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Abstract. Given that the meaning of an image is rarely self-evident using traditional keyword and/or content-based 
descriptions, the general goal of this study is to convert, with minimal human intervention, a stream of web vector graphics 
into a searchable knowledge graph structure that encodes semantically relevant image contents. To do so, we introduce an 
original framework titled SSG which automatically converts a stream of SVG images and objects into a semantic graph. We 
introduce an incremental clustering approach to semantically annotate SVG images and their constituent objects in a fast 
and efficient manner, using an aggregation of shape, area, color, and location similarity measures. We then produce an RDF 
graph representation of the input image and integrate it in a reference knowledge graph, incrementally extending its semantic 
expressiveness to improve future annotation tasks. This achieves semantization of vector image contents with minimum 
human effort and training data, while complying with native Web standards (i.e., SVG and RDF) to preserve transparency 
in representing and searching images using Semantic Web stack technologies. Our solution is of linear complexity in the 
number of images and clusters used. We have conducted a large battery of experiments to test and evaluate our approach. 
We have created a labelled SVG dataset consisting of 22,553 objects from 750 images based on panoramic dental x-ray 
images. To our knowledge, it is the first significant dataset of labelled SVG objects and images, which we make available 
online as a benchmark for future research in this area. Results underline our approach’s effectiveness, and its applicability 
in a practical application domain.  

 
Keywords. Vector graphics, SVG, semantic graph, semantic processing, RDF, incremental clustering, image annotation, 
visual features, image feature similarity. 

 
1. Introduction 

 

Image datasets have become ever-more available, especially on the Web considered as the largest multimedia database 
to date [1]. However, the value of their content depends on how easy they are to search and manage [2]. Thus, the 
need to efficiently represent and manage images is becoming increasingly important. Existing Web image search 
engines and photo sharing sites (such as Google Images1 and Flickr2) chiefly utilize the keyword (text-based) 
representation model, where image visual contents are described using indirect textual clues [3]. They typically return 
a large amount of search results ranked according to their relevance to the keyword query, which can be tiresome and 
time consuming for the user [3]. Another approach is content-based image retrieval (CBIR), where images are 
described based on their low-level visual content, e.g., color, texture, and shape descriptors (e.g., Google search-by-
image, Picsearch3) [4, 5]. Yet low-level features are usually unable to effectively capture the high-level semantic 
meaning present in images [6], which is known as the semantic gap problem: the difference between the visual 
expressiveness of low-level image features and the meanings provided by user semantics [4, 6]. Few recent approaches 
proposed to augment the textual descriptions of Web images, using techniques like probabilistic image tagging (using 
the image tags from the logs of related users to infer new tags, e.g., [7, 8]), and semi-supervised image annotation 
based on visual and Web contents (training supervised learners to perform annotation based on existing images with 
predefined labels, e.g., [9, 10]). While promising, yet these solutions involve large amounts of training data and 
significant training time which are not always obtainable and require significant manual labor to prepare [3]. 
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The goal of our study is to convert, with minimal human intervention and as little training data as possible, a stream 

of raw Web vector graphics into a searchable semantic-based structure that encodes semantically relevant image 
contents. We specifically target the annotation of SVG (Scalable Vector Graphics)3 images due to their interesting 
properties, i.e., resolution-independence and extremely small-size image coding. Vector images are becoming popular 
in a range of practical applications covering medical image annotation [11, 12], geographic map annotation [13, 14], 
and data accessibility for visually impaired users [15, 16]. We introduce an original SVG Semantic Graph framework 
titled SSG, which takes as input a stream of SVG images made of geometric objects, and produces as output a 
knowledge graph (KG) structure made of RDF (Resource Description Framework)4 triples. SSG consists of four main 
modules for: i) converting SVG images into KG representations, ii) computing SVG image similarity using an 
aggregation of vector object similarity measures (an early version of this module is described in [17]), iii) performing 
efficient SVG image and object clustering to allow unsupervised labelling, and then iv) integrating the produced labels 
as semantic annotations in the KG representation, extending its semantic expressiveness. As a cold start, SSG requires 
only a minimum of one single vector graphic representative for each cluster to jumpstart the labelling process. The 
representatives are incrementally updated as new images are annotated by the system. Our solution is of linear 
complexity in the number of images and clusters used. It is fully automated and does not require training data or 
human effort. At the same time, it is transparent and explainable to the user who can choose to be involved through 
the whole process: from fine-tuning the similarity measures, to choosing the cluster representatives, and validating 
the system generated annotations and KG representations. SSG also complies with native Web standards, namely SVG 
and RDF, to preserve transparency in displaying, representing, and searching images using Semantic Web stack 
technologies. Compared with the existing literature in vector image representation and processing (cf. Section 3), the 
main contributions of this study are summarized as follow: i) we introduce a semantically augmented RDF-based 
representation to describe vector images, compared with existing solutions which use plain SVG coding, ii) we 
introduce the concept of unified reference KG to gather the collective semantics of an SVG image repository (using 
our augmented RDF-based representation), allowing annotation suggestions and improving image semantic 
processing, compared with existing solutions which represent images as separate standalone entities, iii) we introduce 
incremental SVG image and object clustering to perform unsupervised labelling, in contrast with existing solutions 
which process images separately by performing pairwise image similarity computation. 

We have conducted a large battery of experiments to test and evaluate our approach. We have created a labelled 
SVG dataset consisting of 22,553 objects from 750 images based on panoramic dental x-ray images. To our 
knowledge, it is the first significant dataset of labelled SVG objects and images, which we make available online as 
a benchmark. Results underline our approach’s effectiveness, and its applicability in a practical application domain.  

The rest of the paper is organized as follows. Section 2 describes the motivation of our work. Section 3 briefly 
reviews the state of the art in image feature representation, semantics and vector image processing. Section 4 develops 
our SSG image semantization framework. Section 5 provides the complexity analysis. Section 6 presents and discusses 
our experimental results, before concluding in Section 7 with future directions. 
 
2. Motivation 
 

2.1 Applications of Vector Images versus Raster Images 
 

Images can be grouped in two main categories: i) raster images, consisting of a set of pixels; and ii) vector images 
made of geometric entities such as circles, rectangles, triangles, and polygons, etc. Most existing approaches in the 
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literature focus on the processing of raster images [2, 4], which are typically produced by digital photo-taking cameras, 
and are capable of presenting complex pictures having a variety of colors and shapes. However, vector images are 
becoming more and more popular in several application areas requiring the manipulation of small-size, resolution-
independent, and simple images made of basic lines and shapes. These applications range over: medical image 
annotation (adding basic shapes on top of medical images to identify organ tissues and tumors) [11, 12], geographic 
map annotation (highlighting special places and destinations on a map) [13, 14], video film annotation [18] (using 
vector graphics to define both spatial and temporal regions in a video film, and label its color features and contents 
accordingly), as well as manipulating graph charts and simplifying accessibility to data and geometric shapes for blind 
users (producing simplified contour-based images to simplify data accessibility and navigation for the blind) [15, 16]. 
In this context, SVG (Scalable Vector Graphics) [19] was introduced as an open W3C standard language for 
describing vector images. Based on the XML syntax, SVG allows the encoding of vector graphic shapes, images, and 
text, which facilitate including high-level descriptions within SVG content. SVG images can be created with a text 
editor, or more efficiently using a drawing software (e.g., SVG-edit4, JANVAS5, etc.). 

While the advantages and the practical applications of vector graphics highlight the importance of this category 
of images, e.g., [18, 20], yet, most existing image retrieval systems process vector images similarity to raster images 
[11], regardless of the properties offered by the former. This underlines two major limitations: i) undergoing expensive 
low-level feature selection and extraction, while disregarding the readily available geometric object features which 
can be extracted much more efficiently (cf. Section 4.1), and ii) handling low-level features which are size and 
resolution dependent and which can affect retrieval quality, in contrast with vector graphics’ features which are both 
resolution and size independent.  
 

