
Unsupervised Knowledge Representation of Panoramic Dental
X-ray Images using SVG Image-and-Object Clustering

Khouloud Salameh1, Farah El Akoum2, and Joe Tekli2*
1 Computer Science and Engineering Department

American University of Ras Al Khaimah (AURAK), 10021, Ras Al Khaimah, UAE
2 Electrical and Computer Engineering Department

 Lebanese American University (LAU), 36 Byblos, Lebanon

Abstract. Given that the meaning of an image is rarely self-evident using traditional keyword and/or content-based
descriptions, the general goal of this study is to convert, with minimal human intervention, a stream of web vector graphics
into a searchable knowledge graph structure that encodes semantically relevant image contents. To do so, we introduce an
original framework titled SSG which automatically converts a stream of SVG images and objects into a semantic graph. We
introduce an incremental clustering approach to semantically annotate SVG images and their constituent objects in a fast
and efficient manner, using an aggregation of shape, area, color, and location similarity measures. We then produce an RDF
graph representation of the input image and integrate it in a reference knowledge graph, incrementally extending its semantic
expressiveness to improve future annotation tasks. This achieves semantization of vector image contents with minimum
human effort and training data, while complying with native Web standards (i.e., SVG and RDF) to preserve transparency
in representing and searching images using Semantic Web stack technologies. Our solution is of linear complexity in the
number of images and clusters used. We have conducted a large battery of experiments to test and evaluate our approach.
We have created a labelled SVG dataset consisting of 22,553 objects from 750 images based on panoramic dental x-ray
images. To our knowledge, it is the first significant dataset of labelled SVG objects and images, which we make available
online as a benchmark for future research in this area. Results underline our approach’s effectiveness, and its applicability
in a practical application domain.

Keywords. Vector graphics, SVG, semantic graph, semantic processing, RDF, incremental clustering, image annotation,
visual features, image feature similarity.

1. Introduction

Image datasets have become ever-more available, especially on the Web considered as the largest multimedia database
to date [1]. However, the value of their content depends on how easy they are to search and manage [2]. Thus, the
need to efficiently represent and manage images is becoming increasingly important. Existing Web image search
engines and photo sharing sites (such as Google Images1 and Flickr2) chiefly utilize the keyword (text-based)
representation model, where image visual contents are described using indirect textual clues [3]. They typically return
a large amount of search results ranked according to their relevance to the keyword query, which can be tiresome and
time consuming for the user [3]. Another approach is content-based image retrieval (CBIR), where images are
described based on their low-level visual content, e.g., color, texture, and shape descriptors (e.g., Google search-by-
image, Picsearch3) [4, 5]. Yet low-level features are usually unable to effectively capture the high-level semantic
meaning present in images [6], which is known as the semantic gap problem: the difference between the visual
expressiveness of low-level image features and the meanings provided by user semantics [4, 6]. Few recent approaches
proposed to augment the textual descriptions of Web images, using techniques like probabilistic image tagging (using
the image tags from the logs of related users to infer new tags, e.g., [7, 8]), and semi-supervised image annotation
based on visual and Web contents (training supervised learners to perform annotation based on existing images with
predefined labels, e.g., [9, 10]). While promising, yet these solutions involve large amounts of training data and
significant training time which are not always obtainable and require significant manual labor to prepare [3].

* Corresponding author. Tel.: +961-9-547-262; E-mail address: joe.tekli@lau.edu.lb. Joe Tekli is also an adjunct researcher with the SPIDER

research team, LIUPPA Laboratory, University of Pay and Pays Adour (UPPA), 64600, Anglet, Aquitaine, France.

1 https://www.images.google.com 2 https://www.Flickr.com 3 https://www.picsearch.com/

2

The goal of our study is to convert, with minimal human intervention and as little training data as possible, a stream

of raw Web vector graphics into a searchable semantic-based structure that encodes semantically relevant image
contents. We specifically target the annotation of SVG (Scalable Vector Graphics)3 images due to their interesting
properties, i.e., resolution-independence and extremely small-size image coding. Vector images are becoming popular
in a range of practical applications covering medical image annotation [11, 12], geographic map annotation [13, 14],
and data accessibility for visually impaired users [15, 16]. We introduce an original SVG Semantic Graph framework
titled SSG, which takes as input a stream of SVG images made of geometric objects, and produces as output a
knowledge graph (KG) structure made of RDF (Resource Description Framework)4 triples. SSG consists of four main
modules for: i) converting SVG images into KG representations, ii) computing SVG image similarity using an
aggregation of vector object similarity measures (an early version of this module is described in [17]), iii) performing
efficient SVG image and object clustering to allow unsupervised labelling, and then iv) integrating the produced labels
as semantic annotations in the KG representation, extending its semantic expressiveness. As a cold start, SSG requires
only a minimum of one single vector graphic representative for each cluster to jumpstart the labelling process. The
representatives are incrementally updated as new images are annotated by the system. Our solution is of linear
complexity in the number of images and clusters used. It is fully automated and does not require training data or
human effort. At the same time, it is transparent and explainable to the user who can choose to be involved through
the whole process: from fine-tuning the similarity measures, to choosing the cluster representatives, and validating
the system generated annotations and KG representations. SSG also complies with native Web standards, namely SVG
and RDF, to preserve transparency in displaying, representing, and searching images using Semantic Web stack
technologies. Compared with the existing literature in vector image representation and processing (cf. Section 3), the
main contributions of this study are summarized as follow: i) we introduce a semantically augmented RDF-based
representation to describe vector images, compared with existing solutions which use plain SVG coding, ii) we
introduce the concept of unified reference KG to gather the collective semantics of an SVG image repository (using
our augmented RDF-based representation), allowing annotation suggestions and improving image semantic
processing, compared with existing solutions which represent images as separate standalone entities, iii) we introduce
incremental SVG image and object clustering to perform unsupervised labelling, in contrast with existing solutions
which process images separately by performing pairwise image similarity computation.

We have conducted a large battery of experiments to test and evaluate our approach. We have created a labelled
SVG dataset consisting of 22,553 objects from 750 images based on panoramic dental x-ray images. To our
knowledge, it is the first significant dataset of labelled SVG objects and images, which we make available online as
a benchmark. Results underline our approach’s effectiveness, and its applicability in a practical application domain.

The rest of the paper is organized as follows. Section 2 describes the motivation of our work. Section 3 briefly
reviews the state of the art in image feature representation, semantics and vector image processing. Section 4 develops
our SSG image semantization framework. Section 5 provides the complexity analysis. Section 6 presents and discusses
our experimental results, before concluding in Section 7 with future directions.

2. Motivation

2.1 Applications of Vector Images versus Raster Images

Images can be grouped in two main categories: i) raster images, consisting of a set of pixels; and ii) vector images
made of geometric entities such as circles, rectangles, triangles, and polygons, etc. Most existing approaches in the

3 https://www.w3.org/TR/SVG2/ 4 https://www.w3.org/RDF/

 3

literature focus on the processing of raster images [2, 4], which are typically produced by digital photo-taking cameras,
and are capable of presenting complex pictures having a variety of colors and shapes. However, vector images are
becoming more and more popular in several application areas requiring the manipulation of small-size, resolution-
independent, and simple images made of basic lines and shapes. These applications range over: medical image
annotation (adding basic shapes on top of medical images to identify organ tissues and tumors) [11, 12], geographic
map annotation (highlighting special places and destinations on a map) [13, 14], video film annotation [18] (using
vector graphics to define both spatial and temporal regions in a video film, and label its color features and contents
accordingly), as well as manipulating graph charts and simplifying accessibility to data and geometric shapes for blind
users (producing simplified contour-based images to simplify data accessibility and navigation for the blind) [15, 16].
In this context, SVG (Scalable Vector Graphics) [19] was introduced as an open W3C standard language for
describing vector images. Based on the XML syntax, SVG allows the encoding of vector graphic shapes, images, and
text, which facilitate including high-level descriptions within SVG content. SVG images can be created with a text
editor, or more efficiently using a drawing software (e.g., SVG-edit4, JANVAS5, etc.).

While the advantages and the practical applications of vector graphics highlight the importance of this category
of images, e.g., [18, 20], yet, most existing image retrieval systems process vector images similarity to raster images
[11], regardless of the properties offered by the former. This underlines two major limitations: i) undergoing expensive
low-level feature selection and extraction, while disregarding the readily available geometric object features which
can be extracted much more efficiently (cf. Section 4.1), and ii) handling low-level features which are size and
resolution dependent and which can affect retrieval quality, in contrast with vector graphics’ features which are both
resolution and size independent.

2.2 Case of Panoramic Dental X-ray Images for Clinical Dental Therapy

Consider the following example in Figure 1 that illustrates a clinical dental therapy scenario, describing the specific
motivation behind this work. Dentists regularly process continuous streams of dental health records and dental images
from their patients. More specifically, dentists specializing in surgery and orthodontia process dental panoramic x-ray
images to identify various critical information including: i) the shape of the teeth (e.g., the tooth looks poorly
developed, decaying, etc.), ii) the location of the teeth (teeth are juxtaposed, evenly spaced, etc.), and iii) the teeth’s
color (ivory for healthy teeth, white for synthetic teeth, dark gray for decayed teeth, or black for lack of teeth, etc.).
This requires manual effort and highlights the following needs: i) identifying the different teeth in a panoramic x-ray
image, ii) recognizing the type of each tooth (i.e., incisor, canine, premolar, and molar), iii) recognizing the presence
of different types of critical information regarding teeth shape, location, and color, and iv) semantically linking the
latter information with the patients’ dental records.

Vector image annotation and processing can be utilized to answer the aforementioned needs. Considering the
sample x-ray image in Figure 1.a, traditional image retrieval techniques would extract and process low-level image
features (e.g., dominant color, color histogram, cf. Figure 1.b) which require considerable processing time and are
usually unable to effectively describe the semantic meaning. However, the SVG image in Figure 1.c can be processed
through its vector features (e.g., path stroke, ellipse fill color, cf. Figure 1.d) which are extracted much more efficiently
and can be easily augmented with semantic information. Vector objects can be added on top of the panoramic x-ray
images to identify different teeth and recognize their types and related information according to the dentists’ needs
(e.g., object1 hasShape path1, object1 isA molar, object1 isLocatedIn upperJaw). Also, being a W3C standard, we
can augment SVG through the Semantic Web stack to benefit from its semantic processing capabilities and link it
with open data repositories (using RDF triples, cf. Figure 1.e).

4 Available at: https://code.google.com/p/svg-edit/
5 Available at: http://www.janvas.com/site/home_en.php

4

 Color histogram Spatial color distribution

a. Raw raster image b. Low-level feature representation

<svg width="20cm"
 height="20cm“>
 <path d="M 100 350 l 150 -300"
 fill=“grey" />
 <path d="M 140 370 l 170 -250"
 fill=“grey" />
 <path d="M 200 380 l 190 -230"
 fill=“grey" />

…………
 </svg>

c. Vector image representation, consisting of
geometric objects placed on top of (a)

d. SVG encoding of the vector
image and its geometric objects

e. Linked data representation
using RDF (cf. Section 3)

Figure 1. Sample dental panoramic x-ray image (a) described using traditional low-level features (b), versus vector image
and feature representation (c, d), and linked data representation (e, cf. Section 3)

In this context, we highlight the following challenges to achieve SVG semantic processing: challenge 1 – how to

represent SVG images in a meaningful way for seamless integration with Semantic Web technologies, challenge 2 –
how to process the vector images’ shape, location, and color properties to perform object recognition and annotation,
challenge 3 – how to configure the annotation process in order to inject domain insights and user feedback (e.g.,
allowing dentists to configure, adjust, and modify the annotation process according to their needs) for a more adapted
and accurate annotation task. Hence, we aim to provide a solution for knowledge-based vector image representation,
allowing to address the challenges mentioned above. We aim to consider the intrinsic properties of SVG vector
graphics, and build on the descriptive power of the Semantic Web stack, namely RDF, while relying on unsupervised
data clustering to perform the semantic annotation task.

3. Related Works

Most existing Web image representation solutions focus on raster images made of a set of pixels described using low-
level features. Recent approaches have addressed semantic augmentation using supervised learning techniques. Only
a few approaches have addressed vector image representation and processing. Hence, we categorize existing solutions
as: text-based, content-based, hybrid, and more recently XML-based, MPEG-7 based, and vector-based methods.

3.1 Text-based and Content-based Methods

In text-based systems, e.g., [21, 22], images are manually or automatically annotated by text descriptors, which are
then exploited via classic database or text retrieval systems to perform image search [23]. On the one hand, the text-
based paradigm has been adopted by most current Web search engines (e.g., Google and Bing) and photo sharing sites
(e.g., Flickr and Imgur), due to its well proven scalability in handling the tremendous amounts of images published
on the Web. However, text-based systems are usually characterized by poor result quality, since the automated engines
are guessing image visual contents using indirect textual clues [22], and are usually unable to confirm whether the
retrieved images actually contain the desired concepts expressed in the user queries [24]. In addition, text-based
systems usually produce a large quantity of image search results ranked by their relevance to the text-based user query.
This can be extremely tedious and time consuming since the returned results usually contain multiple topics mixed
together, where users could entirely miss their search goal due to cognitive overload [3, 25]. In content-based systems,

 5

e.g., [5, 26] images are indexed based on their visual content, e.g., color, texture, and shape descriptors, and are
processed via search engines specially devised to handle, compute and compare low level image feature descriptors
(e.g., dominant color, color layout, color and edge histograms, etc.) [27]. Yet, as these descriptors are low-level, they
seem effective only in matching images almost identical in content [28]. In other words, they seem useful locally, i.e.,
when applied on a subset of similar images (retrieved a priori through some other means, e.g., using textual or user
provided evidences), but fail when matching relatively disparate images [6]. In addition, low-level features are usually
unable to effectively capture the high-level semantic meaning present in the image, which is known as the semantic
gap problem [4, 6].

