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Abstract. The Internet of Things (IoT) is ushering-in the era of connected 
environments, i.e., networks of physical objects that are embedded with sensors and 
softwar, connecting and exchanging data with other devices and systems. The huge 
amount of data produced by such systems calls for solutions to reduce the amount of 
data being handled and transmitted over the network. In this study, we investigate 
data deduplication as a prominent pre-processing method that can address such a 
challenge. Data deduplication techniques have been traditionally developed for data 
storage and data warehousing applications, and aim at identifying and eliminating 
redundant data items. Few recent approaches have been designed for sensor networks 
and connected environments, yet existing solutions mostly rely on crisp thresholds 
and provide minimum-to-no expert control over the deduplication process, 
disregarding the domain expert’s needs in defining redundancy. In this study, we 
propose a new approach for Fuzzy Redundancy Elimination for Data Deduplication 
in a connected environment. We use simple natural language rules to represent 
domain knowledge and expert preferences regarding data duplication boundaries. We 
then apply pattern codes and fuzzy reasoning to detect duplicate data items at the 
outer-most edge (sensor node) level of the network. This reduces the time required to 
hard-code the deduplication process, while adapting to the domain expert’s needs for 
different data sources and applications. Experiments on a real-world dataset highlight 
our solutions’ potential and improvement compared with existing solutions. 
 
Keywords. Connected Environments, Fuzzy Reasoning, Data Redundancy, Data 
Deduplication, Internet of Things (IoT), Wireless Sensor Networks. 

 
1 Introduction 
 

The Internet of Things (IoT) is ushering-in the era of connected environments, i.e., networks 
of physical objects that are embedded with sensors, software, and other technologies for the 
purpose of connecting and exchanging data with other devices and systems (e.g., smart 
hospitals, smart buildings, and smart cities) [1, 2]. According to a recent survey conducted 
by VoucherCloud in [3], 2.5+ quintillions of sensory data are currently generated every day, 
and over 123109 IoT devices are expected to be connected within the next 10 years [4]. 
This huge amount of data highlights several challenges including network bandwidth, 
consumption of network energy, cloud storage, and I/O throughput. These call for data pre-
processing and filtering techniques to reduce the amount of data being handled and 
transmitted over the network. In this study, we investigate data deduplication as a prominent 
pre-processing method that can address such challenges. Data Deduplication techniques 
have been traditionally developed for data storage and data warehousing applications, and 
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aim at identifying and eliminating redundant data items, where only one unique copy of the 
data is stored [5]. Similarly, data deduplication in connected environments aims at 
eliminating redundant measurements produced by sensing devices. For instance, there is no 
need to store and transmit similar temperature measurements produced by a sensor if they 
are almost identical within a given timespan. Such measurements would be considered 
redundant and need to be eliminated, where only relevant changes are processed by the 
system. In this context, few recent approaches have been designed for handling data in 
connected environments, e.g., [5-9], yet most existing solutions rely on crisp evaluation 
thresholds and provide the domain expert with minimum-to-no control over the 
deduplication process (i.e., which data need to be duplicated and which data should be kept 
intact) hence overlooking the expert’s requirements and application needs in defining 
redundancy, e.g., [6, 9]. 

In this study, we propose a new approach for Fuzzy Redundancy Elimination for Data 
Deduplication (FREDD) in a connected environment. It uses simple natural language rules 
to represent domain knowledge and expert preferences regarding data duplication 
boundaries. It then applies pattern codes and fuzzy reasoning to detect duplicates on the 
edge of the network. This reduces the time required to hard-code the deduplication process, 
while adapting to the domain expert’s needs and application requirements. Experiments on 
a real-world dataset highlight our solution’s potential and improvement compared with 
existing approaches. 

The remainder of this paper is organized as follows. Section 2 briefly reviews the 
related works. Section 3 describes our framework. Section 4 describes our experimental 
evaluation and results, before concluding in Section 5 with ongoing directions. 
 
2 Related Works 
 

Data deduplication techniques have been initially developed for data storage and data 
warehousing systems, e.g., [10-12], and have been recently investigated in the context of 
IoT and connected environments.  