2.2 Case of Panoramic Dental X-ray Images for Clinical Dental Therapy 
 

Consider the following example in Figure 1 that illustrates a clinical dental therapy scenario, describing the specific 
motivation behind this work. Dentists regularly process continuous streams of dental health records and dental images 
from their patients. More specifically, dentists specializing in surgery and orthodontia process dental panoramic x-ray 
images to identify various critical information including: i) the shape of the teeth (e.g., the tooth looks poorly 
developed, decaying, etc.), ii) the location of the teeth (teeth are juxtaposed, evenly spaced, etc.), and iii) the teeth’s 
color (ivory for healthy teeth, white for synthetic teeth, dark gray for decayed teeth, or black for lack of teeth, etc.). 
This requires manual effort and highlights the following needs: i) identifying the different teeth in a panoramic x-ray 
image, ii) recognizing the type of each tooth (i.e., incisor, canine, premolar, and molar), iii) recognizing the presence 
of different types of critical information regarding teeth shape, location, and color, and iv) semantically linking the 
latter information with the patients’ dental records.  

Vector image annotation and processing can be utilized to answer the aforementioned needs. Considering the 
sample x-ray image in Figure 1.a, traditional image retrieval techniques would extract and process low-level image 
features (e.g., dominant color, color histogram, cf. Figure 1.b) which require considerable processing time and are 
usually unable to effectively describe the semantic meaning. However, the SVG image in Figure 1.c can be processed 
through its vector features (e.g., path stroke, ellipse fill color, cf. Figure 1.d) which are extracted much more efficiently 
and can be easily augmented with semantic information. Vector objects can be added on top of the panoramic x-ray 
images to identify different teeth and recognize their types and related information according to the dentists’ needs 
(e.g., object1 hasShape path1, object1 isA molar, object1 isLocatedIn upperJaw). Also, being a W3C standard, we 
can augment SVG through the Semantic Web stack to benefit from its semantic processing capabilities and link it 
with open data repositories (using RDF triples, cf. Figure 1.e). 

 

 
4  Available at: https://code.google.com/p/svg-edit/ 
5  Available at: http://www.janvas.com/site/home_en.php
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c. Vector image representation, consisting of 
geometric objects placed on top of (a) 

d. SVG encoding of the vector 
image and its geometric objects 

e. Linked data representation         
using RDF (cf. Section 3) 

 

 

Figure 1. Sample dental panoramic x-ray image (a) described using traditional low-level features (b), versus vector image 
and feature representation (c, d), and linked data representation (e, cf. Section 3) 

 
In this context, we highlight the following challenges to achieve SVG semantic processing: challenge 1 – how to 

represent SVG images in a meaningful way for seamless integration with Semantic Web technologies, challenge 2 – 
how to process the vector images’ shape, location, and color properties to perform object recognition and annotation, 
challenge 3 – how to configure the annotation process in order to inject domain insights and user feedback (e.g., 
allowing dentists to configure, adjust, and modify the annotation process according to their needs) for a more adapted 
and accurate annotation task. Hence, we aim to provide a solution for knowledge-based vector image representation, 
allowing to address the challenges mentioned above. We aim to consider the intrinsic properties of SVG vector 
graphics, and build on the descriptive power of the Semantic Web stack, namely RDF, while relying on unsupervised 
data clustering to perform the semantic annotation task.  
 
3. Related Works 
 

Most existing Web image representation solutions focus on raster images made of a set of pixels described using low-
level features. Recent approaches have addressed semantic augmentation using supervised learning techniques. Only 
a few approaches have addressed vector image representation and processing. Hence, we categorize existing solutions 
as: text-based, content-based, hybrid, and more recently XML-based, MPEG-7 based, and vector-based methods.  
 
3.1  Text-based and Content-based Methods 
 

In text-based systems, e.g., [21, 22], images are manually or automatically annotated by text descriptors, which are 
then exploited via classic database or text retrieval systems to perform image search [23]. On the one hand, the text-
based paradigm has been adopted by most current Web search engines (e.g., Google and Bing) and photo sharing sites 
(e.g., Flickr and Imgur), due to its well proven scalability in handling the tremendous amounts of images published 
on the Web. However, text-based systems are usually characterized by poor result quality, since the automated engines 
are guessing image visual contents using indirect textual clues [22], and are usually unable to confirm whether the 
retrieved images actually contain the desired concepts expressed in the user queries [24]. In addition, text-based 
systems usually produce a large quantity of image search results ranked by their relevance to the text-based user query. 
This can be extremely tedious and time consuming since the returned results usually contain multiple topics mixed 
together, where users could entirely miss their search goal due to cognitive overload [3, 25]. In content-based systems, 
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e.g., [5, 26] images are indexed based on their visual content, e.g., color, texture, and shape descriptors, and are 
processed via search engines specially devised to handle, compute and compare low level image feature descriptors 
(e.g., dominant color, color layout, color and edge histograms, etc.) [27]. Yet, as these descriptors are low-level, they 
seem effective only in matching images almost identical in content [28]. In other words, they seem useful locally, i.e., 
when applied on a subset of similar images (retrieved a priori through some other means, e.g., using textual or user 
provided evidences), but fail when matching relatively disparate images [6]. In addition, low-level features are usually 
unable to effectively capture the high-level semantic meaning present in the image, which is known as the semantic 
gap problem [4, 6]. 
 
3.2 Hybrid Feature Representation Methods 
 

Various hybrid methods have been developed, integrating both text-based and content-based image processing 
capabilities [23]. Most methods in this category target Web images, e.g., [29, 30]  where both low-level and text-
based image clues are available such as: the Web links of image files (e.g., URLs) which have a clear hierarchical 
structure including useful information such as the image Web category, and Web documents in which images are 
imbedded (e.g., HTML) which can encompass textual metadata, e.g., image title, Web page title, ALT-tag, etc. Yet, 
several studies have shown that such metadata can only annotate images to a certain extent (e.g., the image title is 
usually abbreviated and might be meaningless, the ALT-tag might be missing), and do not utterly solve the semantic 
gap problem [3]. 

On the other hand, moving on from traditional low-level image features (e.g., color, shape, and texture features), 
various studies have investigated high-level semantics [4, 31], i.e., deriving semantic descriptions generated 
automatically based on low-level features. This can be done using different techniques, namely: i) using dedicated 
ontologies to relate low-level features with high-level concepts (e.g., color ontologies where colors are defined using 
color names – red, blue, etc. – linked with numerical representations [32]), ii) using supervised learning models to 
associate low-level and high-level features using trained classifiers based on sample data provided by experts (e.g., 
texture categorization into pre-defined classes – sea, clouds, forest, etc. – based on training numerical spaces [33]), 
and iii) generating semantic templates to support high-level semantic image retrieval based on low-level features (e.g., 
retrieval of named events, of pictures with emotional significance such as “find pictures of a joyful crowd”, e.g., [34, 
35]). The main premise with this family of hybrid techniques is to try to simulate the visual concept space in terms of 
lexical concepts as perceived by humans, which remains an inherently complicated task and an ongoing challenge in 
image retrieval [4]. Techniques such as probabilistic user-based image tagging (using the tagging logs from the 
histories of similar users to infer new tags, e.g., [7, 8]), and semi-supervised image annotation based on visual and 
Web contents (training different deep learning algorithms to annotate new images based on a training image set with 
predefined labels, e.g., [9, 10]) show promising results. Yet they require training data and training time, which are not 
always available. 