3.2 Hybrid Feature Representation Methods

Various hybrid methods have been developed, integrating both text-based and content-based image processing
capabilities [23]. Most methods in this category target Web images, e.g., [29, 30] where both low-level and text-
based image clues are available such as: the Web links of image files (e.g., URLs) which have a clear hierarchical
structure including useful information such as the image Web category, and Web documents in which images are
imbedded (e.g., HTML) which can encompass textual metadata, e.g., image title, Web page title, ALT-tag, etc. Yet,
several studies have shown that such metadata can only annotate images to a certain extent (e.g., the image title is
usually abbreviated and might be meaningless, the ALT-tag might be missing), and do not utterly solve the semantic
gap problem [3].

On the other hand, moving on from traditional low-level image features (e.g., color, shape, and texture features),
various studies have investigated high-level semantics [4, 31], i.e., deriving semantic descriptions generated
automatically based on low-level features. This can be done using different techniques, namely: i) using dedicated
ontologies to relate low-level features with high-level concepts (e.g., color ontologies where colors are defined using
color names – red, blue, etc. – linked with numerical representations [32]), ii) using supervised learning models to
associate low-level and high-level features using trained classifiers based on sample data provided by experts (e.g.,
texture categorization into pre-defined classes – sea, clouds, forest, etc. – based on training numerical spaces [33]),
and iii) generating semantic templates to support high-level semantic image retrieval based on low-level features (e.g.,
retrieval of named events, of pictures with emotional significance such as “find pictures of a joyful crowd”, e.g., [34,
35]). The main premise with this family of hybrid techniques is to try to simulate the visual concept space in terms of
lexical concepts as perceived by humans, which remains an inherently complicated task and an ongoing challenge in
image retrieval [4]. Techniques such as probabilistic user-based image tagging (using the tagging logs from the
histories of similar users to infer new tags, e.g., [7, 8]), and semi-supervised image annotation based on visual and
Web contents (training different deep learning algorithms to annotate new images based on a training image set with
predefined labels, e.g., [9, 10]) show promising results. Yet they require training data and training time, which are not
always available.

3.3 XML-based Representation Methods

Some XML-based solutions have been introduced, e.g., [36-38], organizing images into an XML document tree
hierarchy, and then applying image search and retrieval operations on the obtained XML multimedia tree. The general
process consist of two main steps: placing images into a hierarchy, defining multiple evidence scores such as: image
ascendants, brothers, and children, evaluated using an existing XML retrieval system, and then retrieving multimedia
fragments from those relevant images [39, 40]. Authors in [41, 42] organize the textual content within and surrounding
a multimedia object into disjoint and hierarchically organized entities called Region Knowledge (RKs), following the
hierarchical structure of the document containing that multimedia object: the self-region, its sibling elements, its
parent element, its ancestor elements, and so on; where the largest region is the document itself. Then, the authors use
the vector space model to describe and evaluate each region using TF-IDF and hierarchical weighting schemes. Even
though this method exploits the document structure, yet it solely focuses on textual descriptions (text-based), and does
not actually consider the relations between images (content-based) and regions when the latter’s relevance is

6

evaluated. Other XML-related approaches use a linear combination of evidences to merge the results of content-based
and XML-based retrieval [37, 38].

While most XML-based methods capture a certain hierarchical organization inherent in multimedia information,
nonetheless, most approaches show a high dependence on the underlying XML hierarchical structure and retrieval
system used, rather than the actual visual and semantic properties of images.

3.4 MPEG-7 Feature Representation Methods

Some image retrieval approaches have extended XML-based solutions toward MPEG-7 retrieval [43-45]. MPEG-7
(Multimedia Content Description Interface) is a standardized description of various types of multimedia information
including images and videos [46]. MPEG-7 provides a range of standardized Descriptors (D): representing low-level
features (date of create, author, time, place, etc.) and high-level features (dominant color, scalable color, edge
histogram, etc.), and Description Schemes (DS): defining the structure and semantics of the relationships between
different descriptors and description schemes). A dedicated Description Definition Language (DDL) allows the
creation of new descriptors and description schemes, adapting MPEG-7 to specific applications. As a result, several
approaches have fine-tuned XML-based image retrieval to handle standardized MPEG-7 descriptors, e.g., [43-45].
Different methods have been developed to calculate similarity among images using low-level MPEG-7 descriptors,
namely color (e.g., scalable color, dominant color) and texture (e.g., edge histogram) descriptors. The authors in [47]
adopt Earth Mover’s Distance as a measure between image signatures extracted as dominant nodes with corresponding
weights from an image. In [48], the authors suggest organizing the descriptors within a hierarchical decision fusion
framework using fuzzy logic, combining different types of image features into an integrated feature space. Another
approach in [49] introduces a neural network-based system using a self-organizing mapping from the image descriptor
space to a two-dimensional grid made of artificial neural units. The system uses the query-by-image paradigm,
requiring the user to formulate pictorial cues and image queries, and allowing the latter to provide relevance feedback
about the results, adjusting the neural network’ weights accordingly.

While most MPEG-7 approaches target low-level multimedia descriptors and processing, yet, existing methods
generally undermine image semantics. While it provides a unified way of describing many low-level image
descriptors, yet, MPEG-7 can represent the same textual (semantic) metadata in multiple different ways which can
complicate image processing. For example, using MPEG-7 to annotate an image depicting a FirstPreMolar
juxtaposed to a Canine can be done in multiple ways using i) the free text tag, ii) the keyword tag, or iii) the semantic
tag (cf. Figure 20.a, b, and c). This complicates data search and retrieval since a single query will not be enough to
retrieve all similar metadata having similar characteristics and describing similar objects. Nonetheless, the same image
can be annotated in a unique representation using an RDF-based representation such as ours (cf. Figure 2.d), which
would allow the selection and retrieval of all the similar metadata using a single SPARQL query.

MPEG 7 Image annotations RDF Image annotation

<FreeTextAnnotation>
 FirstPreMolar juxtaposed to a canine
</FreeTextAnnotation>

a. Test free annotation

<KeywordAnnotation>
 <Keyword>FirstPreMolar</Keyword>
 <Keyword>Justaposed</Keyword>

<Keyword>Canine</Keyword>
</KeywordAnnotation>

b. Keyword annotation

<Semantic id="FormalAbstractionDescription">
<SemanticBase xsi:type="AgentObjectType">
 <Agent xsi: ="ToothType">
 <Name>FirstPreMolar</Name>
 <Name>Canine</Name>
 </Agent>
 </SemanticBase>
 <SemanticBase xsi:type="SpatialRelationType"
 id="juxtaposed">
 </SemanticBase>

</Semantic>

c. Semantic annotation

:image1 rdf:type :Image

:FirstPreMolar rdf:type :Tooth

:Canine rdf:type :Tooth

:image1 rdf:depicts :FirstPreMolar

:image1 rdf:depicts :Canine

:FirstPreMolar abc:hasSpatialRelation
:juxtaposed

:juxtaposed rdf:hasAgent s:Canine

d. RDF annotation

Figure 2. MPEG 7 image annotations versus RDF image annotation

 7

Other limitations regarding the semantic capabilities of MPEG-7 include: i) the lack of a unified procedure to
decompose a multimedia object (e.g., an image) and identify the relations between its constituents [50], and ii) the
lack of capabilities allowing the deduction of facts (semantic descriptions) based on existing ones (i.e., identifying the
semantic relations between multimedia objects, as well as between objects and query keywords), which is central to
allow semantic-based search and processing (such as semantic clustering and classification) [51]. Some approaches
have suggested creating MPEG-7 ontologies (based on RDF and OWL) to better handle MPEG-7 semantic
descriptions [52]. In contrast, our approach allows a formalized decomposition of image content using SVG-based
RDF descriptions, while providing an open framework for semantic annotation and fact deduction readily available
for use with emerging RDF deductive systems, e.g., [53, 54]. Such capabilities underline the basic pillars necessary
for the development and deployment of RDF and Semantic Web databases [55, 56]

3.5 Vector-based Representation and Similarity Methods

Few approaches have specifically targeted SVG image representation and processing [57, 58]. The work in [59]
suggests organizing the features extracted from SVG images in the form of an aggregation tree, where each tree node
represents an SVG geometric object or an aggregated set of objects and is described by a MBR (Minimum Bounding
Rectangle) and a shape description, taking into consideration the topological relationships between the objects (e.g.,
disjoint, meet, overlap, etc.). The aggregation tree is constructed using object-aggregation rules defined based on
topological relations, e.g., two disjoint objects p and q are grouped under a higher level object n consisting of a new
MBR encompassing the ones of p and q. Another approach in [12] introduces a hierarchical SVG image abstraction
layer for medical imaging, organizing low level features and high level semantic information in an image abstraction
layer where content pieces are represented in XML and SVG. The authors then describe a web based tool that
visualizes, manipulates, and searches the abstraction layer using XQuery. Similar works investigating the retrieval of
SVG images using XML data search and manipulation techniques have been proposed in [11, 14]. These approaches
exploit XML syntactic processing capabilities, yet do not address semantic annotation or semantic-based retrieval.

A few studies have introduced vector shape similarity measures designed to compare SVG geometric objects,
e.g., [11, 13, 60, 61]. The authors in [13] introduce a number so similarity measures to compare same shape and
different shape objects. The main motivation in [13] is to support geographical location based services: identifying
similar geographic sites represented via similar SVG geometric objects, using approximate similarity-based SVG
object search. For similar shapes, invariant points are identified and used to produce a general mathematical equation
that can be used for comparison. For different shapes, the proximity of two object contours is computed as the distance
between their corner points. The authors in [11] compute the similarity between two vector objects as the sum of
shape, color, and position similarity measures. They compute an interior angle sequence defined as the angle formed
by 2 adjacent sides of a polygon using Formula 2 (cf. Section 4.2.1). They also calculate a length sequence defined as
the length of a line segment of path data, using Euclidean distance. Then they normalize by dividing each length value
by the maximum length (Li/Lmax). A similar approach in [60] adopt edit distance to compute the interior angle sequence
and length sequence between two polygon shapes. However, the authors do not mention how the edit-distance measure
is computed. In [62], the authors extract a set of points designating the shape’s perimeter using the current
transformation matrix (CTM). They also introduced a smoothing function to transform a distance into a similarity
measure. The authors in [63] introduce a tool allowing users to manually associate semantic annotations to a sketch
based query specification. Images are drawn and transformed into SVG coding, whereas user annotations are
transformed into an RDF fragment appended to the SVG image code. Yet this approach solely focuses on manual user
annotation and does not address semi-automatic annotation. The authors in [61] extract shape contour and introduce
a technique for centroid distance computation, as the distance from every contour point to the centroid of the object.
They also consider the angles between the line from the centroid point to the ith contour point and the tangent line of
the object at the contour point, compared using cosine similarity. In our study, we build on the approaches mentioned
above and use some of their similarity measures in designing our similarity computation component (cf. Section 4.2).

8

To sum up, i) most existing SVG solutions represent images using native SVG coding, compared with our
semantically augmented RDF-based representation, ii) they represent images as separate standalone entities,
compared with our solution which introduces the concept of unified reference KG to gather the collective semantics
of an image repository, and improve image semantic processing, iii) they process images separately performing
pairwise image similarity computations, in contrast with our approach which introduces SVG image and object
clustering, comparing images with cluster representatives to improve annotation quality and performance.

3.6 Image Clustering Methods

Various clustering solutions have been proposed to organize raster image repositories and search results. They mainly
fall under two main groups: i) partitional and ii) hierarchical. Partitional clustering algorithms attempt to divide data
objects (e.g., images) into non-overlapping subsets, i.e., the clusters, by maximizing intra-cluster similarity and
minimizing inter-cluster similarity. K-means [64] is one of the most popular algorithms in this category and attempts
to recursively minimize the distance between objects in a cluster and a special object designated as the center of the
cluster (computed as the average between all objects in the cluster). Similar algorithms such as k-medians, k-medoids,
and BSAS (Basic Sequential Algorithmic Scheme) have also been suggested [65-67]. Partitional algorithms are
usually intuitive, easy to implement, and relatively efficient (e.g., k-means is of average O(n × k × i) time where n is
the number of images, k is the number of clusters, and i is number of iterations). Nonetheless, they usually require the
user to specify certain parameters like the number of clusters which is not always known in advance. A few algorithms
such as x-means [68] and YAK [69] have attempted to counter the previous limitation, yet, they rely on empirical
heuristics and their usage remains limited [3].

Hierarchical clustering generates a set of nested clusters organized in a hierarchy, called dendrogram, where the
root node of the dendrogram represents the whole dataset and each leaf node represents an individual data object (e.g.,
image). The cluster hierarchy is produced based on the similarity between individual data objects and clusters. In [70],
the authors introduce a three-step hierarchical clustering approach for Web images: i) the first step clusters the input
images based on the concepts extracted from their textual metadata (URL of the containing webpage and image anchor
text), ii) the second step accepts as input the clusters of the first step and merges them based the images’ textual
contexts (surrounding text in the containing webpage), iii) the third step accepts as input the clusters produced in the
second step and expands the context of each cluster using Wikipedia semantics to merge the ones sharing the most
similar contexts. A similar approach is described in [71] where the authors consider labels added using social tagging,
photo taking metadata, and low-level image features. In [72], the authors introduce the folding tree hierarchical
algorithm: it starts from the individual images which represent leaf nodes, and merges the most similar ones based on
their visual features, to form the first level clusters represented as inner tree nodes. Tree traversal is then performed
level-by-level from the leaves to the root. Hierarchical clustering algorithms usually produce better results compared
with their partitional counterparts, yet they are more computationally complex (requiring at least O(n2 ×log(n)) time
where n is number of images being clustered) [3].