In [9], the authors address data redundancies at the core of the network using a 
supervised machine learning solution based on Support Vector Machines (SVM). They 
build an aggregation tree for the given size of the network and then apply SVM to recognize 
data redundancies. The authors target temporal and spatial redundancies once the data is 
consolidated in a central node, which provides a redundancy-free data repository that can be 
mined using dedicated data processing techniques (cf. challenge 1). However, redundancies 
are not handled at the edge level, and data exchange between devices at the edge remains 
costly due to unnecessary communications. In [13], the authors provide a data deduplication 
technique in healthcare-based IoT, and introduce a Controlled Window-size based Chunking 
Algorithm (CWCA) to identify cut-points in sensor data distributions. Yet similarly to [9], 
the solution in [13] only performs data deduplication at sink nodes and does consider 
redundancies at edge devices (cf. challenge 1). In [14], the authors focus on the spatial 
distribution of sensors in the environment, and how it can be managed to prevent 
redundancies. The authors build a graph of nodes and events in order to detect “redundant” 
nodes: i.e., nodes producing identical events. Redundant nodes are either relocated or put 
into sleep mode using a circle packing technique to enhance coverage, while minimizing 
energy usage during relocation. This work only handles redundancy from a sensor 
deployment perspective (i.e., avoiding deploying sensors that provide the same type of data 
in the same area).  

In a continuous sensing setup, triggering mechanisms are available to restrict the 
number of transmissions between the sensor node and the monitoring node without 
degrading the tracking of the sensed measurements, e.g., [15, 16]. These mechanisms can 
also be used for filtering redundant spatial-temporal data, in order to trigger transmissions 



from sensor node (edge) to monitoring node (sink) only when there are changes in the sensed 
measurements. These approaches fall into the category of edge-based data deduplication 
solutions, and rely on a simple crisp deviation threshold v. More recently, the authors in [6, 
17] proposed a Data Redundancy Management Framework (DRMF) that handles data 
redundancies at the edge device level considering both static and mobile devices. It clusters 
the data based on expert/system defined crisp deviation threshold, while also keeping track 
of the temporal and spatial-temporal spread (or coverage) of each cluster (i.e., sets of 
redundant data). The algorithm sorts all data tokens and checks if the current token belongs 
to the current cluster by comparing it with the cluster’s centroid, considering a expert-
defined deviation threshold 𝛿𝑣. Otherwise, a new cluster is created with the current data 
item added as its centroid. In another relevant study in [18], the authors introduce the 
Redundancy Elimination Data Aggregation (REDA) algorithm to perform deduplication at 
individual edge nodes and also among nodes in the same cluster. Assuming that data is 
presented as a set of scalar values (e.g., temperature, humidity), the range of numbers is 
divided into crisp intervals that depend on the domain expert requirements, then a lookup 
table is generated for each cluster containing the ranges of each interval and their associated 
pattern codes (e.g., 10-15C are associated with pattern code 1, 16-20 are associated with 
pattern code 2). Note that both [6, 18] rely on crisp deviation thresholds, and share the same 
limitations of crisp processing. 
 

Discussion: Few recent solutions have been designed to handle data deduplication in 
connected environments. They utilize crisp thresholds where even the slightest variations in 
the sensed measurements are processed similarly to extremely large variations (e.g., given 
a temperature variation threshold v = 1C, variations of 1.5 C and 20.5 C are processed 
exactly the same). Similarly, variations which are slightly below the threshold are entirely 
ignored (e.g., given a temperature variation threshold v=1C, a variation of 0.99 C goes 
unprocessed). Relying on crisp thresholds leads to i) missing certain relevant redundancies 
or ii) removing certain data values that might not be redundant. Also, existing solutions 
provide minimum-to-no expert intervention and adaptability in the deduplication process. 

 
3 FREDD Framework 
 

   
 
 

Fig. 1. Simplified diagram describing FREDD’s architecture 
 
To address the aforementioned challenges, we introduce FREDD: a new framework for 
Fuzzy Redundancy Elimination for Data Deduplication in a connected environment. 
FREDD detects data duplicates at edge (source) nodes, in order to minimize network traffic 
and bandwidth consumption. It combines simple natural language rules with a fuzzy 
inference mechanism designed to adapt the deduplication process following the expert’s 
needs. FREDD’s core architecture is depicted in Fig. 1. It consists of six main modules: i) 
sensor data representation which defines the spatial and temporal representations of data 



measurements/items, ii) measurement separation which separates the input data into 
measurement-based data collections, iii) pattern code generation which associates data 
items with pattern codes based on expert-defined lookup tables, iv) duplicate candidate 
filtering which determines whether data items are candidates for fuzzy duplication, v) fuzzy 
redundancy detection which identifies duplicate data items using fuzzy reasoning based on 
expert-defined condition-action rules, and vi) redundancy removal which eliminates 
redundant data items and produces deduplicated data.  
 