 
3.3  XML-based Representation Methods 
  

Some XML-based solutions have been introduced, e.g., [36-38], organizing images into an XML document tree 
hierarchy, and then applying image search and retrieval operations on the obtained XML multimedia tree. The general 
process consist of two main steps: placing images into a hierarchy, defining multiple evidence scores such as: image 
ascendants, brothers, and children, evaluated using an existing XML retrieval system, and then retrieving multimedia 
fragments from those relevant images [39, 40]. Authors in [41, 42] organize the textual content within and surrounding 
a multimedia object into disjoint and hierarchically organized entities called Region Knowledge (RKs), following the 
hierarchical structure of the document containing that multimedia object: the self-region, its sibling elements, its 
parent element, its ancestor elements, and so on; where the largest region is the document itself. Then, the authors use 
the vector space model to describe and evaluate each region using TF-IDF and hierarchical weighting schemes. Even 
though this method exploits the document structure, yet it solely focuses on textual descriptions (text-based), and does 
not actually consider the relations between images (content-based) and regions when the latter’s relevance is 
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evaluated. Other XML-related approaches use a linear combination of evidences to merge the results of content-based 
and XML-based retrieval [37, 38].  

While most XML-based methods capture a certain hierarchical organization inherent in multimedia information, 
nonetheless, most approaches show a high dependence on the underlying XML hierarchical structure and retrieval 
system used, rather than the actual visual and semantic properties of images.  

 
3.4  MPEG-7 Feature Representation Methods 

 

Some image retrieval approaches have extended XML-based solutions toward MPEG-7 retrieval [43-45]. MPEG-7 
(Multimedia Content Description Interface) is a standardized description of various types of multimedia information 
including images and videos [46]. MPEG-7 provides a range of standardized Descriptors (D): representing low-level 
features (date of create, author, time, place, etc.) and high-level features (dominant color, scalable color, edge 
histogram, etc.), and Description Schemes (DS): defining the structure and semantics of the relationships between 
different descriptors and description schemes). A dedicated Description Definition Language (DDL) allows the 
creation of new descriptors and description schemes, adapting MPEG-7 to specific applications. As a result, several 
approaches have fine-tuned XML-based image retrieval to handle standardized MPEG-7 descriptors, e.g., [43-45]. 
Different methods have been developed to calculate similarity among images using low-level MPEG-7 descriptors, 
namely color (e.g., scalable color, dominant color) and texture (e.g., edge histogram) descriptors. The authors in [47] 
adopt Earth Mover’s Distance as a measure between image signatures extracted as dominant nodes with corresponding 
weights from an image. In [48], the authors suggest organizing the descriptors within a hierarchical decision fusion 
framework using fuzzy logic, combining different types of image features into an integrated feature space. Another 
approach in [49] introduces a neural network-based system using a self-organizing mapping from the image descriptor 
space to a two-dimensional grid made of artificial neural units. The system uses the query-by-image paradigm, 
requiring the user to formulate pictorial cues and image queries, and allowing the latter to provide relevance feedback 
about the results, adjusting the neural network’ weights accordingly.  

While most MPEG-7 approaches target low-level multimedia descriptors and processing, yet, existing methods 
generally undermine image semantics. While it provides a unified way of describing many low-level image 
descriptors, yet, MPEG-7 can represent the same textual (semantic) metadata in multiple different ways which can 
complicate image processing. For example, using MPEG-7 to annotate an image depicting a FirstPreMolar 
juxtaposed to a Canine can be done in multiple ways using i) the free text tag, ii) the keyword tag, or iii) the semantic 
tag (cf. Figure 20.a, b, and c). This complicates data search and retrieval since a single query will not be enough to 
retrieve all similar metadata having similar characteristics and describing similar objects. Nonetheless, the same image 
can be annotated in a unique representation using an RDF-based representation such as ours (cf. Figure 2.d), which 
would allow the selection and retrieval of all the similar metadata using a single SPARQL query. 

 

MPEG 7 Image annotations RDF Image annotation 

<FreeTextAnnotation> 
      FirstPreMolar juxtaposed to a canine 
</FreeTextAnnotation> 

 

a. Test free annotation 
 

<KeywordAnnotation>   
       <Keyword>FirstPreMolar</Keyword>       
       <Keyword>Justaposed</Keyword> 

<Keyword>Canine</Keyword> 
</KeywordAnnotation> 

 

b. Keyword annotation 

<Semantic id="FormalAbstractionDescription"> 
<SemanticBase  xsi:type="AgentObjectType"> 
     <Agent xsi: ="ToothType"> 
           <Name>FirstPreMolar</Name> 
           <Name>Canine</Name> 
     </Agent> 
  </SemanticBase> 
  <SemanticBase xsi:type="SpatialRelationType"  
                                         id="juxtaposed"> 
      </SemanticBase> 

</Semantic> 

c. Semantic annotation 

 

:image1 rdf:type :Image  
 

:FirstPreMolar rdf:type :Tooth 
 

:Canine rdf:type :Tooth  
 

:image1 rdf:depicts  :FirstPreMolar 
 

:image1 rdf:depicts  :Canine 
 

:FirstPreMolar abc:hasSpatialRelation  
:juxtaposed 
 

:juxtaposed rdf:hasAgent  s:Canine 
 

d. RDF annotation 

 

Figure 2. MPEG 7 image annotations versus RDF image annotation 
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Other limitations regarding the semantic capabilities of MPEG-7 include: i) the lack of a unified procedure to 
decompose a multimedia object (e.g., an image) and identify the relations between its constituents [50], and ii) the 
lack of capabilities allowing the deduction of facts (semantic descriptions) based on existing ones (i.e., identifying the 
semantic relations between multimedia objects, as well as between objects and query keywords), which is central to 
allow semantic-based search and processing (such as semantic clustering and classification) [51]. Some approaches 
have suggested creating MPEG-7 ontologies (based on RDF and OWL) to better handle MPEG-7 semantic 
descriptions [52]. In contrast, our approach allows a formalized decomposition of image content using SVG-based 
RDF descriptions, while providing an open framework for semantic annotation and fact deduction readily available 
for use with emerging RDF deductive systems, e.g., [53, 54]. Such capabilities underline the basic pillars necessary 
for the development and deployment of RDF and Semantic Web databases [55, 56] 

 
3.5 Vector-based Representation and Similarity Methods 
 

Few approaches have specifically targeted SVG image representation and processing [57, 58]. The work in [59] 
suggests organizing the features extracted from SVG images in the form of an aggregation tree, where each tree node 
represents an SVG geometric object or an aggregated set of objects and is described by a MBR (Minimum Bounding 
Rectangle) and a shape description, taking into consideration the topological relationships between the objects (e.g., 
disjoint, meet, overlap, etc.). The aggregation tree is constructed using object-aggregation rules defined based on 
topological relations, e.g., two disjoint objects p and q are grouped under a higher level object n consisting of a new 
MBR encompassing the ones of p and q. Another approach in [12] introduces a hierarchical SVG image abstraction 
layer for medical imaging, organizing low level features and high level semantic information in an image abstraction 
layer where content pieces are represented in XML and SVG. The authors then describe a web based tool that 
visualizes, manipulates, and searches the abstraction layer using XQuery. Similar works investigating the retrieval of 
SVG images using XML data search and manipulation techniques have been proposed in [11, 14]. These approaches 
exploit XML syntactic processing capabilities, yet do not address semantic annotation or semantic-based retrieval. 