Note that neither partitional nor hierarchical clustering solutions can be straightforwardly utilized in our study,
since our SVG image repository is not initially populated for processing (except for a few seed images): it is populated
incrementally as more and more images are added and requested for annotation. Hence, we design a new incremental
clustering solution to process the stream of incoming SVG images, one-by-one, as they are added to the dataset.

4. SVG Semantic Graph (SSG) Framework

An overview of our SSG image semantization framework is depicted in Figure 3. It consists of four main modules: i)
SVG-to-KG conversion, ii) SVG similarity computation, iii) SVG image and object clustering, and iv) SVG
annotation and KG integration. An input SVG image is first processed for feature extraction by identifying its

 9

constituent objects and their properties, and converting them into a KG representation in the form of RDF subject-
predicate-object triples (cf. Challenge 1). Object features are processed for similarity computation using dedicated
shape, area, location, and color similarity measures. The image is run through an incremental clustering process,
grouping it with the most similar cluster representatives based on their aggregate object similarities. The image is then
labeled according to its associated cluster, and is integrated in the reference KG accordingly (cf. Challenge 2). The
reference KG’s semantic expressiveness continuously increases as new images are labelled by the system. The user
can choose to fine-tune each module, by choosing the most representative features, fine-tuning the similarity
measures’ weights, choosing the cluster seed representatives, and validating the system generated annotations before
integration in the reference KG (cf. Challenge 3). We describe each module in the following sub-sections.

Figure 3. Simplified diagram describing our SSG image semantization framework

4.1 SVG-to-KG Conversion

The SVG-to-KG representation module allows converting an SVG image into a knowledge representation that can be
integrated in a reference KG. We first define the SVG and KG data representations adopted in our study, and then
describe our SVG-to-KG conversion algorithm.

Table 1. Basic SVG geometric objects and their properties

Objects
(shapes)

Attributes
(properties)

Visual
presentation

SVG source code
(tagging)

Description

Circle

cx, cy, r,
stroke, fill

<circle cx="50" cy="50" r="40" fill="red"
 stroke="black" >

cx and cy define the coordinates of the circle’s center,
r its radius, fill and stroke its fill/contour colors

Ellipse
cx, cy, rx, ry,
stroke, fill

<ellipse cx="200" cy="80" rx="100"
 ry="50" fill = "purple" />

rx and ry define the ellipse’ radiuses along the x and y
axes respectively

Rectangle
x, y, width,
height,

stroke, fill

<rect x=”50” y=”50” width="100"
 height="300" stroke = "red"/>

x and y define the coordinates of the top-left vertex of
the rectangle

Line
x1, y1, x2, y2,

stroke

<line x1="0" y1="200" x2="200" y2="0"
 stroke = "red" />

x1 and y1 define the line’s start point coordinates, and
x2 and y2 its end point coordinates

Polygon/
Polyline

points, stroke,
fill

<polygon points="220,10 300,210
 170,250 123,234" />

points defines the x and y coordinates for each corner
of the polygon, e.g., (220, 10), (300, 210), (170, 250),
and (123, 234) respectively.

Path d, stroke, fill

<path d="M130,0 L50,10
 L230,300 Z" />

d is the sequence of points in the path, e.g., starting at
point (130, 0) with a line to (50, 10), then a line to
(230, 300), and closing at (130, 0))

10

4.1.1 SVG Representation

SVG allows encoding a variety of geometric objects having different features. Formally:

Definition 1 – SVG Image Document: It is an XML-based document representing structured and self-contained
information consisting of elements representing geometric object shapes, and attributes defining, for each shape, a
set of descriptive features known as geometric object properties (cf. Table 1) ●

Since SVG is an XML-based coding, SVG feature extraction comes down to retrieving attributes using traditional

XQuery and XPath queries. This is a major advantage over traditional low-level feature extraction from raster images
which may require extensive processing (depending on the nature and dimensionality of the features being extracted
[26, 73]), in comparison with fast XQuery/XPath processing (which is based on optimized database-style semi-
structured data processing [74, 75], cf. Figure 4).

4.1.2 KG Representation

SVG coding provides the structural properties of vector images, yet it does not provide any semantic meaning (e.g.,
the SVG coding in Figure 4 consists of a path object shape, but does not reflect semantic meaning such as: the path
is a molar tooth). To solve this issue, we propose to represent SVG images, objects, and their properties as RDF
subject-predicate-object triples6, producing a semantic image representation in the form of an RDF graph. The latter
is referred to as our SVG Semantic Graph (SSG) representation. The SSG is then integrated with the reference KG
representation to provide context and meaning to the SVG image. Formally:

Query: Select the visual attributes of path elements having a fill color =“dark gray”

SVG Raw image SVG source code XPath query Result: Visual Features

Img1.svg

<?xml version‐“1,0”?>
<svg width="20cm" height="20cm”>
 <path d=" M18,4 C0,0 ‐26 ‐15 17,18
 C 9,33,3,18,8,31 S‐1‐25,7
 20.5 S6,19, 4,22 S15 ‐ 31,15
 ‐ 43 S26 ‐ 4,19,4 Z”
 stroke=”black” fill=“dark gray"/>
</svg>

//path[@fill=”dark gray”]/@*

d =" M18,4 C0,0 ‐26 ‐15 17,18
C 9,33,3,18,8,31 S‐1‐25,7 20.5
S6,19, 4,22 S15 ‐ 31,15 ‐ 43
S26 ‐ 4,19,4 Z”

stroke = “black”

fill = “dark gray”

Figure 4. Example of SVG feature extraction using a typical XPath query statement [76]

Definition 2 – SVG Semantic Graph (SSG): It is a graph (N, E, L) consisting of a collection of RDF subject-

predicate-object triples describing SVG image content, where:
 Nodes ni  N designate RDF subjects or objects representing:

o Visual concepts describing geometric objects (e.g., ellipse, circle, path) extracted from the SVG image,
o Domain concepts (e.g., molar tooth, canine tooth) added after annotation from the reference KG to

provide semantic meaning,
o and corresponding geometric object property values (e.g., 50 is the value of property stroke for an

ellipse object, “red” is the value of its fillColor).

 Edges j
ie  E connecting source/destination nodes (ni , nj)  N designate predicates representing:

6 In an RDF subject-predicate-object expression, the subject denotes the resource being described, the predicate denotes a trait or aspect of the

resource, expressing a relation between the subject and the object, where the object designates another resource or a data value [76].

 11

o Relations between geometric objects (e.g., Path1-subClassOf-Path),
o Relations between domain concepts (e.g., Tooth-hasInfluentialFacts-Symptom),
o Relations in-between geometric objects and domain concepts (e.g., Path1-isA-Molar),
o Relations between geometric objects and their property values (e.g., ellipse1- hasStroke-50, ellipse1-

hasFillColor-“red”).

 Labels i  L designate node labels, and j
i  L designate edge labels, cf. Figure 5) ●

a. SSG resulting from extracted visual features
of Img1.svg in Figure 4

b. SSG after annotation, including semantic triples
(highlighted in bold)

Figure 5. Sample SVG feature extraction and the resulting KG representations

Figure 5.a shows an SSG graph which is automatically generated from the SVG image in Figure 4. Triple Path1-
figureIn-Img1 is added to indicate that the path is included in the image. Figure 6 shows an extract of the reference
KG adopted in our study. It is based on a dental knowledge base from [77], which we manually extended to include
SVG geometric object constructs and properties (cf. Figure 19). The reference KG is also represented following our
SSG data model (cf. Definition 2), and provides domain experts with a set of predefined visual and semantic concepts
and relations corresponding to the application domain at hand. The reference KG is dynamically extended by creating
new concept and relation instances based on the images being annotated.

Figure 6. Extract of the reference KG used in our study

12

Algorithm SVG-to-KG_Conversion

Input: Img // SVG image document
 KG // Knowledge graph represented using the SSG data model

Output: SSG // Semantic SVG image graph

Begin

SSG = null // Initializing SSG 1
List GO = Img.getGeometricObjects(Img) // Retrieving geometric objects from Img 2
For each(object oi in GO) 3
{ 4

SSG.addNode(oi) // Object node insertion in the SSG 5
 For each(object oj  oi in SSG) 6
 { 7

j
i = KG.getEdgeLabel(oi, oj) // Acquiring edge labels from KG 8

 SSG.addEdge(oi, oj,
j
i) 9

 } 10
 List ATT = oi.getAttributes() // List of attributes of object oi 11
 For each(attribute atk in ATT) 12
 { 13

SSG.addNode(atk) // Attribute node insertion in SSG 14

 k
i = KG.getEdgeLabel(si, atj) // Acquiring edge labels from KG 15

 SSG.addEdge(si, atj,
k
i) 16

 } 17
} 18
Return SSG 19

End

Figure 7. Pseudo-code of SVG-to-KG_Conversion algorithm

4.1.3 SVG-to-KG Conversion

Algorithm SVG-to-KG Conversion for extracting SVG features and building the corresponding SSG graph is shown
in Figure 7. It accepts as input an SVG image and a reference KG, and produces as output the corresponding SSG
graph. The algorithm starts by extracting geometric objects from the SVG image, and inserting the latter as nodes in
the SSG graph (lines 3-5). Geometric object nodes are connected with other nodes in the SSG graph by creating edges
with their labels extracted from the KG (lines 6-10). Dedicated graph nodes are created for each of the geometric
objects’ attributes (lines 11-14), using dedicate edges with labels extracted from the KG (lines 15-16).

4.2 SVG Similarity Computation

Once the SSG graph is produced for a given SVG image, the annotation process is executed by comparing the image’s
geometric objects with those stored in the reference KG. The latter are run through an incremental clustering process
(described in the following Section 3.4), grouping them with the most similar cluster representatives based on their
aggregate object similarities. The similarity computation process is depicted in Figure 8. We consider four main
similarity criteria: i) shape, i) area, iii) position, and iv) color. Given two SVG geometric objects o1 and o2:

1 21 2 f f

f F

 Sim(o , o) Sim (o , o) [0, 1]w



  
(1)

 13

where F={Shape, Area, Position, Color}, wf = 1, Ɐwf ≥ 0, such that Simf(o1, o2) [0, 1]. While different aggregation
functions can be used (e.g., maximum, average, etc.), we utilize the weighted sum function to combine the different
similarities, allowing users to fine-tune the weight of each criterion according to their notion of similarity. Note that
the fine-tuning of similarity weight parameters is an optimization problem such that parameters should be chosen to
maximize annotation quality (through some cost function such as the f-value measure, cf. Section 6.3). This can be
solved using a number of techniques that apply linear programming or machine learning in order to identify the best
weights for a given problem class, e.g., [78-80]. Providing such a capability, in addition to manual tuning, would
enable the user to start from a sensible choice of values (e.g., identical weight parameters to consider all similarity
measures) and then optimize and adapt the process following the optimization function at hand. Users can also add or
remove their own similarity functions suitable to their application domain. We do not further address the fine-tuning
of parameters here since it is out of the scope of this paper, and will be addressed in a dedicated study.

In the following, we integrate existing measures from the literature and introduce new measures to handle each
similarity criterion. Existing measures are explicitly highlighted and referenced when used.

Figure 8. Simplified diagram describing our similarity computation process

4.2.1 Shape Similarity

SVG shape similarity can be performed by comparing geometric objects of the same type (e.g., comparing two circles,
or two rectangles), or by comparing objects of different shape types (e.g., comparing a circle with a rectangle). On
the one hand, comparing objects of the same type is achieved by comparing their mathematical properties using a set
of well-defined mathematical formulas (e.g., comparing the radiuses of two circles, comparing the width and height
values of two rectangles). The authors in [13] introduce a set of mathematical formulas specially tailored for the task
of comparing same type SVG objects, which we adopt in our implementation. On the other hand, we compare
geometric objects of different types by first i) transforming the objects into their most generic polygon representations,
and then ii) comparing the resulting polygons. A polygon consists of a sequence of vector moments which makes it
invariant to transformations. From each polygon, we extract: i) the interior angle sequence, where each angle is
formed by two adjacent sides of the polygon (computed using Formula 2 from [11]) and ii) the side length sequence,
consisting of the length values of the adjacent sides of the polygon (computed using Euclidian distance between the
sides’ edge points).

,

a.b1

a b
cos [0,]

a b


 
  

  
  

 
 

(2)

where a and b are two adjacent sides of a polygon, and a, b is their internal angle (cf. Figure 9). We compute the
similarities between pairs of angle/side sequences using cosine similarity, and then aggregate them to compute
polygon shape similarity. More formally, given two polygon objects p1 and p2:

SimShape(p1, p2) = wAS  SimCosine(AS(p1), AS(p2)) + wLS  SimCosine(LS(p1), LS(p2)) [0, 1] (3)

14

where AS(pi) and LS(pi) represent the angle and side length sequences of polygon pi respectively, wAS and wLS
represent the angle and side sequences’ similarity weights having wAS + wLS = 1 and (wAS, wLS) ≥ 0. When comparing
two sequences with different dimensions, we pad the sequence having the smaller dimensionality with zero weights
in order to reach the same size of its bigger counterpart. This comes down to adding blank contour angles/sides to the
smaller polygon, which is reasonable since polygons made of different numbers of angles/sides (i.e., of different
resolutions) are indeed not the same. Their difference will be reflected through the cosine similarity computation (cf.
Formula 3), where more/less zero weights would yield lower/higher similarity scores respectively. As for the ordering
of the sequence dimensions, it depends on the ordering of the sequences themselves, which in turn depends on the
starting point of each polygon object. In other words, similar polygons with different starting points can generate
different angle/side sequences, resulting in low sequence similarities which is counter intuitive. To solve this problem,
we adopt a solution from [61] by computing sequence similarity 2n times, where n is the length of the longest
(angle/side) sequence among the polygons being compared. Each angle/side dimension is shifted left for the first
iteration and then shifted right for the second iteration, allowing to consider all possible starting point configurations
when computing similarity. Finally, the highest cosine similarity score is considered as the output sequence similarity.