3.1. Sensor Data Representation 
 

Connected environments contain diverse devices each embedding one or more sensors that 
provide data from the real world. Static devices are immobile; therefore, the data generated 
by such devices can be redundant temporally. Mobile devices produce data while moving 
around the environment, which potentially generates spatial-temporal redundancies. Here, 
we restrict our presentation to static devices dealing with temporal redundancies, and report 
spatial-temporal redundancies to a later dedicated study. We adopt a set of formal definitions 
from [6] that allows us to describe data items considering the temporal dimension: 
 
Definition 1 - Data Items:  A data item d is defined as a 4-tuple: 
 

d = m ; v ; t ; s (1) 
 
where m is the data measurement, v is the data value, t is the creation temporal stamp of d 
(cf. Definition 2), and s is the data source that sensed/created d  
 
Definition 2 - Temporal Stamp:  A temporal stamp t is defined as a single discrete temporal 
value represented as a 2-tuple: 
 

t = format ; value (2) 
 
where format is a string indicating the format of the date-time value of t (e.g., "dd-MM-
yyyy hh:mm:ss"), and value is the timestamp value (e.g., 10-11-2020 15:34:23 following 
the sample time format mentioned above)  

 
Table 1. Sample sensory data items 

 

Measurement m Value v 
Time stamp 𝒕 

Source s 
format value 

Humidity  92 µg/m3  dd/MM/yyyy hh:mm:ss  10/02/2019 10:00:00  S1 
Temperature  16 C dd/MM/yyyy hh:mm:ss  10/02/2019 10:01:00  S1 

Humidity  94 µg/m3  dd/MM/yyyy hh:mm:ss  10/02/2019 10:02:00  S1 
Temperature  19.5 C  dd/MM/yyyy hh:mm:ss  10/02/2019 10:02:00  S1 
Temperature  21 C dd/MM/yyyy hh:mm:ss  10/02/2019 10:03:00  S1 

Humidity  103 µg/m3 dd/MM/yyyy hh:mm:ss  10/02/2019 10:05:00  S1 
Temperature  21 C dd/MM/yyyy hh:mm:ss  10/02/2019 10:05:00  S1 

Humidity  104 µg/m3 dd/MM/yyyy hh:mm:ss  10/02/2019 10:06:00  S1 

 
Consider the motivating example of a smart building, hosting a set of static sensing 

devices that provide humidity and temperature measurements (among others) from the 
environment. Devices have built-in memories to buffer chunks of sensory data before 
transmission to the network’s sink nodes. Table 1 shows the representation of sample 
sensory data after being sensed/produced by an edge device (source) S1 embedding two 
sensors producing humidity and temperature measurements respectively. 



3.2. Measurement Separation 
 

Since the device can embed various sensors, its internal memory might store different 
measurements (i.e., features such as humidity and temperature in Table 1). Therefore, in 
order to detect redundancies in the data stored locally on the edge device, we start by 
filtering the data into collections having the same measurements. To illustrate the 
measurement filtering process, the data shown in Table 1 produces two distinct data 
collections: the first for humidity data (first four tuples - cf. Table 2), and the second for 
temperature data (containing the last tuples). Consequently, the measurement data 
collections are processed separately for data deduplication. Note that the domain expert 
decides about the selection of measurements to be processed for deduplication. 
 

Table 2. Measurement separation of the data from Table 1 
 

a. Humidity data collection 
 

Measurement m Value 𝒗 
Time stamp 𝒕 Source 

𝒔 format value 

Humidity  92 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 S1 

Humidity  94 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1 

Humidity  103 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1 

Humidity  104 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 S1 
 

b. Temperature data collection 
 

Measurement m Value 𝒗 
Time stamp 𝒕 

Source 𝒔 
format value 

Temperature  16 C   dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 S1 

Temperature  19.5 C  dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1 

Temperature  21 C  dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 S1 

Temperature  21 C  dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1 

 
3.3. Pattern Generation Code 
 

The pattern code generation module transforms ranges of data item values for a given 
measurement (e.g., humidity, temperature) into interval values that are defined based on 
reference lookup tables. Edge and sink devices handling the same measurements refer to the 
corresponding measurement lookup tables (e.g., humidity lookup table, or temperature 
lookup table), where lookup tables are created based on expert preferences or application 
requirements. Here, we distinguish between two kinds of lookup tables allowing: i) disjoint 
data ranges, and ii) intersecting data ranges. 
 