A few studies have introduced vector shape similarity measures designed to compare SVG geometric objects, 
e.g., [11, 13, 60, 61]. The authors in [13] introduce a number so similarity measures to compare same shape and 
different shape objects. The main motivation in [13] is to support geographical location based services: identifying 
similar geographic sites represented via similar SVG geometric objects, using approximate similarity-based SVG 
object search. For similar shapes, invariant points are identified and used to produce a general mathematical equation 
that can be used for comparison. For different shapes, the proximity of two object contours is computed as the distance 
between their corner points. The authors in [11] compute the similarity between two vector objects as the sum of 
shape, color, and position similarity measures. They compute an interior angle sequence defined as the angle formed 
by 2 adjacent sides of a polygon using Formula 2 (cf. Section 4.2.1). They also calculate a length sequence defined as 
the length of a line segment of path data, using Euclidean distance. Then they normalize by dividing each length value 
by the maximum length (Li/Lmax). A similar approach in [60] adopt edit distance to compute the interior angle sequence 
and length sequence between two polygon shapes. However, the authors do not mention how the edit-distance measure 
is computed. In [62], the authors extract a set of points designating the shape’s perimeter using the current 
transformation matrix (CTM). They also introduced a smoothing function to transform a distance into a similarity 
measure. The authors in [63] introduce a tool allowing users to manually associate semantic annotations to a sketch 
based query specification. Images are drawn and transformed into SVG coding, whereas user annotations are 
transformed into an RDF fragment appended to the SVG image code. Yet this approach solely focuses on manual user 
annotation and does not address semi-automatic annotation. The authors in [61] extract shape contour and introduce 
a technique for centroid distance computation, as the distance from every contour point to the centroid of the object. 
They also consider the angles between the line from the centroid point to the ith contour point and the tangent line of 
the object at the contour point, compared using cosine similarity. In our study, we build on the approaches mentioned 
above and use some of their similarity measures in designing our similarity computation component (cf. Section 4.2).  
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To sum up, i) most existing SVG solutions represent images using native SVG coding, compared with our 
semantically augmented RDF-based representation, ii) they represent images as separate standalone entities, 
compared with our solution which introduces the concept of unified reference KG to gather the collective semantics 
of an image repository, and improve image semantic processing, iii) they process images separately performing 
pairwise image similarity computations, in contrast with our approach which introduces SVG image and object 
clustering, comparing images with cluster representatives to improve annotation quality and performance. 

 
3.6 Image Clustering Methods 
 

Various clustering solutions have been proposed to organize raster image repositories and search results. They mainly 
fall under two main groups: i) partitional and ii) hierarchical. Partitional clustering algorithms attempt to divide data 
objects (e.g., images) into non-overlapping subsets, i.e., the clusters, by maximizing intra-cluster similarity and 
minimizing inter-cluster similarity. K-means [64] is one of the most popular algorithms in this category and attempts 
to recursively minimize the distance between objects in a cluster and a special object designated as the center of the 
cluster (computed as the average between all objects in the cluster). Similar algorithms such as k-medians, k-medoids, 
and BSAS (Basic Sequential Algorithmic Scheme) have also been suggested [65-67]. Partitional algorithms are 
usually intuitive, easy to implement, and relatively efficient (e.g., k-means is of average O(n × k × i) time where n is 
the number of images, k is the number of clusters, and i is number of iterations). Nonetheless, they usually require the 
user to specify certain parameters like the number of clusters which is not always known in advance. A few algorithms 
such as x-means [68] and YAK [69] have attempted to counter the previous limitation, yet, they rely on empirical 
heuristics and their usage remains limited [3]. 

Hierarchical clustering generates a set of nested clusters organized in a hierarchy, called dendrogram, where the 
root node of the dendrogram represents the whole dataset and each leaf node represents an individual data object (e.g., 
image). The cluster hierarchy is produced based on the similarity between individual data objects and clusters. In [70], 
the authors introduce a three-step hierarchical clustering approach for Web images: i) the first step clusters the input 
images based on the concepts extracted from their textual metadata (URL of the containing webpage and image anchor 
text), ii) the second step accepts as input the clusters of the first step and merges them based the images’ textual 
contexts (surrounding text in the containing webpage), iii) the third step accepts as input the clusters produced in the 
second step and expands the context of each cluster using Wikipedia semantics to merge the ones sharing the most 
similar contexts. A similar approach is described in [71] where the authors consider labels added using social tagging, 
photo taking metadata, and low-level image features. In [72], the authors introduce the folding tree hierarchical 
algorithm: it starts from the individual images which represent leaf nodes, and merges the most similar ones based on 
their visual features, to form the first level clusters represented as inner tree nodes. Tree traversal is then performed 
level-by-level from the leaves to the root. Hierarchical clustering algorithms usually produce better results compared 
with their partitional counterparts, yet they are more computationally complex (requiring at least O(n2 ×log(n)) time 
where n is number of images being clustered) [3].  

Note that neither partitional nor hierarchical clustering solutions can be straightforwardly utilized in our study, 
since our SVG image repository is not initially populated for processing (except for a few seed images): it is populated 
incrementally as more and more images are added and requested for annotation. Hence, we design a new incremental 
clustering solution to process the stream of incoming SVG images, one-by-one, as they are added to the dataset. 

 
4. SVG Semantic Graph (SSG) Framework 
 

An overview of our SSG image semantization framework is depicted in Figure 3. It consists of four main modules: i) 
SVG-to-KG conversion, ii) SVG similarity computation, iii) SVG image and object clustering, and iv) SVG 
annotation and KG integration. An input SVG image is first processed for feature extraction by identifying its 
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constituent objects and their properties, and converting them into a KG representation in the form of RDF subject-
predicate-object triples (cf. Challenge 1). Object features are processed for similarity computation using dedicated 
shape, area, location, and color similarity measures. The image is run through an incremental clustering process, 
grouping it with the most similar cluster representatives based on their aggregate object similarities. The image is then 
labeled according to its associated cluster, and is integrated in the reference KG accordingly (cf. Challenge 2). The 
reference KG’s semantic expressiveness continuously increases as new images are labelled by the system. The user 
can choose to fine-tune each module, by choosing the most representative features, fine-tuning the similarity 
measures’ weights, choosing the cluster seed representatives, and validating the system generated annotations before 
integration in the reference KG (cf. Challenge 3). We describe each module in the following sub-sections. 
 

 

 

 

Figure 3. Simplified diagram describing our SSG image semantization framework 
 
4.1  SVG-to-KG Conversion 
 

The SVG-to-KG representation module allows converting an SVG image into a knowledge representation that can be 
integrated in a reference KG. We first define the SVG and KG data representations adopted in our study, and then 
describe our SVG-to-KG conversion algorithm. 
 

Table 1. Basic SVG geometric objects and their properties 
 

Objects 
(shapes) 

Attributes 
(properties) 

Visual 
presentation 

SVG source code  
(tagging) 

Description 

 
Circle 

 
cx, cy, r,  
stroke, fill   

<circle cx="50" cy="50" r="40" fill="red" 
             stroke="black" > 

cx and cy define the coordinates of the circle’s center, 
r its radius, fill and stroke its fill/contour colors 

Ellipse 
cx, cy, rx, ry, 
stroke, fill 

 

<ellipse cx="200" cy="80" rx="100"  
               ry="50"  fill = "purple" /> 

rx and ry define the ellipse’ radiuses along the x and y 
axes respectively 

Rectangle 
x, y, width, 
height, 

stroke, fill   

<rect x=”50” y=”50” width="100"   
           height="300" stroke = "red"/> 

x and y define the coordinates of the top-left vertex of 
the rectangle 

Line 
x1, y1, x2, y2, 

stroke   

<line x1="0" y1="200" x2="200" y2="0"  
          stroke = "red" /> 

x1 and y1 define the line’s start point coordinates, and 
x2 and y2 its end point coordinates 

Polygon/ 
Polyline 

points, stroke, 
fill 

 

<polygon points="220,10 300,210   
                  170,250 123,234" /> 

points defines the x and y coordinates for each corner 
of the polygon, e.g., (220, 10), (300, 210), (170, 250), 
and (123, 234) respectively. 