AS(p) = <a, b, b, c, c, d, d, e, e, a>
LS(p) = <||a||, ||b||, ||c||, ||d||, ||e|| >

Figure 9. Sample polygon with its
angle and size representations

Figure 10. Area surface coverage
using Gauss's area approach [81]

Figure 11. Sample minimum bounding
rectangles and their reference points

4.2.2 Area Similarity

We identify the coverage area of a polygon based on the Cartesian coordinates of its contour points using Gauss's area
formula [81] (cf. Figure 10). More formally, considering a polygon object p made of a sequence of i=1…n contour
points having Cartesian coordinates (xi, yi):

1 1

i i+1 n 1 i+1 i 1 n

1 1

× × × ×
1

area ()
2

x y x y x y x y
n n

i i

p
 

 

     (4)

Consequently, we compute the similarity between the coverage areas of two polygons p1 and p2 as the absolute
normalized difference between their coverage areas:

 
1 2

Area 1 2
1 2

area(p) - area(p)
Sim (p , p) =

area(p), area(p)
[0,1]

max


 (5)

4.2.3 Position Similarity

To compare the positions of two objects o1 and o2 in an SVG image, we generate their minimum bounding rectangles
(MBR1 and MBR2) and then compute the Euclidian distance between the top-left vertices of their MBRs (point1 and
point2), where the top-left vertex serves as a reference location point for an SVG rectangle object (cf. Figure 11).

 Pos 1 2
Euclidian 1 2

1Sim (o , o) = 0,1
1 Dist (point , point)




 (6)

a

b
c

d

e

a, b

b, c c, d

d, e
e, a

o2

MBR2

MBR1

point2

point1

o1

 15

4.2.4 Color Similarity

Colors are traditionally defined on a selected color space, such as RGB or HSV [82], each serving a different set of
applications, where each color is coded as a set of integers values. More recently, color ontologies have been
introduced to bridge the gap between low-level (numeric) color features and high-level (semantic) color descriptions,
where colors are defined using color names (e.g., red, blue, light blue etc.) organized in an ontological graph structure
[83, 84]. Since SVG allows coding colors using both: i) numerical format in the RGB feature space, and ii) color
names with 147 reference colors [19], we adopt both color representations in our approach and calculate the similarity
between two colors by combining their visual properties and their semantic meaning as follows:

SimFillColor/StrokeColor (c1, c2) = wHSVSimHSV(c1,c2) + wOntSimOnt(c1,c2) (7)

While SVG represents colors in numerical format following the RGB color space, yet we chose to convert RGB

into the HSV color space, since HSV encoding is considered to be closer to human perception [30] and thus can be
more semantically descriptive. To compare two colors (based on numerical format), we first convert their vectors
from RGB to HSV using [30], and then calculate their scalar product. As for comparing color names, it can be achieved
using any of several existing methods to determine the semantic similarity between concepts in a semantic graph
ontology, e.g. [85, 86]. In our implementation, we combine two semantic similarity approaches by WuPalmer7 and
Lin8 due to their prolific usage in the literature. Consequently, given two objects o1 and o2, we compute their color
similarity as the aggregation of their fill color and stroke color properties: [87] [88] [89]

 SimColor(o1, o2) = wFillColorSimFillColor(fc1, fc2) + wStrokeColorSimStrokeColor(sc1, sc2) (8)

where (wFillColor, wStrokeColor) ≥ 0 and wFillColor + wStrokeColor = 1 such that (SimFillColor, SimStrokeColor)  [0, 1], fc1 and fc2
designate the fill colors of objects o1 and o2 respectively, and sc1 and sc2 designate their stroke colors.

4.2.5 Image Similarity

We compute the similarity between two SVG images Img1 and Img2 based on the aggregated similarities of their
constituent objects. We utilize the transportation optimization problem, e.g., [90, 91], to match the highest similarity
objects from both images. The transportation problem seeks to associate a number of supply centers m (sources) with
a number of demand centers n (destinations) to optimize supply delivery. In our case, we consider the objects of the
first image oi  Img1 to be the supply centers, and the objects of the second image oj  Img2 to be the demand centers.
Considering two images with m = |Img1| and n = |Img2| objects respectively, we construct an mn matrix where the
rows represent the objects of the first image and the columns represent the objects of the second image. Consequently,
we match the nodes together using the transportation problem’s minimum (least) cost method widely adopted in the
literature, e.g., [90, 91]. We compute cost as the inverse of similarity, and hence we seek to minimize the cost (i.e.,
maximize the similarity) among the matching objects. We briefly describe the process as follows: (i) assign the supply
center (object from the first image) with the demand center (object from the second image) having the highest pair-
wise similarity, (ii) cross-out the row where the supply center is located, (iii) cross-out the column where the demand

7

 0
Lin 1 2

1 2

2 log p(c)
Sim (c , c , CO) = 0,1

log p(c) + log p(c)




where CO designates a reference hierarchical color ontology, N1 and N2 are respectively the lengths of the paths separating colors c1 and
c2 from their lowest common ancestor color c0 in CO, and N0 is the length of the path separating color c0 from the root of CO [89].

8
 0

WuPalmer 1 2
1 2 0

2 N
Sim (c , c , CO) = 0,1

N + N + 2 N





where p(Ci) denotes the occurrence probability of color ci designating the frequency of occurrence of the name color ci in a reference
corpus [88], such as the Brown text corpus [87] adopted in our study.

16

center has been satisfied, (iv) repeat iteratively from (i) to assign the remaining objects until no row or no column is
left. Figure 12 shows a visualuzation of transporation problem’s minimum cost (maximum simialrity) method. Lastly,
the similarity between two images Img1 and Img2 is computed as the sum of the similarities of their matchings objects,
normalized by maximum image cardinality:

 i 1 j 1 i j

i j
o Img , o Img / o matches o

1 2
1 2

(,)

Sim(Img , Img) = 0,1
(Img , Img)

Sim o o

max

 



 (9)

 Im2

 o2 o2 o3

Im1

o1 MaxSim1
o2 MaxSim3
o3
o4
o5
o6 MaxSim2

Im1 includes two canines
(i.e., o1 and o6) and 4

incisors between them

Im2 includes two canines
(i.e., o1 and o3) and one
incisor between them

a. Sample images obtained from panoramic
x-rays of human front lower teeth

b. Visualization of the transportation matrix
(matching objects are shown in bold)

c. Visualization of the matching
objects

Figure 12. Sample visualization of the transportation problem, used to identify matching SVG objects according to their
maximum similarities

4.3 Image and Object Clustering

Our clustering approach is depicted in Figure 13. We adopt an incremental clustering process [92] which considers
images and objects one by one in an incremental manner, and decides what to do with (where to put) them. Incremental
clustering is especially useful when processing streams of data, which is the case in our scenario where streams of
input SVG images and their constituent objects are incrementally processed and annotated by the system.

Figure 13. Simplified diagram describing our clustering process

o1
o2 o3 o4 o5

o6
o1 o2 o3

 17

4.3.1 Clustering Process

Our clustering process consists of two instances for i) clustering images and ii) clustering objects, and outputs two
sets of clusters grouping similar images together and similar object together. The pseudocode of our Image_Clustering
algorithm is shown in Figure 14. It takes as input the first image and compares it with each of the image cluster
representatives (performing image similarity computation using the aggregated similarities of their constituent
objects, cf. previous Section 4.2). The algorithm identifies the cluster representative having the highest similarity with
the image (cf. Figure 14, lines 1-2), and then decides whether the image should be placed in the cluster (lines 10-12)
– or whether a new cluster should be created around the image – based on a user chosen (or system-generated average)
similarity threshold (lines 3-8). If the image is added to an existing cluster, the cluster representative is updated
accordingly (lines 10-12, following a process described in Section 4.3.2) before processing the following image.
Otherwise if a new cluster is created around the image, the image will serve as the cluster’s initial representative. The
algorithm continues in the same manner until all images have been clustered. Another instance of the same clustering
process is applied on the image’s individual objects, grouping them in object clusters. The output image and object
clusters are used to perform image and object annotation, which we describe in Section 4.4.

Algorithm Image_Clustering

Input: S // Stream of newly added images
 R // Set of seed cluster representatives

 ThreshImg // Image similarity threshold
 Weights = {wShape, …, wStrokeColor) // Set of similarity weights

Output: C // set of image clusters

Begin

For each Img  S
 Find max(SimWeights(Img, Repi)) where Repi ∈ R // Find maximum similarity image

 If max(SimWeights(Img, Repi)) < ThreshImg // If similarity less than threshold,
 { // then create a new cluster

Create new cluster cnew
Add Img to cnew
Designate Img as RepNew
Add cnew to C

}
Else // If similarity above threshold,

Add Img to cluster ci having Repi as representative // then update existing cluster
Update_Cluster_Representative(ci)

If user wishes to update threshold
Set ThreshImg as average similarity of all images in C

Return C
End

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
 11.
12.

 13
14

15.

Figure 14. Pseudo-code of Image_Clustering algorithm

4.3.2 Cluster Representatives

The pseudocode of our Cluster_Representatives_Update algorithm is shown in Figure 15. It considers two approaches
when defining the cluster representatives: i) maximum cumulative sum, and ii) higher membership heuristic.
Following the first approach, the image that is most similar to all other images in the cluster is chosen as the cluster’s
representative (cf. Figure 15, lines 1-6). This is done by comparing each image with all others and computing the

18

cumulative sum of all pair-wise similarities. Consequently, the image with the maximum cumulative sum is chosen
to be the representative. While effective, yet this approach is computationally expensive where n similarity
computation operations are performed each time a new image is added, n being the number of images in the cluster.
To solve this issue, we introduce the higher membership heuristic approach: i) for the first three images added to a
cluster, we apply the maximum cumulative sum approach described previously (lines 9-11), ii) we compute the average
cumulative sum score for the representative image by normalizing its cumulative sum with the number of similarity
computation operations – we refer to this average as the representative’s membership score with respect to the cluster
(line 12), iii) starting from the forth image onward, we only compute the new image’s similarity with the cluster
representative (lines 13-15), iv) we consider a heuristic assumption: if the similarity score is greater than the
representative’s membership score, we consider that the new image represents the cluster better than the representative
– and the new image becomes the new cluster representative, otherwise we keep the old representative unchanged
(lines 14-15). This heuristic process is repeated for every other image, and requires constant unit time regardless of
cluster size. Users can choose to apply the maximum cumulative approach or the higher membership heuristic
approach according to their needs.

Algorithm Cluster_Representatives_Update

Input: ci // Image cluster
 MaxCumul // Boolean parameter

 Weights = {wShape, …, wStrokeColor) // Similarity weights

Ouput: Repi // Representative image of cluster ci

Begin
If MaxCumul is true // Maximum cumulative sum
{

For each Imgu  ci
Compute sum(SimWeights(Imgu, Imgv)) where Imgv ∈ ci

Repi = Imgu having maximum sum(SimWeights(Imgu, Imgv)) // Representative with max similarity
}
Else // Higher membership heuristic
{

For each Imgu  ci
If Imgi is among first three images in ci // Computing maximum cumulative sum

Compute sum(SimWeights(Imgi, Imgv)) where Imgv ∈ ci // for first three images, and normalizing

 Weights i v

i
i

(Sim (Img , Img)
 Score =

|c |

sum // with size of cluster

Else If Imgu is forth image or more in ci // Starting from forth image onward,
If SimWeights(Imgu, Repi) > Scorei // compute similarity with

Designate Imgu as new Repi // cluster representative
}
Return Repi

End

1.
2.
3.
4.

5.
6.
7.
8.
9.

10.
11.
12.
13.

14
15.
16.
17
18.

Figure 15. Update_Cluster_Representative algorithm

4.3.3 Cold Start

As a cold start, the user can provide a minimum of one representative for each image cluster and object cluster in
order to guide the clustering process. This allows users to define their clusters of interest and label them according to
the reference KG. Consequently, objects and images added to the user clusters are assigned the corresponding cluster

 19

labels, preparing for their integration in the reference KG (discussed in the following subsection). Failing to provide
the cold start representatives means the system will decide about the initial clusters itself, and define its own behavior
according to the data being clustered. The user can verify the produced clusters at a later stage, and label them
according to the reference KG. Both scenarios, i.e., with and without cold start representatives, are useful in different
applications. Yet we recommend the user provides cold start representatives sooner than later, in order to form the
seed clusters from the beginning, allowing for an effective annotation of the images and objects according to the user’s
target labels. This would help reduce user effort in updating the clusters and their labels at a later stage.