Table 3. Sample disjoint value lookup tables for humidity and temperature measurements, 
considering ranges 90-110 µg/m 1 and 15-28 C respectively 

 

a. Disjoint humidity data ranges b. Disjoint temperature data ranges 
 

Interval 
values 

[90, 96] 
µg/m3 

]96, 104] 
µg/m3

]104, 110] 
µg/m3

Pattern  
code 

H1 H2 H3 
 

 

Interval 
values 

[15-19] 
C

]19-24] 
C

]24-28] 
C 

Pattern 
code

T1 T2 T3 

 
 

                                                 
1 Microgram Per Cubic Meter 



Table 4. Sample intersecting value lookup tables for humidity and temperature 
measurements, considering ranges 90-110  µg/m3 and 15-28 C respectively  

 

a. Intersecting humidity data ranges b. Intersecting temperature data ranges 
 

Interval 
values 

[90, 98]  
µg/m3 

[94, 106] 
µg/m3

[102, 110] 
µg/m3

Pattern 
code 

H1 H2 H3 
 

 

Interval 
values 

[15-20]  
C

[18-25]  
C

[23-28]  
C 

Pattern 
code

T1 T2 T3 

 
Disjoint data ranges (cf. Table 3) allow simple pattern code generation, yet they produce 
disconnected pattern codes where values on the range boundaries might be misrepresented 
(e.g., it is not clear which pattern code can be assigned with values 96.2 µg/m3 or 104.7 
µg/m3 following Table 3). Intersecting data ranges (cf. Table 4) allow the generation of 
combined pattern codes when the target value belongs to more than one range (e.g., humidity 
values 103, 104, and 105 µg/m3 belong to both H2 and H3 pattern codes following Table 4).  

In this study, we consider intersecting ranges to allow more efficient processing 
(duplicate candidate filtering, cf. Section 3.4) and more accurate data deduplication (fuzzy 
redundancy detection, cf. Section 3.5) 

Table 5 shows the pattern codes generated for the data items from our running 
example in Table 2, considering the above look-up tables.  
 

Table 5. Value, zone, and combined pattern codes for sample data from Table 1 
 

a. Humidity data collection 
 

Measurement m Value 𝒗 
Value 

Pattern 
Code 

Time stamp 𝒕 
Source 𝒔 

format  value  

Humidity 92 µg/m3 {H1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 S1 

Humidity 94 µg/m3 {H1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1 

Humidity 103 µg/m3 {H2,H3} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1 

Humidity 104 µg/m3 {H2,H3} dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 S1 
 

b. Temperature data collection 
 

Measurement m Value 𝒗 
Value 

Pattern 
Code

Time stamp 𝒕 
Source 𝒔 

format  value  

Temperature 16 C {T1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 S1 

Temperature 19.5 C {T1,T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1 

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 S1 

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1 

 
3.4. Duplicate Candidate Filtering 
 

Since sensor data items are produced and ordered per sensing time stamp, each data item to 
be deduplicated is evaluated with its previous one to check if the data is duplicate or not. 
Our duplicate candidate filtering algorithm is depicted in Fig. 2. It accepts as input two 
consecutive data items and produces as output a decision of whether the data items are 
duplicates, non-duplicates, or candidates for deduplication, based on the following rules: i) 
if two data items share one value-zone pattern code, then they are considered duplicates (cf. 
Fig. 2, lines 4-5), ii) if the data items share one or more value-zone pattern codes, they are 
considered as candidates for deduplication (lines 6-7), and iii) if the data items do not share 
any value-zone pattern code, they are considered as non-duplicates (lines 8-9), 

Table 6 shows the output of the filtering algorithm applied on the input data from Table 
5, where 6 data items are identified as either duplicates/non-duplicates, such that 2 of the 



original 8 items need to be further considered for fuzzy deduplication. Depending on the 
data patterns generated in the target connected environment, duplicate filtering can 
significantly reduce the number of data items to be processed for fuzzy redundancy 
detection, thus significantly improving overall processing performance especially at the 
device level (cf. experimental results in Section 4). 