Path d, stroke, fill 

 

<path d="M130,0 L50,10 
                  L230,300 Z" /> 

d is the sequence of points in the path, e.g., starting at 
point (130, 0) with a line to (50, 10), then a line to 
(230, 300), and closing at (130, 0)) 
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4.1.1  SVG Representation  
 

SVG allows encoding a variety of geometric objects having different features. Formally: 
  

Definition 1 – SVG Image Document: It is an XML-based document representing structured and self-contained 
information consisting of elements representing geometric object shapes, and attributes defining, for each shape, a 
set of descriptive features known as geometric object properties (cf. Table 1) ● 

 
Since SVG is an XML-based coding, SVG feature extraction comes down to retrieving attributes using traditional 

XQuery and XPath queries. This is a major advantage over traditional low-level feature extraction from raster images 
which may require extensive processing (depending on the nature and dimensionality of the features being extracted 
[26, 73]), in comparison with fast XQuery/XPath processing (which is based on optimized database-style semi-
structured data processing [74, 75], cf. Figure 4). 

 
4.1.2  KG Representation 
 

SVG coding provides the structural properties of vector images, yet it does not provide any semantic meaning (e.g., 
the SVG coding in Figure 4 consists of a path object shape, but does not reflect semantic meaning such as: the path 
is a molar tooth). To solve this issue, we propose to represent SVG images, objects, and their properties as RDF 
subject-predicate-object triples6, producing a semantic image representation in the form of an RDF graph. The latter 
is referred to as our SVG Semantic Graph (SSG) representation. The SSG is then integrated with the reference KG 
representation to provide context and meaning to the SVG image. Formally: 
  

Query: Select the visual attributes of path elements having a fill color =“dark gray” 

SVG Raw image SVG source code XPath query Result: Visual Features 

 

 
 

Img1.svg 

 

<?xml version‐“1,0”?> 
<svg width="20cm" height="20cm”> 
 <path d=" M18,4 C0,0 ‐26 ‐15 17,18   
                   C 9,33,3,18,8,31 S‐1‐25,7  
                  20.5 S6,19, 4,22 S15 ‐ 31,15  
                 ‐ 43 S26 ‐ 4,19,4 Z”    
           stroke=”black” fill=“dark gray"/> 
</svg> 

 

//path[@fill=”dark gray”]/@* 

d =" M18,4 C0,0 ‐26 ‐15 17,18 
C 9,33,3,18,8,31 S‐1‐25,7 20.5 
S6,19, 4,22 S15 ‐ 31,15 ‐ 43 
S26 ‐ 4,19,4 Z” 
 

stroke = “black” 
 

fill = “dark gray” 

 

Figure 4. Example of SVG feature extraction using a typical XPath query statement [76] 
 
Definition 2 – SVG Semantic Graph (SSG): It is a graph (N, E, L) consisting of a collection of RDF subject-

predicate-object triples describing SVG image content, where: 
 Nodes ni  N designate RDF subjects or objects representing: 
 

o Visual concepts describing geometric objects (e.g., ellipse, circle, path) extracted from the SVG image,  
o Domain concepts (e.g., molar tooth, canine tooth) added after annotation from the reference KG to 

provide semantic meaning,  
o and corresponding geometric object property values (e.g., 50 is the value of property stroke for an 

ellipse object, “red” is the value of its fillColor). 
  

 Edges j
ie   E connecting source/destination nodes (ni , nj)  N designate predicates representing: 

 

 
6 In an RDF subject-predicate-object expression, the subject denotes the resource being described, the predicate denotes a trait or aspect of the 

resource, expressing a relation between the subject and the object, where the object designates another resource or a data value [76]. 
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o Relations between geometric objects (e.g., Path1-subClassOf-Path),  
o Relations between domain concepts (e.g., Tooth-hasInfluentialFacts-Symptom),  
o Relations in-between geometric objects and domain concepts (e.g., Path1-isA-Molar), 
o Relations between geometric objects and their property values (e.g., ellipse1- hasStroke-50, ellipse1-

hasFillColor-“red”). 
 

 Labels i  L designate node labels, and j
i  L designate edge labels, cf. Figure 5) ● 

 

a. SSG resulting from extracted visual features 
of Img1.svg in Figure 4 

 

 

b. SSG after annotation, including semantic triples 
(highlighted in bold) 

 
 

Figure 5. Sample SVG feature extraction and the resulting KG representations 
 

Figure 5.a shows an SSG graph which is automatically generated from the SVG image in Figure 4. Triple Path1-
figureIn-Img1 is added to indicate that the path is included in the image. Figure 6 shows an extract of the reference 
KG adopted in our study. It is based on a dental knowledge base from [77], which we manually extended to include 
SVG geometric object constructs and properties (cf. Figure 19). The reference KG is also represented following our 
SSG data model (cf. Definition 2), and provides domain experts with a set of predefined visual and semantic concepts 
and relations corresponding to the application domain at hand. The reference KG is dynamically extended by creating 
new concept and relation instances based on the images being annotated.  
 

 
 

Figure 6. Extract of the reference KG used in our study 
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Algorithm SVG-to-KG_Conversion 
 

Input:    Img           // SVG image document 
               KG             // Knowledge graph represented using the SSG data model 

 

Output: SSG         // Semantic SVG image graph 
 

Begin 
 

SSG = null                                                         // Initializing SSG                                              1 
List GO = Img.getGeometricObjects(Img)         // Retrieving geometric objects from Img         2 
For each(object oi in GO)                                                                                                      3 
{                                                                                                                                            4 

SSG.addNode(oi)                                           // Object node insertion in the SSG                   5 
   For each(object oj  oi in SSG)                                                                                          6 
   {                                                                                                                                         7 

j
i = KG.getEdgeLabel(oi, oj)                     // Acquiring edge labels from KG                       8 

        SSG.addEdge(oi, oj, 
j
i )                                                                                               9 

   }                                                                                                                                        10 
  List ATT = oi.getAttributes()                           // List of attributes of object oi                                       11 
   For each(attribute atk in ATT)                                                                                           12 
   {                                                                                                                                        13 

SSG.addNode(atk)                                     // Attribute node insertion in SSG                    14 

        k
i = KG.getEdgeLabel(si, atj)                     // Acquiring edge labels from KG                   15 

        SSG.addEdge(si, atj, 
k
i )                                                                                            16 

   }                                                                                                                                       17 
}                                                                                                                                          18 
Return SSG                                                                                                                                                                                         19 
 

End 
 

 

Figure 7. Pseudo-code of SVG-to-KG_Conversion algorithm 
 

4.1.3 SVG-to-KG Conversion 
 

Algorithm SVG-to-KG Conversion for extracting SVG features and building the corresponding SSG graph is shown 
in Figure 7. It accepts as input an SVG image and a reference KG, and produces as output the corresponding SSG 
graph. The algorithm starts by extracting geometric objects from the SVG image, and inserting the latter as nodes in 
the SSG graph (lines 3-5). Geometric object nodes are connected with other nodes in the SSG graph by creating edges 
with their labels extracted from the KG (lines 6-10). Dedicated graph nodes are created for each of the geometric 
objects’ attributes (lines 11-14), using dedicate edges with labels extracted from the KG (lines 15-16).  

 
4.2  SVG Similarity Computation 
 

Once the SSG graph is produced for a given SVG image, the annotation process is executed by comparing the image’s 
geometric objects with those stored in the reference KG. The latter are run through an incremental clustering process 
(described in the following Section 3.4), grouping them with the most similar cluster representatives based on their 
aggregate object similarities. The similarity computation process is depicted in Figure 8. We consider four main 
similarity criteria: i) shape, i) area, iii) position, and iv) color. Given two SVG geometric objects o1 and o2: 

 

1 21 2 f f

f F

     Sim(o , o )  Sim (o , o ) [0, 1]w



    
(1)
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where F={Shape, Area, Position, Color}, wf = 1, Ɐwf ≥ 0, such that Simf(o1, o2) [0, 1]. While different aggregation 
functions can be used (e.g., maximum, average, etc.), we utilize the weighted sum function to combine the different 
similarities, allowing users to fine-tune the weight of each criterion according to their notion of similarity. Note that 
the fine-tuning of similarity weight parameters is an optimization problem such that parameters should be chosen to 
maximize annotation quality (through some cost function such as the f-value measure, cf. Section 6.3). This can be 
solved using a number of techniques that apply linear programming or machine learning in order to identify the best 
weights for a given problem class, e.g., [78-80]. Providing such a capability, in addition to manual tuning, would 
enable the user to start from a sensible choice of values (e.g., identical weight parameters to consider all similarity 
measures) and then optimize and adapt the process following the optimization function at hand. Users can also add or 
remove their own similarity functions suitable to their application domain. We do not further address the fine-tuning 
of parameters here since it is out of the scope of this paper, and will be addressed in a dedicated study. 