Algorithm SVG_Annotation

Input: Img // SVG Image
 Weights = {wShape, …, wStrokeColor) // Set of similarity weights
 ThreshImg, ThreshObj // Similarity thresholds
 KG // Reference knowledge graph

Output: SSG // Annotated SSG

Begin

N = 
cImg = Image_Clustering(Img, Weights, ThreshImg)

Img = cImg.getLabel()

membershipImg = Sim(Img, Rep(cImg))

N = N  createNode(Img, addAttribute(membershipImg))

For each object oi in Img
ci = Object_Clustering(oi, Weights, ThreshObj)

i = ci.getLabel()
membershipi = Sim(oi, Rep(ci))

N = N  createNode(Img, addAttribute(membershipi))

SSG = SVG‐to‐KG_Conversion(Img, KG)

For each (nk in SSG)
{ N’ = UserValidation(N) // User validates annotations

For each (ni  N’)
 { SSG.addNode(ni) // Node insertion in the SSG

For each(object nj  ni in SSG)

 { j
i = KG.getEdgeLabel(ni, nj) // Acquiring edge labels

SSG.addEdge(ni, nj, j
i)

 }
}

}
Return SSG

End

1.
2.
3.

4.

5.

6.
7.
8.

9.

10.

11.

12.
13.
14.
15.
16.
17.

18.
19.

20.

21.
22.

Figure 16. Pseudo-code of SVG_Annotation algorithm

4.4 SVG Annotation and KG Integration

The annotation process is run for each clustered SVG image and its constituent objects, providing the user with
annotation suggestions. The pseudo-code for algorithm SVG_Annotation is shown in Figure 16. It invokes the SVG
image and object clustering algorithms described in the previous section (cf. lines 2, 7). An image/object added to a
cluster inherits the cluster’s label as its annotation, along with a membership degree representing the image/object’s

20

similarity with respect to the cluster’s representative (lines 3-4, 8-9). Considering for instance two clusters c1 and c2
labelled canine tooth and incisor tooth respectively (cf. Figure 12), a new image Imgi added to c2, having Sim(Img1,
Rep(c2)) = 0.8 will inherit label incisor with membership degree 80% (i.e., the system suggested annotation for Img1
is 80% incisor). Users can choose to accept, update, or disregard the system annotation according to their perceptions
and needs. When users accept or update a system generated annotation, its membership degree becomes 100%,
highlighting the users’ validation of the system suggestion (cf. Figure 16, line 13). The accepted annotations are then
appended to the SSG representation of the image (lines 11-15) with the corresponding edge links acquired from the
reference KG (lines 16-18).

Consequently, the SSG image graph is integrated in the reference KG, by appending the SSG graph nodes as
instance nodes under their corresponding categories in the KG (e.g., nodes representing circle objects are appended
as instances under the category circle, nodes representing molar teeth are appended under the category molar tooth,
etc.). The pseudo-code for algorithm KG_Update is provided in Figure 17. It accepts as input an SSG image graph
and the reference KG, and produces as output the updated KG. Nodes in the SSG graph which are not already present
in the KG are appended to the latter (lines 2-6) with the corresponding edge links (lines 7-11). In addition, edges in
the SSG graph which are not already present in the KG are appended to the latter (lines 13-19).

Algorithm KG_Update
Input: SSG // SVG Semantic Graph

 KG // Reference knowledge graph
Ouput: KG’ // Updated knowledge graph
Begin

KG’ = KG
For each (node ni in SSG)
{
 If (ni  KG’)
 {

KG’.addNode(ni) // Node insertion in KG’
For each(object nj  ni in KB’)
{

j
i = KG.getEdgeLabel(ni, nj) // Acquiring edge labels

KG’.addEdge(ni, nj, j
i)

 }
}

For each (edge k
ie in SSG)

{

If (k
ie  KG’)

KG’.addEdge(k
ie) // Edge insertion in KG’

 }
}
Return KG’

End

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

11.
12.
13.

 14
15.

 16
.

17.
18.

 19.

Figure 17. Pseudocode of KG_Update algorithm

5. Complexity Analysis

The time complexity of our solution simplifies to O(Nk), where N is the number of SVG images being
processed, and k the number of clusters (i.e., the number of image and object categories). It comes down to the
sum of the complexities of the modules:

 21

 SVG-to-KG conversion: requires O(N|Img|) to transform SVG images into SSG graph representations,

where |Img| is the number of objects in an SVG image.
 SVG Similarity Computation: requires O(|Img| + |Img|2) to compute object similarities and image

similarities respectively, which simplifies to O(|Img|2).
 SVG Image and object clustering: requires O(Nk|Img|2 + |Img|k) which comes down to the

complexity of the incremental image and object clustering processes, where k is the number of clusters
(i.e., the number of image and object categories).

 SVG annotation and KG integration: requires O(|Img| + |KG|) where |KG| represents the size of the
reference knowledge graph.

Hence, overall similarity comes down to worst case O(N|Img| + Nk|Img|2 + |Img|k + |Img|+|KG|). It
comes down to O(Nk|Img|2) as the largest factor, and simplifies to O(Nk) since usually N >> |Img|.

6. Experimental Evaluation

6.1 Prototype System

Figure 18. SSG prototype screen snapshot

We have developed a prototype system9 to test and evaluate our SSG framework (cf. Figure 18). It is implemented
using Java, making use of Neo4j to create, parse, and search our semantic graphs using the Cypher query language10.
Users start by choosing the image they need to annotate (by clicking the load image button (Figure 18.a)). Users can
also create on-the-fly SVG images on top of background raster images to annotate them (e.g., annotating a background
panoramic dental x-ray image using SVG shapes (b)). Once the SVG image is loaded, the system automatically

9 Available online at: http://sigappfr.acm.org/Projects/SSG/

10 We adopt Noe4j as a graph database to represent our semantic graphs, versus using a native RDF representation in Protégé [93] for instance,
due to the latter’s significant efficiency and processing speed compared with the latter. Other graph databases can be used as plug-and-play
models according to the admin’s preferences.

(a)

(b)

(d)

(c)

(e)

(f)

22

extracts SVG image features and produces the SSG graph representation, such that all the geometric object nodes in
the SSG are filled in a combo-box (titled GeometicObject), and their visual properties are extracted and filled in other
dedicated combo-boxes: hasCx, hasCy, hasColor, etc. (c). Users can then choose the geometric objects they wish to
annotate, by clicking on the offer button to ask for annotation suggestions from the system (e). The SSG image graph
is then displayed accordingly (f). Users can choose to validate/modify/disregard one/multiple system generated
annotations, or add their own manual annotations (d). The annotation phase is concluded by clicking the submit button
in order to save all annotations and append them to the reference KG.[93].

6.2 Application Scenario and Data

While our framework is generic, yet we chose to test it in a real-world application scenario: clinical dental therapy
(cf. Motivation in Section 2). Our tests are designed to process a collection of dental panoramic x-ray images in order
to annotate their consistent teeth objects including: i) the type of each tooth (e.g., incisor, premolar), ii) the shape of
the teeth (e.g., poorly developed, decaying, etc.), iii) the location of the teeth (juxtaposed, evenly spaced, etc.), and
iii) the teeth color (ivory for healthy teeth, dark gray for decayed teeth, etc.). To provide domain specific annotations,
we adopted a reference dental KG from [77], and we manually extended it to include SVG geometric object constructs
and properties (cf. Figure 19).

a. Extract of original dental domain KG concepts [77]11. b. Extract of SVG KB visual concepts developed in our study.

Figure 19. Reference dental KG12.

6.3 Experimental Metrics

The main criteria used to evaluate the effectiveness of automatic annotation approaches are the amount of manual
work and user effort required to perform the annotation task. This depends on: i) the quality of the produced
annotations, as well as ii) the time needed to provide automatic annotations.

On one hand, to evaluate annotation quality, existing text/image annotation approaches in information retrieval
(IR) propose to first manually produce annotations, and exploit the obtained results as a reference to evaluate the
quality of the matches produced by the system [94, 95]. Thus, similarly to IR approaches, the precision and recall
metrics can be utilized in comparing “real” and system generated annotations. Precision (PR) identifies the number
of correctly generated annotations, w.r.t. the total number of annotations (correct and false) produced by the system.
Recall (R) underlines the number of correctly identified annotations, w.r.t. the total number of correct annotations,
including those not identified by the system. Having:

 A the number of correctly identified annotations (true positives),
 B the number of wrongly identified annotations (false positives),
 C the number of real annotations not identified by the system (false negatives).

11 Lille University annotation is a tooth’s annotation scheme, elaborated by the University of Lille in France, which can be integrated in any general

purpose dental knowledge base [77].
12 The complete knowledge graph is available online on the project prototype Web page.

 23

Precision and recall are computed as follows:

 [0,1]PR A

A B
 


 [0,1]R A

A C
 



2
- = [0,1]

+

PR R
F value

PR R

 
 (10)

High precision denotes that the annotation process achieved high accuracy in identifying correct annotations,
whereas high recall means that very few correct annotations where missed by the system. In addition to evaluating
precision and recall separately, it is a common practice to consider F-value as a combined measure, representing the
harmonic mean of precision and recall. High precision and recall, and thus high F-value indicate in our case high
annotation quality.

In addition, we evaluate time performance: i) measuring the time to automatically produce semantic annotations,
ii) evaluating time w.r.t. the size of the reference ontology and how the latter evolves with the number of annotated
images, and ii) comparing automatic (system) annotation time with manual (user) annotation time.

6.4 Experimental Data

We have created an SVG dataset consisting of 22,553 labelled objects from 750 images based on panoramic dental x-
ray images. To our knowledge, it is the first significant dataset of labelled SVG objects and images, which we make
available online as a benchmark for future research in this area. We first acquired dental x-rays from the UFBA_UESC
dental images dataset [96], considering 750 images including structural variations regarding the number of teeth,
restorations, implants, appliances, and the size of the mouth and jaws. We applied proper filters to clean the images,
and performed edge detection using Python’s OpenCV library. We generated contour points to approximate the shape
of each tooth and created an SVG file for each object. Figure 20 depicts the process of cleaning, detecting, and
generating the contours of each tooth in the image. Consequently, we organized the SVG images under 4 labelled
clusters: full teeth (including exactly 32 teeth), images missing a few teeth (between 26 and 31), images missing
several teeth (less than 26), and images of supernumerary cases containing extra teeth (more than 32). We also
considered 10 object clusters: incisor, canine, molar, premolar, and wisdom tooth each being upper jaw, lower
jaw, healthy, synthetic, and decayed. These seed images and objects form the first visual concepts in the
reference KG, which will be populated gradually as new images and new objects are annotated by the system.

a. Input raster image b. Image filtering and cleaning c. Edge detection d. Contour generation

Figure 20. Sample images depicting our SVG image and object data preparation pipeline
(the resulting SSG image graph following the annotation process is shown in Figure 21)

6.5 Evaluating Annotation Quality

6.5.1 Evaluating System Annotations

We conducted a battery of tests to evaluate the quality of our annotation process. The expert user first provides seed
images and seed objects to form the representatives of the target clusters. In our experiments, we considered the seed
image and object clusters produced in our experimental dataset (cf. Section 4.4). Consequently, the system starts
offering annotation suggestions for each new image in the input stream, along with its constituent objects. The
produced system annotations are compared against the user-labelled dataset (cf. Section 6.4), and are considered either

24

relevant (true positives) or irrelevant (false positives), allowing to compute PR, R, and F-value scores accordingly.
Annotations are gradually added to the reference KG. The process is repeated using five different similarity thresholds
ThreshSim: 0.5, 0.6, 0.7, and 0.8 ( [0, 1], cf. Figure 16), resulting in a total of 7503 + 22,5533 = 69,909 annotation
tasks. Similarity weight parameters are considered with different values, after testing and choosing weight
combinations that maximize result quality (i.e., wshape=0.4, warea=0.2, wposition=0.3, wcolor= 0.1, and equal weights for
the remaining parameters: wmajor = wminor = wecc = 0.3334, wlengh = wslope = 0.5, etc.). These weights can be tweaked by
the user according to the application scenario. Note that fine-tuning the similarity weight parameters is an optimization
problem that can be solved using a number of techniques that apply linear programming or machine learning to
identify the best weights for a given problem class, e.g., [78-80]. Providing such a capability, in addition to manual
tuning, would enable users to optimize the process according to their needs. We do not further address the fine-tuning
of weights here since it is out of the scope of this paper, and will be addressed in a dedicated study. Average results
are presented in Figure 22.

Figure 21. SSG image graph representation from the example in Figure 18.

a. Precision b. Recall c. F-value d. Average results

Figure 22. Image annotation results

0

0.2

0.4

0.6

0.8

1

50 150 300 500 750

P
re
ci
si
o
n
 (
P
R
)

of images

0.5 0.6 0.7 0.8

0

0.2

0.4

0.6

0.8

1

50 150 300 500 750

R
ec
al
l (
R
)

of images

0.5 0.6 0.7 0.8ThreshSim

0

0.2

0.4

0.6

0.8

1

50 150 300 500 750

F‐
va
lu
e

of images

0.5 0.6 0.7 0.8ThreshSim

0.0

0.2

0.4

0.6

0.8

1.0

Precision Recall F‐value

0.5 0.6 0.7 0.8ThreshSimThreshSim

 25

Precision (PR): For each of the image annotation results, the worst (minimum) precision value (=0) is reached

when the system returns zero relevant annotation offers to the user and the best (maximum) precision value (=1) is
reached when 750 relevant annotation offers are returned to the user corresponding to 750 images. Results in Figure
22 show that annotation precision for the first 50 images is very low for all similarity thresholds (varying between
PR=0.065-and-0.22 for ThreshSim=0.7 and 0.6 respectively). This is because the reference KG initially includes the
seed images only, and is gradually populated with the incoming stream of 50 images, which might not be sufficient
to fully form the target clusters. It increases throughout the experiment as the number of annotated images increases
in the KG, reaching maximum levels when all 750 images have been annotated and added to the KG (varying between
PR=0.8-and-0.89 for ThreshSim=0.5 and 0.8 respectively). As more images are fed into the system, it is learning and
dynamically changing the representatives to choose the ones that resemble the clusters the most. The maximum
precision value PR=0.89 is obtained for highest ThreshSim=0.8. This is because increasing the similarity threshold
reduces the number of irrelevant annotation offers: a higher threshold means higher similarity between image and KG
representatives, producing higher annotation accuracy).

