (INSS'06), 2006. 14407470.
[16] Liansheng T. and Wu M., Data Reduction in Wireless Sensor Networks: A Hierarchical LMS Prediction

Approach. IEEE Sensors journal, 2015. 16.6 (2015): 1708-1715.
[17] Shahzad F., et al., Data Redundancy Management Framework for Connected Environments. Computing

journal, 2022. 104(7): 1565-1588.
[18] Khriji S., et al., Redundancy Elimination for Data Aggregation in Wireless Sensor Networks. Inter. Multi-

Conference on Systems, Signals & Devices (SSD'18), 2018. 2018: 28-33.
[19] Salloum G. and Tekli J., Automated and Personalized Nutrition Health Assessment, Recommendation, and

Progress Evaluation using Fuzzy Reasoning. Inter. J. of Human-Computer Studies, 2021. 151:102610.
[20] Bouchon-Meunier B., et al., Compositional Rule of Inference as an Analogical Scheme. Fuzzy Sets and

Systems, 2003. 138(1): 53-65.
[21] Ross T. J., Fuzzy Logic with Engineering Applications. Wiley; 4th edition 2016. 580 p.
[22] Cingolani P. and Alcala-Fdez J., jFuzzyLogic: a Robust and Flexible Fuzzy-Logic Inference System Language

Implementation. In IEEE Inter. Conf. on Fuzzy Systems, 2012. pp. 1-8.
[23] Cingolani P. and Alcalá-Fdez J., jFuzzyLogic: a Java Library to Design Fuzzy Logic Controllers According

to the Standard for Fuzzy Control Programming. Int. Journal Comput. Intell. Syst., 2013. 6(1): 61–75.
[24] Bodik P., et al., Intel Lab Data. http://db.csail.mit.edu/labdata/labdata.html (assessed in Feb. 2023), 2019.
[25] Hopfield J., The Effectiveness of Neural Computing. IFIP World Computer Congress (WCC), 1989. 402-409.
[26] Zou F., et al., A Reinforcement Learning Approach for Dynamic Multi-objective Optimization. Information

Sciences, 2021. 546: 815-834.
[27] Salloum G. and Tekli T., Automated and Personalized Meal Plan Generation and Relevance Scoring using a

Multi-Factor Adaptation of the Transportation Problem. Soft Computing, 2022. 26(5):2561-2585.
[28] Abboud R. and Tekli J., Integration of Non-Parametric Fuzzy Classification with an Evolutionary-

Developmental Framework to perform Music Sentiment-based Analysis and Composition. Soft Computing,
2019. 24(13): 9875-9925

[29] Wen X., Using Deep Learning Approach and IoT Architecture to Build the intelligent Music Recommendation
System. Soft Computing, 2021. 25(4): 3087-3096.

[30] Azar D., et al., A Combined Ant Colony Optimization and Simulated Annealing Algorithm to Assess Stability
and Fault-Proneness of Classes Based on Internal Software Quality Attributes. Inter. J. of AI, 2016. 14:2.

[31] Nguyen T., A Novel Metaheuristic Method based on Artificial Ecosystem-based Optimization for Optimization
of Network Reconfiguration to Reduce Power Loss. Soft Computing, 2021. 25(23): 14729-14740.

[32] Yakhni S., et al., Using Fuzzy Reasoning to Improve Redundancy Elimination for Data Deduplication in
Connected Environments. Soft Computing, 2023. https://doi.org/10.1007/s00500-023-07880-z.

[33] Haraty R. and El Sai M., Information Warfare: a Lightweight Matrix-based Approach for Database Recovery.
Knowlegde and Information Systems 2017. 50(1): 287-313 (2017).

[34] Haraty R., et al., Data Damage Assessment and Recovery Algorithm from Malicious Attacks in Healthcare
Data Sharing Systems. Peer Peer Network Applications, 2016. 9(5): 812-823 (2016).