 
Algorithm 1 – Duplicate Candidate Filtering 

Input: DataItem1, DataItem2 
Output: DeduplicationStatus

Begin 
1  pattern1  pattern code for DataItem1 
2  pattern1  pattern code for DataItem2 
3  interLen  length of intersection between DataItem1 and DataItem2 
4  if (pattern1 = pattern2) and (interLen =1) then
5  DeduplicationStatus  Duplicates 
6  else if interLen > 1 then
7  DeduplicationStatus  Candidates 
8  else 
9  DeduplicationStatus  NotDuplicates 
End 

 

Fig. 2. Pseudocode of our duplicate candidate filtering algorithm 
 

Table 6. Output of the filtering algorithm applied on input data from Table 5 
 

 
 

a. Humidity data collection 
 

Measurement m  Value 𝒗 
Value 

Pattern 
Code 

Time stamp 𝒕 
Source 

 s format  value  

Humidity 92 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 S1 

Humidity 94 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1 

Humidity 103 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1 

Humidity 104 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 S1 
 

b. Temperature data collection 
 

Measurement m  Value 𝒗 
Value 

Pattern 
Code 

Time stamp 𝒕 
Source 

s format  value  

Temperature 16 C {T1}  dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 S1 

Temperature 19.5 C {T1,T2}  dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1 

Temperature 21 C {T2}  dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 S1 

Temperature 21 C {T2}  dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1 
                  

 
3.5. Fuzzy Redundancy Detection 
 

The fuzzy redundancy detection module’s overall process is shown in Fig. 3. It accepts as 
input data items that are candidates for redundancy detection, and then produces as output 
their deduplication status (i.e., duplicates or non-duplicates).  
 

Duplicate Non-Duplicate Candidate for Deduplication 

Duplicates 

Non-Duplicates 

Candidates 

Candidates 

Duplicates 

Non-Duplicates 



 
 

Fig. 3. Simplified diagram describing the fuzzy redundancy detection module’s process 
 

Fuzzification: First, the scalar data item values are fuzzified, producing linguistic 
values associated with fuzzy membership degrees (e.g., humidity value 103 µg/m3 becomes 
75%H2 and 25% H3 following Fig. 4). The fuzzy partitions for every measurement are 
defined based on the corresponding lookup table ranges, where the fuzzy membership 
functions can be defined following the expert and application needs (cf. Fig. 4.a and b). The 
output deduplication status variable represents a percentage value using one membership 
function varying from 0-to-100% duplication (cf. Fig. 4.c). 

 
 

 

   

 
 

a. Input humidity fuzzy partitions, 
cf. Table 4.a 

b. Input temperature fuzzy 
partitions, cf. Table 4.b 

c. Output deduplication status 
fuzzy partitions 

 

Fig. 4. Input humidity and temperature fuzzy partitions, and output deduplication status fuzzy 
partitions defined using the trapezoidal function following the lookup tables in Table 4 

 
Condition-action rules: As for the fuzzy agent’s condition-action rules, they reflect 

the common sense logic applied by an domain expert to determine whether two data items 
are duplicates or not, based on their measurement’s look-up tables: 
 
Rule 1.   IF  (Humidity_Item1 is H1)  AND  (Humidity _Item2 is  H1) THEN  DedupStatus is Duplicate 
Rule 2.   IF  (Humidity_Item1 is H2)  AND  (Humidity _Item2 is  H2) THEN  DedupStatus is Duplicate 
Rule 3.   IF  (Humidity_Item1 is H3)  AND  (Humidity _Item2 is  H3) THEN  DedupStatus is Duplicate 
Rule 4.   IF  (Temp_Item1 is T1)  AND  (Temp_Item2 is  T1) THEN  DedupStatus is Duplicate 
Rule 5.   IF  (Temp_Item1 is T2)  AND  (Temp_Item2 is  T2) THEN  DedupStatus is Duplicate 
Rule 6.   IF  (Temp_Item1 is T3)  AND  (Temp_Item2 is  T3) THEN  DedupStatus is Duplicate 

 
Inference: Fuzzy inference consists in applying the concerned condition-action rules 

on the fuzzified data in order to produce fuzzy outputs. The logical connectors in the 
condition-action rules are translated into mathematical formulas that operate on the fuzzy 
data. In our agent, we adopt Mamdani’s implication operator as the default inference 
function given its common usage in the literature [19, 20].  

Aggregation: It allows grouping the outputs of multiple inference operations executed 
on multiple condition-action rules, in order to produce on single fuzzy output result. In our 
agent, we adopt the maximization aggregation function (Formula 5) given its usage in the 
literature [19, 21]. Others formulas like bounded sum and weighted sum can be utilized. 
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1. Fuzzification: Given case 1’s input data: Humidity_DataItem1 = 103 µg/m3 and Humidity_DataItem2 = 104 µg/m3, we 
compute the corresponding fuzzy membership values following the humidity fuzzy functions in Fig. 4.a (reported below): 

 
 

- For Humidity_DataItem1:  
fH1 (103) = 0, fH2 (103) = 0.75, and fH3 (103) = 0.25        