Recall (R): Similarly, recall varies from 0 (minimum) to 1 (maximum) when the system returns 0 or 750 relevant
annotation offers respectively (corresponding to each of the 750 images). Results show that as more images are
annotated and fed into the reference KG, recall levels increase almost regularly. Moreover, the recall levels tend to
decrease as the threshold increases. This is because increasing the similarity threshold reduces the number of
annotation offers returned to the user: filtering-out certain potentially relevant annotations which might be less similar
to the image being annotated. In other words, increasing the similarity threshold increases the risk of disregarding
relevant results, reflected in our case by decreasing recall levels.

F-value: In cases where higher/lower precision/recall levels are obtained simultaneously, the f-value measure
allows evaluating the overall loss and gain in average precision/recall, in order to evaluate result quality. Results in
Figure 22.c show that average f-value levels increase from 0.74-to-0.764 with ThreshSim=0.5 and 0.6, and then
decrease from 0.696-to-341 with ThreshSim=0.7 and 0.8. This reflects the increase and decrease in both precision and
recall levels, and illustrates what we have seen before: when the threshold increases, precision increases yet recall
decreases, hence inducing an increasing-and-decreasing slope with f-value levels.

a. Precision b. Recall c. F-value d. Average results

Figure 23. Object annotation results

Similar observations can be made for the object annotations results in Figure 23. We ran the tests on 5 random
subsets from our experimental dataset, each consisting of 750 SVG objects. Precision increases with the increase in
number of annotated objects and the increase in similarity threshold, reaching a maximum PR=0.902 with # of
annotations = 750 and ThreshSim=0.8. Precision improves as more objects are annotated and integrated in the reference
KG. Also, increasing the similarity threshold reduces the number of irrelevant annotation offers, thus increasing
precision accordingly. Recall levels remain almost stable with the varying number of object annotations, yet decrease
with the increase in similarity threshold, reaching a minimum R=0.113 with ThreshSim=0.8 and # of annotations = 50.
This is because increasing the similarity threshold reduces the number of annotation suggestions: filtering-out certain
potentially relevant annotations which might be less similar to the object being annotated. F-value levels increase and

0

0.2

0.4

0.6

0.8

1

50 150 300 500 750

P
re
ci
si
o
n
 (
P
R
)

of objects

0.5 0.6 0.7 0.8

0

0.2

0.4

0.6

0.8

1

1.2

50 150 300 500 750

R
Ec
al
l (
R
)

of objects

0.5 0.6 0.7 0.8ThreshSim

0

0.2

0.4

0.6

0.8

1

50 150 300 500 750

F‐
va
lu
e

of objects

0.5 0.6 0.7 0.8ThreshSim

0.0

0.2

0.4

0.6

0.8

1.0

Precision Recall F‐value

0.5 0.6 0.7 0.8ThreshSimThreshSim

26

decrease with the number of annotations and the similarity thresholds. This is expected and reflects the increase and
decrease in both precision and recall levels mentioned above: improving as the KG appends more annotated objects
and increases in expressiveness, while decreasing with the increase in threshold filtering-out certain potentially
relevant annotations.

6.5.2 Ablation Study on the Clustering Process

We have conducted an ablation study to evaluate the impact of the clustering component on the SSG annotation
pipeline. We evaluate the impact of clustering on both object annotation and image annotation levels. We ran the tests
on our SVG image dataset, using the same 5 subsets of objects from our previous experiment each consisting of 750
SVG objects. Figures 24 and 25 report the average precision, recall, and f-value results obtained with similarity
threshold ThreshSim = 0.7 (similar results were obtained with ThreshSim = 0.5, 0.6, and 0.8). Precision results show that
annotation quality improves with the number of processed images and objects, where average precision levels are
slightly higher without clustering compared with clustering. This is due to the fact that clustering is a data-centric
process that requires a significant amount of data to execute effectively. In other words, the larger the amount of
similar data grouped in every cluster (i.e., the larger the sizes of the image and object clusters), the higher the chances
of having good representatives for the clusters taking into account cluster formation and diversity, and thus the better
the quality of the upcoming clustering iterations allowing to incorporate new images and new objects more accurately
in their respective clusters. Recall levels are consistent across both experiments, and produce almost equal results with
and without clustering.

The impact of clustering is largely perceived when evaluating system performance, where it drastically reduces
annotation time compared with the one-on-one – without clustering, similarity computation process (cf. Section 6.6.2).

a. Precision b. Recall c. F-value d. Average results

Figure 24. Image annotation results, obtained with and without clustering

a. Precision b. Recall c. F-value d. Average results

Figure 25. Object annotation results, obtained with and without clustering

0

0.2

0.4

0.6

0.8

1

1.2

50 150 300 500 750

P
re
ci
si
o
n
 (
P
R
)

of images

With Clustering

Without Clustering

0

0.2

0.4

0.6

0.8

1

1.2

50 150 300 500 750

R
ec
al
l (
R
)

of images

With Clustering

Without Clustering

0

0.2

0.4

0.6

0.8

1

1.2

50 150 300 500 750

F‐
va
lu
e

of images

With Clustering

Without Clustering

0

0.2

0.4

0.6

0.8

1

1.2

Precision Recall F‐value

With Clustering

Without Clustering

0

0.2

0.4

0.6

0.8

1

1.2

50 150 300 500 750

P
re
ci
si
o
n
 (
P
R
)

of objects

With Clustering

Without Clustering

0

0.2

0.4

0.6

0.8

1

1.2

50 150 300 500 750

R
Ec
al
l (
R
)

of objects

With Clustering

Without Clustering

0

0.2

0.4

0.6

0.8

1

1.2

50 150 300 500 750

F‐
va
lu
e

of objects

With Clustering

Without Clustering

0

0.2

0.4

0.6

0.8

1

1.2

Precision Recall F‐value

With Clustering

Without Clustering

 27

6.5.3 Comparative Quality Evaluation

We have also compared our solution with two existing SVG similarity evaluation measures. Since existing solutions
only perform SVG object similarity computation and do not provide a pipeline for semantic image annotation, we
perform two separate evaluations. First, we evaluate the similarity measures independently, as standalone solutions,
where each input object is compared with the existing objects in the KG and is associated with the one having the
highest similarity score, inheriting its label accordingly. Second, we evaluate the similarity measures as embedded
solutions, after integrating them within our cluster-based annotation framework (i.e., we replace our similarity
measure with each of the existing solutions and run the annotation pipeline accordingly). We ran the experiments on
5 random subsets from our experimental dataset, each consisting of 750 SVG objects. The same subsets were used
for both standalone and embedded evaluations. Average precision, recall, and f-value results are shown in Figure 26.
Results for both standalone and embedded experiments show that our integrated object similarity evaluation measure
produces improved object annotation results compared with its predecessors. This is mostly due to the following:

S
ta

nd
al

on
e

 a. Precision b. Recall c. F-value

E
m

be
dd

ed

 d. Precision e. Recall f. F-value

Figure 26. Comparative quality results, considering standalone (a ,b, c) and embedded (d, e, f) evaluations

i) Existing solutions in [11, 60] combine shape, color, and position similarities and disregard area similarity
which we consider in our integrated measure. In practice, SVG objects might have similar shapes (e.g., similar
rectangles or similar hexagon shapes), while having different area coverages (e.g., pre-molar and molars might
have similar shapes, yet they will be distinguished by their coverage areas), which highlights the need to
consider a dedicated area coverage similarity measure.

ii) Existing solutions use distance measures to compare the angle and length sequences describing object shapes
(i.e., [11] uses Euclidian distance and [60] uses edit distance), while we utilize the cosine similarity measure.
Different from distance measures which are sensitive to the sequences’ vector modules, cosine is a correlation
measure which only considers vector angles and is completely insensitive to their modules. It compares vectors
accordingly to their angle variations, making it more suitable with high-dimensional data where module
variations are usually dismissed as noise. Variations in vector modules might distinguish between highly
similar SVG objects (similarly to comparing high-dimensional text vectors in information retrieval, e.g., [94,

0.6

0.68

0.76

0.84

0.92

1

150 300 500 750

P
re
ci
si
o
n
 (
P
R
)

of objects

Approach 1 ‐ Jiang et al.
Approach 2 ‐ Kim and Yoon
Our solution

0.95

0.96

0.97

0.98

0.99

1

150 300 500 750

R
ec
al
l (
R
)

of objects

Approach 1 ‐ Jiang et al.
Approach 2 ‐ Kim and Yoon
Our solution

0.8

0.85

0.9

0.95

1

150 300 500 750

F‐
va
lu
e

of objects

Approach 1 ‐ Jiang et al.
Approach 2 ‐ Kim and Yoon
Our solution

0.6

0.68

0.76

0.84

0.92

1

150 300 500 750

P
re
ci
si
o
n
 (
P
R
)

of images

Approach 1 ‐ Jiang et al.
Approach 2 ‐ Kim and Yoon
Our solution

0.96

0.97

0.98

0.99

1

150 300 500 750

R
ec
al
l (
R
)

of images

Approach 1 ‐ Jiang et al.
Approach 2 ‐ Kim and Yoon
Our solution

0.7

0.8

0.9

1

150 300 500 750

F‐
va
lu
e

of images

Approach 1 ‐ Jiang et al.
Approach 2 ‐ Kim and Yoon
Our solution

28

97])13. Other correlation measures like Pearson Correlation Coefficient can also be used in this context, yet we
adopt cosine similarity due to its common usage in information retrieval literature, e.g., [94, 97].

We further highlight the performance impact of our embedded annotation pipeline, compared with standalone
similarity-based annotation, in the following subsection.

6.6 Performance Evaluation

6.6.1 Evaluating System Performance

In addition to testing the annotation quality of our approach, we evaluate its time performance. The complexity of our
method comes down to O(Nk|Img|2) where N is the number of SVG images being processed, k the number of
clusters (i.e., the number of image and object categories), and |Img| the number of objects per image. It simplifies to
to O(Nk) since usually N >> |Img|. Timing experiments were carried out on a PC with an Intel(R) Core(TM) i7-
7500U 2.7 GHz processor with 16GB RAM. Figure 27 shows that the time needed to produce automatic annotations
for geometric objects in an image grows in a linear fashion with the number of images (Figure 27.a), the number of
clusters (Figure 27.b) used, and the number of objects per image (Figure 27.c). In addition, Figure 29 shows that the
size of the KG increases in an almost perfect linear fashion with the number of images and objects being annotated
and appended to the KG. The effect of increasing the number of objects per image (i.e., increasing image size) is also
apparent in Figure 29, since every new object is annotated and then integrated as a visual concept instance in the
reference KG, which increases the KG size accordingly.

a. Varying the # of images and clusters,
while fixing the # of objects-per-image to 10

b. Varying the # of images and objects-per-
image, while fixing the # of clusters to 5

c. Varying the # of clusters and images,
while fixing the # of clusters to 5

Figure 27. Time performance results

6.6.2 Performance of Clustering Process

We have also evaluated the impact of the clustering component on the performance of the SSG annotation pipeline.
Results in Figure 28 show the difference in time performance of SSG with clustering (i.e., our suggested process)

13 The cosine measure only detects variations in vector angles, which highlight differences between the feature vectors’ directions. This is

commonly adopted in image annotation and retrieval where images of the same label might have significant feature vector module
variations while sharing similar vector directions. This is especially useful with high-dimensional data where vector similarity is
commonly evaluated as the similarity between the vectors’ directions, versus vector module similarity which is considered to be too
specific and oftentimes misleading especially with higher dimensionality, e.g. [94, 97].

0

50

100

150

200

250

0 200 400 600 800 1000

Ti
m
e
(i
n
 s
ec
o
n
d
s)

of images

5 10 15

20 25

0

50

100

150

200

250

0 200 400 600 800 1000

Ti
m
e
(i
n
 s
ec
o
n
d
s)

of images

10 20 30

40 50

0

50

100

150

200

250

10 20 30 40 50

Ti
m
e
(i
n
 s
ec
o
n
d
s)

of objects‐per‐image

200 400 600

800 1000
of

clusters

of objects
per image

of
images

 29

versus SSG without clustering (i.e., replacing the clustering process with one-on-one image and object comparisons).
Results clearly show the significant impact of clustering on reducing computation time by almost 25 fold. This
highlights the reduction in processing time when images and objects are compared with the cluster representatives,
versus comparing all images (and objects) against each other one-on-one to perform the annotation process. Hence,
while SSG with clustering and SSG without clustering produced comparable quality results in Section 6.5.2, yet SSG
with clustering allows to drastically reduce computation time as shown below, and is thus integrated in SSG’s main
process.

a. Varying the # of images while fixing the
of objects-per-image to 10, the number of
images-per-cluster to 10, and the number of

clusters to 5

b. Varying the # of images while fixing the
of objects-per-image to 10, the number of

images-per-cluster to 10, and the # of
clusters to 10

c. Varying the # of objects-per-image
while fixing the # of images to 400, the
number of images-per-cluster to 10, and

the # of clusters to 10

Figure 28. Time performance results, evaluated with and without clustering.