In the following, we integrate existing measures from the literature and introduce new measures to handle each 
similarity criterion. Existing measures are explicitly highlighted and referenced when used. 
 

 

 

Figure 8. Simplified diagram describing our similarity computation process 
 

4.2.1 Shape Similarity 
 

SVG shape similarity can be performed by comparing geometric objects of the same type (e.g., comparing two circles, 
or two rectangles), or by comparing objects of different shape types (e.g., comparing a circle with a rectangle). On 
the one hand, comparing objects of the same type is achieved by comparing their mathematical properties using a set 
of well-defined mathematical formulas (e.g., comparing the radiuses of two circles, comparing the width and height 
values of two rectangles). The authors in [13] introduce a set of mathematical formulas specially tailored for the task 
of comparing same type SVG objects, which we adopt in our implementation. On the other hand, we compare 
geometric objects of different types by first i) transforming the objects into their most generic polygon representations, 
and then ii) comparing the resulting polygons. A polygon consists of a sequence of vector moments which makes it 
invariant to transformations. From each polygon, we extract: i) the interior angle sequence, where each angle is 
formed by two adjacent sides of the polygon (computed using Formula 2 from [11]) and ii) the side length sequence, 
consisting of the length values of the adjacent sides of the polygon (computed using Euclidian distance between the 
sides’ edge points).  
 

 

,

a.b1
      

a b
cos [0, ]

a b


 
  

  
  

 
   

 

(2) 

where a and b are two adjacent sides of a polygon, and a, b is their internal angle (cf. Figure 9). We compute the 
similarities between pairs of angle/side sequences using cosine similarity, and then aggregate them to compute 
polygon shape similarity. More formally, given two polygon objects p1 and p2: 
 

SimShape(p1, p2) = wAS  SimCosine(AS(p1), AS(p2)) + wLS  SimCosine(LS(p1), LS(p2))      [0, 1]    (3)
 



14  

 
 

where AS(pi) and LS(pi) represent the angle and side length sequences of polygon pi respectively, wAS and wLS 
represent the angle and side sequences’ similarity weights having wAS + wLS = 1 and (wAS, wLS) ≥ 0. When comparing 
two sequences with different dimensions, we pad the sequence having the smaller dimensionality with zero weights 
in order to reach the same size of its bigger counterpart. This comes down to adding blank contour angles/sides to the 
smaller polygon, which is reasonable since polygons made of different numbers of angles/sides (i.e., of different 
resolutions) are indeed not the same. Their difference will be reflected through the cosine similarity computation (cf. 
Formula 3), where more/less zero weights would yield lower/higher similarity scores respectively. As for the ordering 
of the sequence dimensions, it depends on the ordering of the sequences themselves, which in turn depends on the 
starting point of each polygon object. In other words, similar polygons with different starting points can generate 
different angle/side sequences, resulting in low sequence similarities which is counter intuitive. To solve this problem, 
we adopt a solution from [61] by computing sequence similarity 2n times, where n is the length of the longest 
(angle/side) sequence among the polygons being compared. Each angle/side dimension is shifted left for the first 
iteration and then shifted right for the second iteration, allowing to consider all possible starting point configurations 
when computing similarity. Finally, the highest cosine similarity score is considered as the output sequence similarity. 

 
 

 
AS(p) = <a, b, b, c, c, d, d, e, e, a> 
LS(p) = <||a||, ||b||, ||c||, ||d||, ||e|| > 

 

  
 

  
 
 

 
 

Figure 9. Sample polygon with its 
angle and size representations 

  

Figure 10. Area surface coverage 
using Gauss's area approach [81] 

  

Figure 11. Sample minimum bounding 
rectangles and their reference points 

 
4.2.2  Area Similarity 
 

We identify the coverage area of a polygon based on the Cartesian coordinates of its contour points using Gauss's area 
formula [81] (cf. Figure 10). More formally, considering a polygon object p made of a sequence of i=1…n contour 
points having Cartesian coordinates (xi, yi): 

 

1 1

i i+1 n 1 i+1 i 1 n

1 1

× × × ×
1

area ( )
2

x y  x y x y  x y
n n

i i

p
 

 

        (4)

 
Consequently, we compute the similarity between the coverage areas of two polygons p1 and p2 as the absolute 
normalized difference between their coverage areas:  
 

 
1 2

Area 1 2
1 2

area(p ) - area(p )
Sim (p , p ) =     

area(p ), area(p )
[0,1]

max
  

        (5)

 

4.2.3 Position Similarity 
 

To compare the positions of two objects o1 and o2 in an SVG image, we generate their minimum bounding rectangles 
(MBR1 and MBR2) and then compute the Euclidian distance between the top-left vertices of their MBRs (point1 and 
point2), where the top-left vertex serves as a reference location point for an SVG rectangle object (cf. Figure 11). 
 

 Pos 1 2
Euclidian 1 2

1Sim (o , o ) =      0,1
1 Dist  (point , point )




 

 

  (6)
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4.2.4 Color Similarity 
 

Colors are traditionally defined on a selected color space, such as RGB or HSV [82], each serving a different set of 
applications, where each color is coded as a set of integers values. More recently, color ontologies have been 
introduced to bridge the gap between low-level (numeric) color features and high-level (semantic) color descriptions, 
where colors are defined using color names (e.g., red, blue, light blue etc.) organized in an ontological graph structure 
[83, 84]. Since SVG allows coding colors using both: i) numerical format in the RGB feature space, and ii) color 
names with 147 reference colors [19], we adopt both color representations in our approach and calculate the similarity 
between two colors by combining their visual properties and their semantic meaning as follows: 

 
 

SimFillColor/StrokeColor (c1, c2) =  wHSVSimHSV(c1,c2) +  wOntSimOnt(c1,c2) (7)
 

 
While SVG represents colors in numerical format following the RGB color space, yet we chose to convert RGB 

into the HSV color space, since HSV encoding is considered to be closer to human perception [30] and thus can be 
more semantically descriptive. To compare two colors (based on numerical format), we first convert their vectors 
from RGB to HSV using [30], and then calculate their scalar product. As for comparing color names, it can be achieved 
using any of several existing methods to determine the semantic similarity between concepts in a semantic graph 
ontology, e.g. [85, 86]. In our implementation, we combine two semantic similarity approaches by WuPalmer7 and 
Lin8 due to their prolific usage in the literature. Consequently, given two objects o1 and o2, we compute their color 
similarity as the aggregation of their fill color and stroke color properties: [87] [88] [89] 

 
  SimColor(o1, o2) =   wFillColorSimFillColor(fc1, fc2) + wStrokeColorSimStrokeColor(sc1, sc2)   (8)

 
 

 

where (wFillColor, wStrokeColor) ≥ 0 and wFillColor + wStrokeColor = 1 such that (SimFillColor, SimStrokeColor)  [0, 1], fc1 and fc2 
designate the fill colors of objects o1 and o2 respectively, and sc1 and sc2 designate their stroke colors. 