 

- For Humidity_DataItem2: 
fH1 (104) = 0, fH2 (104) = 0.5, and fH3 (104) = 0.5 

 
 

2. Condition-Action rules: Based on the input membership values, the following condition-action rules are invoked: 
 

- Rule 2:  H2(Humidity_DataItem1)  ∧  H2(Humidity_DataItem2)  ⇒  Duplicate(DedupStatus)  
- Rule 3:  H3(Humidity_DataItem1)  ∧  H3(Humidity_DataItem2)  ⇒  Duplicate(DedupStatus)  

 
 

4. Inference and Aggregation: By applying Mamdani’s 
inference mechanism and the maximization aggregation 
function, Fagg = Fmax = max(fRule2, fRule3), the agent produces 
the fuzzy coverage areas subsumed by the inference 
membership functions (represented in grey color).  

 
 

4. Defuzzification: The center of gravity defuzzification 
function is applied on the fuzzy coverage area to compute 
the center of gravity point (represented as a red dot), and 
then identify the corresponding deduplication status (on 
the x axis) as the agent’s output = 76%.    

 

 

6. Result: Given dedupthreshold = 75% in our running example, and since the output of the defuzzification step is 76%  
dedupthreshold, the agent’s final output becomes: dedupStatus = duplicates 

 
 

 

Fig. 5. Fuzzy redundancy detection process for the humidity sample case (cf. Table 6) 
 

Deduplication: It allows transforming the fuzzy output produced by the aggregation 
function into a crisp output that represents the final result of the agent. In our agent, we 
adopt center of gravity (Formula 6) given its common usage in the literature [19, 21]. Other 
formulas like maximum to the left and maximum to the right can be utilized.  
 

Mamdani’s implication: 
 

Given fuzzy sets f1, f2 : 
 

f1  Mamdani f2     f1  f2  
 min(f1, f2) 

 

where  is the AND 
fuzzy logic operator1 

 
 
 

(4) 

Maximization 
aggregation: 
 

Given fuzzy sets f1, 
f2, …, fn:  
 

Fagg= FMax = 
max(f1, f2, …, fn) 

 

 
 
 
(5) 

Center of gravity 
defuzzification: 
 

Given aggregate fuzzy 
set FAgg: 
 

× ×

×

 ( )  

( )  

agg

agg

x F x dx
x

F x dx




ൌ
 

 
 
 
(6) 

 
Computation example: We consider in Table 6 two cases for humidity and temperature 

measurements studied in our motivation scenario. The detailed computation process for 
humidity described in Fig. 5 (a similar computation process is executed for temperature). 

                                                 
1  The AND fuzzy logic operator can be any t-norm function, including min which is commonly adopted in the literature. 
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The agent recommends that input 103 µg/m3 and 104 µg/m3 data values are duplicates with 
a 76% fuzzy membership degree, which seems reasonable given the humidity lookup tables 
and value ranges defined in Table 4 (H2 and H3 fuzzy partitions intersect between [102, 
106] µg/m3, where 103 is much closer to the 102 µg/m3  boundary of H2 than to the 106 
µg/m3 boundary of H3, but also 103 µg/m3 and 104 µg/m3 are close to each other). Given 
our running example data from Table 6, the identified humidity and temporal redundancies 
following the fuzzy redundancy detection process are shown in Table 7. 

 
Table 7. Output of the fuzzy redundancy detection process applied on the data from Table 6 

 

a. Humidity data collection 
 

   Time stamp 𝒕  

Measurement m Value v 
Value 

Pattern 
Code

format  value  
Source 

s 

Humidity 92 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 S1 

Humidity 94 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1 

Humidity 103 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1 

Humidity 104 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 S1 
 

b. Temperature data collection 
 

Measurement m  Value v 
Value 

Pattern 
Code 

Time stamp 𝒕 
Source 

s format  value  

Temperature 16 C {T1}  dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 S1 

Temperature 19.5 C {T1,T2}  dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 S1 

Temperature 21 C {T2}  dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 S1 

Temperature 21 C {T2}  dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 S1 

 
3.6. Redundancy Removal 
 

Once redundancies are identified, the redundancy removal process occurs. Here, domain 
experts might have different needs for redundancy removal. This component summarizes a 
sequence of redundancies into one representative data item following an expert-chosen 
redundancy removal function (e.g., media, mean, maximum, minumum,) representative. 
Experts provide their requirements in the form of simple consumer requests that the module 
processes to execute the required redundancy removal functions. For instance, Table 8 
shows the humidity and temporal redundancies that are removed using the median function. 
 