6.6.3 Comparative Performance Evaluation

We also compare our solutions’ performance with existing similarity-based solutions and with manual annotation
time. Figure 30 compares average annotation time for a stream of random 200 images from our experimental dataset,
each image containing 16 objects (consisting of the upper jaw teeth in panoramic dental X-ray images). Three graduate
students participated in the manual annotation exercises, and were requested to manually annotate the teeth in every
panoramic image. They were provided with “pause” and “resume” buttons in the annotation GUI14 allowing them to
pause and resume the annotation task as needed, according to their fatigue levels. Manual time was paused and
recorded accordingly to account exactly for the amount of time spent on the annotation task. Average annotation times
for each tooth are compiled and shown in Figure 30. Results underline the following observations:

- The impact of automatic annotation versus manual annotation is evident in the significant difference in time
scale between both tasks: the average manual annotation time for an individual tooth (object) is 1.125 seconds,
compared with 0.243, 0.236, and 0.008 seconds for automatic annotation following Approach 1, Approach 2,
and our SSG solution respectively. The manual annotation task required around 1 hour to complete all 200
images, compared with 13, 12.6, and 0.45 seconds with automated Approach 1, Approach 2, and our solution
respectively.

- Comparing the automated solutions together, results show that our solution does not seem to seriously reduce
annotation time in the early stages of the experiment compared with existing methods, i.e., when annotating the
first 50 images. That is because the reference KG only contains a reduced number of geometric object

14 Graphical user interface

0

500

1000

1500

2000

2500

0 200 400 600 800 1000

Ti
m
e
(i
n
 s
ec
o
n
d
s)

of images

With clustering

Without clustering

0

500

1000

1500

2000

2500

0 200 400 600 800 1000

Ti
m
e
(i
n
 s
ec
o
n
d
s)

of images

With clustering

Without clustering

0

500

1000

1500

2000

2500

10 20 30 40 50

Ti
m
e
(i
n
 s
ec
o
n
d
s)

of objects‐per‐image

With clustering

Without clustering

30

descriptions in the beginning, where the number of images is almost equivalent to the number of clusters. This
defeats the purpose of performing clustering in the first place, since comparing with the cluster representatives
comes down to comparing with almost every image in the KG. Nonetheless, the efficiency of performing
clustering becomes apparent with the increase in the number of images, namely going beyond 50 images where
clustering reduces annotation time by an increasing polynomial factor reaching almost 2,800% reduction
compared with similarity-based annotation time (i.e., our solution required 27 seconds to annotate 200 images,
versus 780 seconds with Approach 1 and 756 seconds with Approach 2).

Figure 29. KG size variations w.r.t. the
number of annotated images and image

size (in # of objects)

Figure 30. Comparing our solutions’
performance with manual annotation and

existing similarity-based approaches

Figure 31. Comparing manual and semi-
automated annotation time

In addition, we evaluate the efficiency of our solution in minimizing the amount of manual work needed to
perform the annotation task. To do so, we compare our tool’s semi-automatic processing with manual user annotation
time. Semi-automatic time comprises of two subsequent intervals: i) the average time required by the system to
automatically generate annotation offers, and ii) the average time required by the user to verify and (maybe) correct
the resulting system annotations. Figure 31 compares average user time and semi-automatic annotation time for a
stream of 50 random images from our dataset, each image containing 16 objects (consisting of the upper jaw teeth in
panoramic dental X-ray images, totaling 5016 = 800 manual annotation tasks). The same manual annotation process
was adopted from the previous experiment. Average annotation times for each tooth are compiled and shown in Figure
31. Results show that the semi-automatic annotation process does not seem to seriously reduce time in the early stages
of the experiment, i.e., when annotating the first couple of images. That is because the reference KG lacks geometric
object descriptions in the beginning, and hence the system is not capable of providing useful automatic annotation
offers at first. Nonetheless, as the KG becomes semantically richer by appending newly annotated images, results
(starting from image #4 in Figure 31, i.e., starting from object #64) show that semi-automatic annotation reduces
annotation time by a factor of 0.42 on average. In other words, the asymptotic values of the automatic and manual
curves in Figure 31 seem to stabilize at around 1.1 ( ) and 1.9 ( ) respectively, highlighting an approximate 42%
time reduction from manual to semi-automatic annotation.

7. Conclusion

In this paper, we introduce an original framework titled SSG which automatically converts a stream of SVG images
and objects into a semantic graph representation. We introduce an incremental clustering approach to semantically
annotate SVG images and their constituent objects in a fast and efficient manner, using an aggregation of shape, area,
color, and location similarity measures. We then produce an RDF graph representation of the input image and
integrate it in a reference knowledge graph, incrementally extending its semantic expressiveness to improve future

0

2

4

6

8

0 200 400 600 800 1000

Si
ze
 (
in
 M

B
s)

of images

10 20 30 40 50

0

20

40

60

80

0 50 100 150 200

Ti
m
e
 (
in
 m

in
s)

of images

Manual
Approach 1 ‐ Jiang et al.
Approach 2 ‐ Kim and Yoon
Our solution

0

1

2

3

4

0 5 10 15 20 25 30 35 40 45 50

Ti
m
e
 (
in
 m

in
s)

of images

Manuel

Our solution (semi‐automatic)

of objects
per image

Manual

 31

annotation tasks. Our solution achieves semantization of vector image contents with minimum human effort and
training data, while complying with native Web standards (i.e., SVG and RDF) to preserve transparency in
representing and searching images using Semantic Web stack technologies. Our solution is of linear complexity in
the sizes of the image and knowledge graph used. We have created a large SVG dataset consisting of 22,553 labelled
objects from 750 images based on panoramic dental x-ray images. To our knowledge, this is the first significant
dataset of labelled SVG objects which we make available for future research in this area. Experimental results
highlight our approach’s effectiveness, and its applicability in a practical application domain.

Note that while designed for vector images, yet SSG can also be extended to raster images. This requires
raster image contours to be extracted using traditional image segmentation and contour detection techniques
[98], which are then used to generate vector graphics.

As continuing work, we are currently investigating the extension of our approach to integrate in our KG
representation different kinds of objects including social media data [99] and video metadata [100]. This requires
considering time and space dimensions [101] and extending our SSG representation model accordingly. We are also
investigating auto-calibration and optimization techniques, e.g., [102, 103], to study the effect of different similarity
measures (shape, area, location, and color) on annotation quality, aiming to suggest weighting schemes that could
help users tune their input parameters to obtain optimal results. In the near future, we plan to investigate methods to
mine the collective knowledge of an image collection compiled within its KG, using (semi-)automated RDF inference
[54, 104] and fuzzy processing techniques [53, 105], which can help improve image accessibility, management, and
exchange between automated Web agents and services.

Declarations

An early version of the SVG object similarity module and a preliminary annotation module is described in [17].
It consists of: i) an aggregate similarity measure for comparing SVG objects (the current paper redefines and
extends the aggregate SVG object similarity measure to perform polygon similarity computation for non-
identical object types, and adds a new SVG image similarity measure, cf. Section 4.2), ii) a basic similarity-
based annotation process to recommend the most similar SVG object labels (the current paper introduces an
unsupervised cluster-based framework, consisting of a two-layered clustering process to perform both SVG
object and SVG image annotation, cf. Section 4.3), iii) a limited experimental evaluation described in one page
(the present study performs an in-depth experimental evaluation, and introduces a new labelled SVG dataset
consisting of 22,553 objects from 750 images – the first significant dataset of labelled SVG objects and images
which we make available online, cf. Section 6). The present study also introduces a new knowledge graph
representation model, allowing to convert SVG objects and images into semantic representations and provide
annotation recommendations accordingly (cf. Section 4.1), as well as a dedicated motivation scenario (cf.
Section 2) and an in-depth investigation of related solutions (cf. Section 3).

References

[1] Hong R., et al., Multimedia encyclopedia construction by mining web knowledge. Signal Processing 2013. 93(8):2361-
2368.

[2] Wagenpfeil S., et al., Fast and Effective Retrieval for Large Multimedia Collections. Big Data and Cognitive
Computing, 2021. 5(3): 33.

[3] Tekli J., An Overview of Cluster-based Image Search Result Organization: Background, Techniques, and Ongoing
Challenges. Knowl. Inf. Syst., 2022. 64(3): 589-642.

[4] Jagtap J. and Bhosle N., A Comprehensive Survey on the Reduction of the Semantic Gap in Content-based Image
Retrieval. International Journal of Applied Pattern Recognition, 2021. 6(3): 254-271.

32

[5] Dubey S., A Decade Survey of Content based Image Retrieval Using Deep Learning. IEEE Trans. Circuits Syst. Video
Technol., 2022. 32(5): 2687-2704.

[6] Li X., et al., Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement, and
Retrieval. ACM Computing Surveys 2016. 49(1): 14:1-14:39.

[7] Papapanagiotou V., et al., Improving Concept-Based Image Retrieval with Training Weights Computed from Tags.
ACM Transactions on Multimedia Computing, Communications, and Applications, 2016. 12(2): 32:1-32:22.

[8] Ruocco M. and Ramampiaro H., Event-related Image Retrieval: Exploring Geographical and Temporal Distribution
of User Tags International Journal of Multimedia Information Retrieval, 2013. 2(4): 273-288.

[9] Ma L., et al., Learning Efficient Binary Codes From High-Level Feature Representations for Multilabel Image
Retrieval. IEEE Transactions on Multimedia, 2017. 19(11): 2545-2560.

[10] Madduma B., R.S., Image Retrieval based on High Level Concept Detection and Semantic Labelling Intelligent
Decision Technologies, 2012. 6(3): 187-196.

[11] Jiang K., et al., Information Retrieval through SVG-based Vector Images Using an Original Method. Proceedings of
IEEE International Conference on e-Business Engineering (ICEBE'07) 2007. pp. 183–188.

[12] Kim E., et al., A Hierarchical SVG Image Abstraction Layer for Medical Imaging. Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference, 2010. 7628, 7.

[13] Li D., et al., Shape similarity computation for SVG. Int. J. Computational Science and Engineering, 2011. Vol. 6, 1/2.
[14] Peng Z.R. and Zhang C., The roles of geography markup language (GML), scalable vector graphics (SVG), and Web

feature service (WFS) specifications in the development of Internet geographic information systems (GIS). Journal of
Geographic Systems, 2004. (6)95-116.

[15] Tekli J., et al., Evaluating Touch-Screen Vibration Modality toward Simple Graphics Accessibility for Blind Users.
International Journal of Human Computer Studies (IJHCS), 2018. 110: 115-133.

[16] Engel C., et al., SVGPlott: an Accessible Tool to Generate Highly Adaptable, Accessible Audio-Tactile Charts for and
from Blind and Visually Impaired People. PETRA 2019: , 2019. pp. 186-195.

[17] Salameh K., et al., SVG-to-RDF Image Semantization. 7th International SISAP Conference, 2014. pp. 214-228.
[18] Gaudenz H., et al., VIAN: a Visual Annotation Tool For Film Analysis. Computer Graphics Forum, 2019. 38(3): 119-

129.
[19] World Wide Web Consortium. Scalable Vector Graphics (SVG). http://www.w3.org/Graphics/SVG/ [5 Jan 2023].
[20] Spindler M., et al., Translating Floor Plans into Directions. Proceedings of the 13th international conference on

Computers Helping People with Special Needs, 2012. Linz, Austria.
[21] Unar S., et al., Detected Text-based Image Retrieval Approach for Textual Images. IET Image Process, 2019. 13(3):

515-521.
[22] Parcalabescu L. and Frank A., Exploring Phrase Grounding without Training: Contextualisation and Extension to

Text-Based Image Retrieval. CVPR Workshops, 2020. pp. 4137-4146.
[23] Cao M., et al., Image-text Retrieval: A Survey on Recent Research and Development. International Joint Conference

on Artificial Intelligence (IJCAI), 2022. pp. 5410-5417.
[24] Khalid Y. and Noah S., Semantic Text-based Image Retrieval with Multi-modality Ontology and DBpedia. The

Electronic Library, 2017. 35(6): 1191-1214.
[25] Moreno J., Text-Based Ephemeral Clustering for Web Image Retrieval on Mobile Devices. SIGIR Forum 2015. 49(1):

67.
[26] Ashraf R., et al., MDCBIR-MF: Multimedia Data for Content-based Image Retrieval by using Multiple Features.

Multim. Tools Appl., 2020. 79(13-14): 8553-8579.
[27] Ahmad J., et al., Describing Colors, Textures and Shapes for Content Based Image Retrieval - A Survey. CoRR

abs/1502.07041, 2015.

 33

[28] Feng H. et al., A Bootstrapping Framework for Annotating and Retrieving WWW Images. Proceedings of the
International ACM Multimedia Conference, 2004. pp. 960-967.

[29] Dong J., et al., Cross-Media Similarity Evaluation for Web Image Retrieval in the Wild. IEEE Transactions on
Multimedia, 2018. 20(9): 2371-2384.

[30] Zhang B., et al., An Automatic Image-Text Alignment Method for Large-scale Web Image Retrieval. Multimedia Tools
and Applications 2017. 76(20): 21401-21421 (2017).

[31] Ma K., et al., Deep Blur Mapping: Exploiting High-Level Semantics by Deep Neural Networks. IEEE Transactions on
Image Processing, 2018. 27(10): 5155-5166.

[32] Kompatsiaris I., et al., Multimedia Content Indexing and Retrieval using an Object Ontology. Multimedia Content and
the Semantic Web, 2005. pp. 339-371.