 
4.2.5 Image Similarity 

 

We compute the similarity between two SVG images Img1 and Img2 based on the aggregated similarities of their 
constituent objects. We utilize the transportation optimization problem, e.g., [90, 91], to match the highest similarity 
objects from both images. The transportation problem seeks to associate a number of supply centers m (sources) with 
a number of demand centers n (destinations) to optimize supply delivery. In our case, we consider the objects of the 
first image oi  Img1 to be the supply centers, and the objects of the second image oj  Img2 to be the demand centers. 
Considering two images with m = |Img1| and n = |Img2| objects respectively, we construct an mn matrix where the 
rows represent the objects of the first image and the columns represent the objects of the second image. Consequently, 
we match the nodes together using the transportation problem’s minimum (least) cost method widely adopted in the 
literature, e.g., [90, 91]. We compute cost as the inverse of similarity, and hence we seek to minimize the cost (i.e., 
maximize the similarity) among the matching objects. We briefly describe the process as follows: (i) assign the supply 
center (object from the first image) with the demand center (object from the second image) having the highest pair-
wise similarity, (ii) cross-out the row where the supply center is located, (iii) cross-out the column where the demand 

 

 
7 

 0
Lin 1 2

1 2

2 log p(c )
Sim (c , c , CO) =   0,1

log p(c ) + log p(c )




   

where CO designates a reference hierarchical color ontology, N1 and N2 are respectively the lengths of the paths separating colors c1 and 
c2 from their lowest common ancestor color c0 in CO, and N0 is the length of the path separating color c0 from the root of CO [89]. 

8 
 0

WuPalmer 1 2
1 2 0

2 N
Sim (c , c , CO) =   0,1

N + N + 2 N





  

where p(Ci) denotes the occurrence probability of color ci designating the frequency of occurrence of the name color ci in a reference 
corpus [88], such as the Brown text corpus [87] adopted in our study. 
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center has been satisfied, (iv) repeat iteratively from (i) to assign the remaining objects until no row or no column is 
left. Figure 12 shows a visualuzation of transporation problem’s minimum cost (maximum simialrity) method. Lastly, 
the similarity between two images Img1 and Img2 is computed as the sum of the similarities of their matchings objects, 
normalized by maximum image cardinality: 
 

 i 1 j 1 i j

i j
o Img , o Img / o  matches o  

1 2
1 2

( , )

Sim(Img , Img ) =      0,1
( Img , Img )

Sim o o

max

 



 (9)

 
 

 

 

 

 

  Im2 
 

  o2 o2 o3 

Im1

o1 MaxSim1   
o2  MaxSim3  
o3    
o4    
o5    
o6   MaxSim2

 

 

Im1 includes two canines 
(i.e., o1 and o6) and 4 

incisors between them 

Im2 includes two canines 
(i.e., o1 and o3) and one 
incisor between them 

a. Sample images obtained from panoramic  
x-rays of human front lower teeth 

 

b. Visualization of the transportation matrix 
(matching objects are shown in bold)

 

c. Visualization of the matching 
objects 

 

Figure 12. Sample visualization of the transportation problem, used to identify matching SVG objects according to their 
maximum similarities 

 
4.3 Image and Object Clustering 
 

Our clustering approach is depicted in Figure 13. We adopt an incremental clustering process [92] which considers 
images and objects one by one in an incremental manner, and decides what to do with (where to put) them. Incremental 
clustering is especially useful when processing streams of data, which is the case in our scenario where streams of 
input SVG images and their constituent objects are incrementally processed and annotated by the system. 
 

 
 

Figure 13. Simplified diagram describing our clustering process 
 
 
 

o1 
o2 o3 o4 o5 

o6 
o1 o2 o3 
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4.3.1 Clustering Process 
 

Our clustering process consists of two instances for i) clustering images and ii) clustering objects, and outputs two 
sets of clusters grouping similar images together and similar object together. The pseudocode of our Image_Clustering 
algorithm is shown in Figure 14. It takes as input the first image and compares it with each of the image cluster 
representatives (performing image similarity computation using the aggregated similarities of their constituent 
objects, cf. previous Section 4.2). The algorithm identifies the cluster representative having the highest similarity with 
the image (cf. Figure 14, lines 1-2), and then decides whether the image should be placed in the cluster (lines 10-12) 
– or whether a new cluster should be created around the image – based on a user chosen (or system-generated average) 
similarity threshold (lines 3-8). If the image is added to an existing cluster, the cluster representative is updated 
accordingly (lines 10-12, following a process described in Section 4.3.2) before processing the following image. 
Otherwise if a new cluster is created around the image, the image will serve as the cluster’s initial representative. The 
algorithm continues in the same manner until all images have been clustered. Another instance of the same clustering 
process is applied on the image’s individual objects, grouping them in object clusters. The output image and object 
clusters are used to perform image and object annotation, which we describe in Section 4.4. 
 

 

Algorithm Image_Clustering 
 

Input:  S                                                                                             // Stream of newly added images 
           R                                                                                             // Set of seed cluster representatives 

    ThreshImg                                                                                    // Image similarity threshold 
    Weights = {wShape,  …, wStrokeColor)                                                // Set of similarity weights 

 

Output: C                                                                                           // set of image clusters 
 

Begin 

For each Img  S   
                Find max(SimWeights(Img, Repi)) where Repi  ∈ R                   // Find maximum similarity image 

    If max(SimWeights(Img, Repi)) < ThreshImg                                              // If similarity less than threshold, 
 {                                                                                   // then create a new cluster 

Create new cluster cnew                                                          
Add Img to cnew 
Designate Img as RepNew 
Add cnew to C 

} 
Else                                                                                               // If similarity above threshold, 

Add Img to cluster ci having Repi as representative       // then update existing cluster 
Update_Cluster_Representative(ci) 

 

If user wishes to update threshold 
Set ThreshImg as average similarity of all images in C 

 

Return C 
End 

 
 
 

 
 
 
 
 
 
 

1.  
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
 11. 
12. 
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15. 

 

Figure 14. Pseudo-code of Image_Clustering algorithm 

 
4.3.2 Cluster Representatives 
 

The pseudocode of our Cluster_Representatives_Update algorithm is shown in Figure 15. It considers two approaches 
when defining the cluster representatives: i) maximum cumulative sum, and ii) higher membership heuristic. 
Following the first approach, the image that is most similar to all other images in the cluster is chosen as the cluster’s 
representative (cf. Figure 15, lines 1-6). This is done by comparing each image with all others and computing the 
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cumulative sum of all pair-wise similarities. Consequently, the image with the maximum cumulative sum is chosen 
to be the representative. While effective, yet this approach is computationally expensive where n similarity 
computation operations are performed each time a new image is added, n being the number of images in the cluster. 
To solve this issue, we introduce the higher membership heuristic approach: i) for the first three images added to a 
cluster, we apply the maximum cumulative sum approach described previously (lines 9-11), ii) we compute the average 
cumulative sum score for the representative image by normalizing its cumulative sum with the number of similarity 
computation operations – we refer to this average as the representative’s membership score with respect to the cluster 
(line 12), iii) starting from the forth image onward, we only compute the new image’s similarity with the cluster 
representative (lines 13-15), iv) we consider a heuristic assumption: if the similarity score is greater than the 
representative’s membership score, we consider that the new image represents the cluster better than the representative 
– and the new image becomes the new cluster representative, otherwise we keep the old representative unchanged 
(lines 14-15). This heuristic process is repeated for every other image, and requires constant unit time regardless of 
cluster size. Users can choose to apply the maximum cumulative approach or the higher membership heuristic 
approach according to their needs. 
 