Table 8. Output of redundancy removal using the median function applied on Table 7 
 

a. Humidity data collection 
 

Measurement m Value v 
Time stamp 𝒕 Source 

𝒔 format value 

Humidity  92 g/m3  dd/MM/yyyy hh:mm:ss  10/02/2019 10:00:00  S1 

Humidity  103 g/m3  dd/MM/yyyy hh:mm:ss  10/02/2019 10:05:00  S1 
 

b. Temperature data collection 
 

Measurement m Value v 
Time stamp 𝒕 Source 

𝒔 format value 

Temperature  16 C  dd/MM/yyyy hh:mm:ss  10/02/2019 10:01:00  S1 

Temperature  21 C  dd/MM/yyyy hh:mm:ss  10/02/2019 10:05:00  S1 

Duplicates 

Duplicates 

Duplicates 



4 Experimental Evaluation 
 

We have implemented our FREDD framework as a web-based application, using methods 
from the jFuzzyLogic open source library [22, 23] in implementing our fuzzy logic agent, to 
allow easy manipulation for domain experts in operating and evaluating the system1. We 
considered Intel Lab Berkeley dataset [24] obtained from 54 Micra2Dot sensors providing 
weather data including temperature, humidity, light, as well as the list of Cartesian 
coordinates for each of the 54 sensors, and the time when each data measurement is 
collected. In our empirical evaluation, we consider 20k humidity and temperature data 
measurements collected from sensor S1 on 28/2/2004. 

We utilize four evaluation metrics: i) deduplication accuracy (acc): time series 
similarity between the original data and the deduplicated data [5], ii) data reduction ratio 
(redu) is defined as the ratio of the difference between the original data and the duplicated 
data, iii) size of transmitted data (|datatrans|) represents the size of the data transmitted from 
the edge devices to the sink device (a good deduplication solution would reduce the size of 
data transmitted over the network in order to gain in network bandwidth), and iv) size of 
stored data (|datastored|) represents the size of the data stored at the sink device (a good 
deduplication solution would reduce the size of the data stored at the sink to gain in 
processing speed and throughput at the sink level). The system implementation, 
experimental datasets, and test results are available online2. 
 
4.1. Fuzzy Deduplication Threshold Evaluation 

 

We vary the fuzzy deduplication threshold, allowing the fuzzy redundancy detection process 
to decide on the deduplication status of candidate data items, and evaluate FREDD’s 
behavior accordingly. Results in Fig. 6 show that when the threshold increases: i) acc 
increases while ii) redu decreases. This is due to the fact that a higher deduplication 
threshold means less candidate pairs are considered for duplication. Also, the size of data 
transmitted to the sink (|datatrans|) and the size of data stored at the sink (|datastored|) are both 
increased with the increase in deduplication threshold. This is mainly due to the decrease in 
redu, resulting in more data being sent and processed at the sink node. Fine-tuning the 
evaluation metric values can be handled automatically as a multi-objective optimization 
problem, e.g., [25-27]. We report this to a dedicated study. 
 

 

 

 

 

a. Acc and redu results b. Size of data transmitted to the 
sink (|dataTrans|) 

d.    Size of data stored at the sink 
(|dataStored|)         

Fig. 6. Deduplication quality metrics obtained with varying fuzzy deduplication thresholds  
  

                                                 
1   We adopt a three-layer architecture: i) a Web API layer that allows client-side applications to communicate with 

the server to request data, etc.; ii) a Business Logic layer where FREDD’s main decision making processes are 
implemented; and iii) a Data Access layer where data storage and retrieval take place.  