[33] Dhanalakshmi K. and Rajamani V., An intelligent mining system for diagnosing medical images using combined
texture-histogram features. International Journal of Imaging Systems and Technology, 2013. 23(2):194–203.

[34] Chen H., et al., The Classification and Retrieval of the Image Affective Semantics Based on Integration of Multi
Features and SVM. Journal of Information Hiding and Multimedia Signal Processing 2018. 9(4): 864-873.

[35] Pandey S., et al., A Semantics and Image Retrieval System for Hierarchical Image Databases. Information Processing
and Management, 2016. 52(4): 571-591.

[36] Torjmen M., et al., XML Multimedia Retrieval: From Relevant Textual Information to Relevant Multimedia
Fragments. INEX: Initiative for the Evaluation of XML Retrieval, 2009.

[37] Iskandar D., et al., Social media retrieval using image features and structured text. INEX: Initiative for the Evaluation
of XML Retrieval, 2007. pp. 358–372.

[38] Tsikrika T., et al., Structured Document Retrieval, Multimedia Retrieval, and Entity Ranking Using PF/Tijah. INEX:
Initiative for the Evaluation of XML Retrieval, 2008. pp. 273–286.

[39] Vanoirbeek C., et al., A Lightweight Framework for Authoring XML Multimedia Content on the Web. Multimedia
Tools and Applications 2014. 70(2): 1229-1250.

[40] Pusnik M., et al., XML Schema Quality Index in the Multimedia Content Publishing Domain. Software Quality
Analysis, Monitoring, Improvement, and Applications (SQAMIA'16) 2016. pp. 57-64.

[41] Kong Z. and Lalmas M., XML Multimedia Retrieval. In: Consens, M.P., Navarro, G.(eds.) SPIRE 2005. LNCS, vol.
3772, pp. 218–223. Springer, Heidelberg (2005), 2005.

[42] Kong Z. and Lalmas M., Using XML logical structure to retrieve (Multimedia) objects. In: Kov´acs, L., Fuhr, N.,
Meghini, C. (eds.) ECDL'07, LNCS, 2007. Vol. 4675, pp. 100–111. Springer, Heidelberg.

[43] Iakovidou C., et al., Searching images with MPEG-7 (& MPEG-7-like) Powered Localized dEscriptors: The SIMPLE
answer to effective Content Based Image Retrieval 12th International Workshop on Content-Based Multimedia
Indexing (CBMI) 2014. pp. 18-20.

[44] Molina R., et al., Heterogeneous SoC-based Acceleration of MPEG-7 Compliance Image Retrieval Process. Journal
of Real-Time Image Processing, 2018. 15(1): 161-172 (2018).

[45] Phadikar B., et al., Content-based Image Retrieval in DCT Compressed Domain with MPEG-7 Edge Descriptor and
Genetic Algorithm. Pattern Analysis and Applications, 2018. 21(2): 469-489.

[46] International Organization for Standardisation (ISO), MPEG-7 Overview. ISO/IEC JTC1/SC29/WG11, Coding for
Moving Pictures and Audio, 2004. Martinez J.M., N6828.

[47] Wang S., et al., Efficient image retrieval using MPEG-7 descriptors. Proc. of the International Conference on Image
Processing (ICIP) 2003, 509-512

[48] Kushki A. et al., Retrieval of image from artistic repositories using a decision fusion framework. IEEE Trans. Image
Process., 2004. 13(3).277–289.

34

[49] Laaksonen J., et al., PicSOM—Self-Organizing Image Retrieval With MPEG-7 Content Descriptors. IEEE Trans. on
Neural Networks, 2002. 13(4):841-853.

[50] Dasiopoulou S., et al., Capturing MPEG-7 Semantics. International Conference on Metadata and Semantics Research
(MTSR'07), 2007. pp. 113-122.

[51] García R., et al., Multimedia Content Description Using Semantic Web Languages. Semantic Multimedia and
Ontologies, 2008. pp. 17-54

[52] Doncel V., et al., Overview of the MPEG-21 Media Contract Ontology. Semantic Web 2016. 7(3): 311-332.
[53] Fan T., et al., Storing and Querying Fuzzy RDF(S) in HBase Databases. International Journal of Intelligent Systems,

2020. 35(4): 751-780 (2020).
[54] Straccia U. and Casini G., A Minimal Deductive System for RDFS with Negative Statements. International Conference

on Principles of Knowledge Representation and Reasoning (KR'22), 2022. pp. 351–361.
[55] Schröder M., et al., Bridging the Technology Gap between Industry and Semantic Web: Generating Databases and

Server Code from RDF. Inter. Conf. on Agents and Artificial Intelligence (ICAART'21), 2021. pp. 507-514.
[56] Angles R., et al., Mapping RDF Databases to Property Graph Databases. IEEE Access 2020. 8: 86091-86110.
[57] Schwab M., et al., Scalable Scalable Vector Graphics: Automatic Translation of Interactive SVGs to a Multithread

VDOM for Fast Rendering. IEEE Transactions on Visualization and Computer Graphics, 2022. 28(9): 3219-3234
[58] Jiang X., et al., Recognizing Vector Graphics without Rasterization. Conference on Neural Information Processing

Systems (NeurIPS'21), 2021. 24569-24580.
[59] Bai S., et al., Revised Aggregation-tree Used in Metadata Extraction from SVG Images. International Conference on

Data Mining (DMIN'06), 2006. pp. 325-328.
[60] Kim B. and Yoon J., Similarity Measurement for Aggregation of Spatial Objects. ACM Symposium on Applied

Computing (SAC'05), 2005. pp. 1213-1217.
[61] Abe k., et al., Similarity Retrieval of Trademark Images by Vector Graphics Based on Shape Characteristics of

Components. International Conference on Computer and Automation Engineering (ICCAE'18), 2018. pp. 82-86.
[62] Di Sciascio E., et al., A Logic for SVG Documents Query and Retrieval. Multim. Tools Appl., 2004. 24(2): 125-153.
[63] Noah S. and Sabtu S., Binding Semantic to a Sketch Based Query Specification Tool. The International Arab Journal

of Information Technology, 2009. Vol. 6, No. 2.
[64] Lloyd S., Least Squares quantization in PCM. IEEE Transactions on Information Theory, 1982. 28(2):129-137.
[65] Villena-Román J., et al., MIRACLE-GSI at ImageCLEFphoto 2009: Comparing Clustering vs. Classification for

Result Reranking. CLEF (Working Notes), 5 p., 2009.
[66] Park H, et al., A K-means-like Algorithm for K-medoids Clustering and Its Performance. Proceedings of the 36th CIE

Conference on Computers & In-dustrial Engineering, 2006. pp.1222-1231.
[67] Bradley P., et al., Clustering via Concave Minimization. Advances in Neural Information Processing Systems, vol. 9,

M. C. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, Massachusetts: MIT Press, 1997. pp. 368–374.
[68] Pelleg D. and Moore A., X-means: Extending k-means with Effcient Estimation of the Number of Clusters. In

International Conference on Machine Learning (ICML), 2000. pp. 727-734.
[69] Wang H., et al., Context-Based Clustering of Image Search Results. Deutsche Jahrestagung für Künstliche Intelligenz

(KI), 2009. pp. 153-160.
[70] Zhao K., et al., Clustering Image Search Results by Entity Disambiguation. European Conference on Machine

Learning (ECML/14), 2014. (3): 369-384.
[71] Hirota M. et al., Constraint-based Clustering of Image Search Results using Photo Metadata and Low-level Image

Features. Proceedings of the 9th IEEE/ACIS International Conference on Computer and Information Science
(ICIS'10), 2010, 165-178.

 35

[72] Alamdar F. and Keyvanpour M., Effective Browsing of Image Search Results via Diversified Visual Summarization
by Clustering and Refining Clusters. Signal, Image and Video Processing, 2014. 8(4): 699-721.

[73] Chen W., et al., Feature Estimations Based Correlation Distillation for Incremental Image Retrieval. IEEE
Transactions on Multimedia, 2022. 24: 1844-1856.

[74] Rodríguez J., et al., PAXQuery: Efficient Parallel Processing of Complex XQuery. IEEE Transactions on Knowledge
and Data Engineering 2015. 27(7): 1977-1991.

[75] Chen R., et al., Parallel XPath Query based on Cost Optimization. Journal of Supercomputing, 2022. 78(4): 5420-
5449.

[76] Hayes P., RDF Semantics. W3C Recommendation, http://www.w3.org/TR/rdf-mt/. 2004.
[77] Kiani M., et al., Ontology-Based Negotiation of Dental Therapy Options. Advances in Semantic Computing (Eds.

Joshi, Boley & Akerkar), 2010. Vol. 2, pp 52 – 78.
[78] Hopfield J. J., The Effectiveness of Neural Computing. IFIP World Computer Congress (WCC'89), 1989. 402-409.
[79] Azar D., et al., A Combined Ant Colony Optimization and Simulated Annealing Algorithm to Assess Stability and

Fault-Proneness of Classes Based on Internal Software Quality Attributes. International Journal of Artificial
Intelligence (ISSN 0974-0635), 2016. 14:2.

[80] Azar D. and Vybihal J., An Ant Colony Optimization Algorithm to Improve Software Quality Predictive Models. In
Journal of Information and Software Technology, 2011. 53(4): 388-393.

[81] Braden B., The Surveyor's Area Formula. The College Mathematics Journal, 1986. 17(4):326–337.
[82] Manjunath B.S., Color and Texture Descriptors. IEEE Transactions on Circuits and Systems for Video Technology

(CSVT), 2001. 6:703-715.
[83] Mezaris V.; Kompatsiaris I. and Strintzis M.G., An Ontology Approach to Object-based Image Retrieval. Proc. of the

International Conference on Image Processing (ICIP). Vol. 2, pp. 511-514,
[84] Stanchev P. et al.., High Level Color Similarity Retrieval. International Journal on Information Theory and

Applications, 2003. 10(3):363-369.
[85] Iranzo P. and Sáenz-Pérez F., Implementing WordNet Measures of Lexical Semantic Similarity in a Fuzzy Logic

Programming System. Theory and Practice of Logic Programming, 2021. 21(2): 264-282.
[86] Li J., Lightweight ontologies mapping and the Semantic Similarity based on WordNet. Advances in Computer Science

and its Applications, 2012. 1(2):111-117.
[87] Francis W. N. and Kucera H., Frequency Analysis of English Usage. Houghton Mifflin, Boston, 1982.
[88] Wu Z. and Palmer M., Verb Semantics and Lexical Selection. Proc. of the 32nd Annual Meeting of the Associations

of Computational Linguistics, 1994. pp. 133-138.
[89] Lin D., An Information-Theoretic Definition of Similarity. Proceedings of the International Conference on Machine

Learning (ICML), 1998. pp. 296-304.
[90] Salazar R., Operations Research with R - Transportation Problem. Towards Data Science, 2019.

https://towardsdatascience.com/operations-research-in-r-transportation-problem-1df59961b2ad.
[91] Salloum G. and Tekli T., Automated and Personalized Meal Plan Generation and Relevance Scoring using a Multi-

Factor Adaptation of the Transportation Problem. Soft Computing, 26(5): 2561-2585 (2022)
[92] Ahmad A. and Khan S., Survey of State-of-the-Art Mixed Data Clustering Algorithms. IEEE Access 2019. 7: 31883-

31902.
[93] Stanford Center for Biomedical Informatics Research. Protégé Ontology Editor. [5 Jan. 2023].
[94] Salton G. and Mcgill M.J., Introduction to Modern Information Retrieval. 1983. McGraw-Hill, Tokio.
[95] Zou F., et al., Semi-supervised Cross-modal Learning for Cross Modal Retrieval and Image Annotation. World Wide

Web Journal, 2019. 22(2): 825-841.

36

[96] Silva G., et al., Automatic Segmenting Teeth in X-ray Images: Trends, a Novel Dataset, Benchmarking and Future
Perspectives Expert Systems with Applications 2018. 107-15–31.

[97] Baeza-Yates R. and Ribeiro-Neto B., Modern Information Retrieval: The Concepts and Technology behind Search.
ACM Press Books, Addison-Wesley Professional, 2nd Ed., 2011. p. 944.

[98] Tariq N., et al., Quality Assessment Methods to Evaluate the Performance of Edge Detection Algorithms for Digital
Image: A Systematic Literature Review. IEEE Access, 2021. 9: 87763-87776.

[99] Abebe M., et al., Generic Metadata Representation Framework for Social-based Event Detection, Description, and
Linkage. Knowledge Based Systems 2020. 188.

[100] Schiappa M. and Rawat Y., SVGraph: Learning Semantic Graphs from Instructional Videos. Computing Research
Repository (CoRR), 2022. CoRR abs/2207.08001.

[101] Bai L., et al., Querying Fuzzy Spatiotemporal RDF Data Using R2RML Mappings. IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE'20), 2020. pp. 1-8.

[102] Gal A., et al., From Diversity-based Prediction to Better Ontology & Schema Matching. Inter. WWW Conference,
2016. pp. 1145-1155.

[103] Ming M., et al., A Harmony Based Adaptive Ontology Mapping Approach. In Proceedings of the International
Conference on Semantic Web and Web Services (SWWS'08), 2008. pp. 336-342.

[104] Lhez J., et al., PatBinQL: a Compact, Inference-enabled Query Language for RDF Stream Processing. IEEE BigData,
2018. pp. 4036-4044.

[105] Li G., et al., Pattern Match Query over Fuzzy RDF Graph. Knowledge Based Systems 2019. 165: 460-473.