2   http://sigappfr.acm.org/Projects/FREDD/ 

0

0.2

0.4

0.6

0.8

1

0.7 0.73 0.75 0.8 0.85 0.9 0.94

R
at
io

Deduplication threshold

Acc Redu

0

0.4

0.8

1.2

1.6

0.7 0.75 0.8 0.85 0.9 0.95

|D
a
ta

Tr
a
n
s|

Deduplication threshold

0

0.4

0.8

1.2

1.6

0.7 0.75 0.8 0.85 0.9 0.95

|D
a
ta

St
o
re
d
|

Deduplication threshold



4.2. Baseline Comparisin with Existing Approaches 
 

We conducted a comparative study to assess FREDD’s effectiveness with respect to recent 
alternatives in the literature: i.e., REDA [18] and DRMF [6]. To test REDA, we consider 
the crisp humidity ranges shown in Table 4. To test FREDD, we consider the fuzzy humidity 
ranges in Fig. 4 and we set the deduplication threshold to 0.8. We also consider two 
variations of DRMF: i) the first one with a deviation threshold equal to one quarter of the 
width of the crisp range  = 3/4 (which we refer to as DRMF_1), and ii) the second one with 
a deviation threshold equal to one eighth of the width of the crisp range  = 3/8 (which we 
refer to as DRMF_2). Results in Fig. 7 show that FREDD consistently achieves the best acc 
results across all data variations compared with both REDA and DRMF1/2. This is due to 
FREDD’s fuzzy processing capability, allowing to detect approximate redundancies and 
process them for deduplication, compared with the crisp decision-making processes 
performed by REDA and DRMF.    

To further explain the results in Fig. 7, we conduct a second experiment where we 
compare the decision-making behavior of each algorithm applied on different pairs of 
humidity data measurement; the first data item is fixed at a certain value, while the second 
item is varied within a controlled range. Fig. 8 shows the percentage of deduplication 
produced by each algorithm for a first humidity value of 39.5 g/m3, and the second value 
with a variation range of  2.5 g/m3. Results for exising solutions show that all values that 
lie between [38, 41] g/m3 are considered automatic duplicates (i.e., 100% duplicates). 
 

 

 

 

 
 

 

a. Deduplication accuracy (acc)  
 

b. Data reduction ratio (redu) 
 

Fig. 7. Comparison of the deduplication quality metrics between RED, DRMF1/2 and 
FREDD, when varying the number of data measurements of dataset1 

 

 

 

 

Fig. 8. Percentage of deduplicates with first humidity data fixed at 39.5 g/m3 and varying  
the second between [37, 42] g/m3  

 
In contrast, each pattern code range in FREDD is divided into: i) a crisp range where 

pairs are automatically considered duplicates (i.e., from [39, 40] g/m3), and ii) a fuzzy 
range (i.e., between [37, 39] g/m3 and [40, 42] g/m3) where boundaries from different 
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other ranges overlap. In the fuzzy range, the deduplication decision is made based on a 
fuzzy inference system and a set of fuzzy rules, allowing the percentage of duplicates to
vary accordingly (e.g., for a second value of 38 g/m3, the percentage of duplicates is 70%). 
Less duplicate pairs are considered automatic duplicates and the accuracy of the
deduplication process increases accordingly (as shown in Fig. 8).  

 
4.3. Performance Evaluation 
 

We have also compared FREDD’s time complexity with its recent alternatives, REDA, 
DRMF_1 and DRMF_2. FREDD’s complexity simplifies to: O(N  E2) where N designates 
the number of data items considered per edge device, and E the number of edge devices 
considered per sink node. Tests were carried out on a PC with an Intel I7 system with 2.9 
GHz CPU/16GB RAM. Fig. 9.a highlights the linear complexity of FREDD’s deduplication 
process when varying the number of data items per edge node, reflecting O(N) time 
complexity. Fig. 9.b shows running time results considering a fix data size per edge device 
=1000 items and a fixed number of edges per sink node = 10. Results show that REDA is 
the most efficient approach due to its fast and crisp pattern code assignment approach. 
FREDD requires more processing time than REDA due to its fuzzy computation process. 
DRMF is seemingly the most time consuming approach due to its data clustering process. 
 
  

 
a. Edge-level processing time when varying the 

number of data items 
b. Time performance compared with its alternatives, 
considering a fixed data size of 1000 items per edge 

 

Fig. 9. Time performance results 
 

5  Conclusion 
 

This paper introduces a new approach for Fuzzy Redundancy Elimination for Data 
Deduplication (FREDD) in a connected environment. It uses natural language rules to 
represent domain knowledge and expert preferences regarding data duplication boundaries. 
It then applies pattern codes and fuzzy reasoning to detect duplicates on the general network 
infrastructure including both the edge level and the sink level of the network. Experiments 
highlight our solution’s potential and improvement compared with existing solutions. 

We are currently investigating the use of parametric learners [28, 29] and meta-heuristic 
algorithms [30, 31] to (semi) automatically configure the pattern codes’ interval ranges and 
their fuzzy rules based on expert or data related features. We are currently investigating data 
deduplication at the sink level of the network [32], where data is aggregated from multiple 
edge nodes, including edge node mobility, edge node coverage area overlapping, and inter-
edge collaboration. In the future, we plan to investigate data recovery [33, 34] in connected 
environments, including damage assessment and recovery from deduplicated data. 
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