 

Algorithm Cluster_Representatives_Update 
 

Input:  ci                                                                                                             // Image cluster  
   MaxCumul                                                                                            // Boolean parameter  

       Weights = {wShape,  …, wStrokeColor)                                                      // Similarity weights       
 

Ouput:  Repi                                                                                                     // Representative image of cluster ci 
 

Begin 
If MaxCumul is true                                                                                  // Maximum cumulative sum 
{ 

For each Imgu  ci 
Compute sum(SimWeights(Imgu, Imgv)) where Imgv  ∈ ci 

 

Repi = Imgu having maximum sum(SimWeights(Imgu, Imgv))          // Representative with max similarity  
} 
Else                                                                                                              // Higher membership heuristic 
{ 

For each Imgu  ci 
If Imgi is among first three images in ci                                                             // Computing maximum cumulative sum 

Compute sum(SimWeights(Imgi, Imgv)) where Imgv  ∈ ci              // for first three images, and normalizing 

   Weights i v

i
i

(Sim (Img , Img )
 Score  = 

|c |

sum                                          // with size of cluster 

Else If Imgu is forth image or more in ci                                         // Starting from forth image onward,  
If SimWeights(Imgu, Repi) > Scorei                                                                            // compute similarity with  

Designate Imgu as new Repi                                                                          // cluster representative 
} 
Return Repi 

End 
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Figure 15. Update_Cluster_Representative algorithm 

 
4.3.3 Cold Start 
 

As a cold start, the user can provide a minimum of one representative for each image cluster and object cluster in 
order to guide the clustering process. This allows users to define their clusters of interest and label them according to 
the reference KG. Consequently, objects and images added to the user clusters are assigned the corresponding cluster 
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labels, preparing for their integration in the reference KG (discussed in the following subsection). Failing to provide 
the cold start representatives means the system will decide about the initial clusters itself, and define its own behavior 
according to the data being clustered. The user can verify the produced clusters at a later stage, and label them 
according to the reference KG. Both scenarios, i.e., with and without cold start representatives, are useful in different 
applications. Yet we recommend the user provides cold start representatives sooner than later, in order to form the 
seed clusters from the beginning, allowing for an effective annotation of the images and objects according to the user’s 
target labels. This would help reduce user effort in updating the clusters and their labels at a later stage. 
 

Algorithm SVG_Annotation 
 

Input:  Img                                                              // SVG Image 
            Weights = {wShape,  …, wStrokeColor)            // Set of similarity weights 
             ThreshImg, ThreshObj                                   // Similarity thresholds 
            KG                                                          // Reference knowledge graph   

 

Output: SSG                                                            // Annotated SSG                                       
 

Begin 

N =  
cImg = Image_Clustering(Img, Weights, ThreshImg) 

Img = cImg.getLabel() 

membershipImg = Sim(Img, Rep(cImg)) 

N = N  createNode(Img, addAttribute(membershipImg)) 
 

For each object oi in Img 
ci = Object_Clustering(oi, Weights, ThreshObj) 

i = ci.getLabel() 
membershipi = Sim(oi, Rep(ci)) 

N = N  createNode(Img, addAttribute(membershipi)) 
 

SSG = SVG‐to‐KG_Conversion(Img, KG)                                                                                               
 

For each (nk in SSG)                                                                                                                               
{     N’ = UserValidation(N)                              // User validates annotations           

For each (ni  N’)                                                                                                                             
 {     SSG.addNode(ni)                               // Node insertion in the SSG                                 

For each(object nj  ni in SSG)                                                                                                  

             {    j
i = KG.getEdgeLabel(ni, nj)         // Acquiring edge labels 

SSG.addEdge(ni, nj,  j
i )                                                                                                

 }                                                                                                                                           
}                                                                                                                                                           

}                                                                                                                                                                
Return SSG                                                                                                                                              

End 
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Figure 16. Pseudo-code of SVG_Annotation algorithm 
 

 
4.4 SVG Annotation and KG Integration 
 

The annotation process is run for each clustered SVG image and its constituent objects, providing the user with 
annotation suggestions. The pseudo-code for algorithm SVG_Annotation is shown in Figure 16. It invokes the SVG 
image and object clustering algorithms described in the previous section (cf. lines 2, 7). An image/object added to a 
cluster inherits the cluster’s label as its annotation, along with a membership degree representing the image/object’s 
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similarity with respect to the cluster’s representative (lines 3-4, 8-9). Considering for instance two clusters c1 and c2 
labelled canine tooth and incisor tooth respectively (cf. Figure 12), a new image Imgi added to c2, having Sim(Img1, 
Rep(c2)) = 0.8 will inherit label incisor with membership degree 80% (i.e., the system suggested annotation for Img1 
is 80% incisor). Users can choose to accept, update, or disregard the system annotation according to their perceptions 
and needs. When users accept or update a system generated annotation, its membership degree becomes 100%, 
highlighting the users’ validation of the system suggestion (cf. Figure 16, line 13). The accepted annotations are then 
appended to the SSG representation of the image (lines 11-15) with the corresponding edge links acquired from the 
reference KG (lines 16-18).  

Consequently, the SSG image graph is integrated in the reference KG, by appending the SSG graph nodes as 
instance nodes under their corresponding categories in the KG (e.g., nodes representing circle objects are appended 
as instances under the category circle, nodes representing molar teeth are appended under the category molar tooth, 
etc.). The pseudo-code for algorithm KG_Update is provided in Figure 17. It accepts as input an SSG image graph 
and the reference KG, and produces as output the updated KG. Nodes in the SSG graph which are not already present 
in the KG are appended to the latter (lines 2-6) with the corresponding edge links (lines 7-11). In addition, edges in 
the SSG graph which are not already present in the KG are appended to the latter (lines 13-19).  
 

Algorithm KG_Update 
Input:    SSG                                                        // SVG Semantic Graph  

          KG                                                     // Reference knowledge graph 
Ouput:  KG’                                                         // Updated knowledge graph                           
Begin 

KG’ = KG                                                                                                                                         
For each (node ni in SSG)                                                                                                            
{                                                                                                                                                       
     If (ni  KG’)                                                                                                                               
 {                                                                                                                                                 

KG’.addNode(ni)                                    // Node insertion in KG’                                
For each(object nj  ni in KB’)                                                                                            
{                                                                                                                                               

j
i = KG.getEdgeLabel(ni, nj)              // Acquiring edge labels 

KG’.addEdge(ni, nj,  j
i )                                                                                                    

  }                                                                                                                                          
}                                                                                                                                               

 

For each (edge  k
ie  in SSG)                                                                                                     

{                                                                                                                                               

If ( k
ie  KG’)                                                                                                                         

KG’.addEdge( k
ie )                       // Edge insertion in KG’                                 

        }                                                                                                                                               
}                                                                                                                                                    
Return KG’                                                                                                                                     

End 
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Figure 17. Pseudocode of KG_Update algorithm 
 

5. Complexity Analysis 
 

The time complexity of our solution simplifies to O(Nk), where N is the number of SVG images being 
processed, and k the number of clusters (i.e., the number of image and object categories). It comes down to the 
sum of the complexities of the modules: 
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 SVG-to-KG conversion: requires O(N|Img|) to transform SVG images into SSG graph representations, 

where |Img| is the number of objects in an SVG image. 
 SVG Similarity Computation: requires O(|Img| + |Img|2) to compute object similarities and image 

similarities respectively, which simplifies to O(|Img|2). 
 SVG Image and object clustering: requires O(Nk|Img|2 + |Img|k) which comes down to the 

complexity of the incremental image and object clustering processes, where k is the number of clusters 
(i.e., the number of image and object categories). 

 SVG annotation and KG integration: requires O(|Img| + |KG|) where |KG| represents the size of the 
reference knowledge graph. 

 

Hence, overall similarity comes down to worst case O(N|Img| + Nk|Img|2 + |Img|k + |Img|+|KG|). It 
comes down to O(Nk|Img|2) as the largest factor, and simplifies to O(Nk) since usually N >> |Img|. 

 
6. Experimental Evaluation 
 

6.1 Prototype System 
 

 
 

 
 

 
 

Figure 18. SSG prototype screen snapshot 
 

We have developed a prototype system9 to test and evaluate our SSG framework (cf. Figure 18). It is implemented 
using Java, making use of Neo4j to create, parse, and search our semantic graphs using the Cypher query language10. 
Users start by choosing the image they need to annotate (by clicking the load image button (Figure 18.a)). Users can 
also create on-the-fly SVG images on top of background raster images to annotate them (e.g., annotating a background 
panoramic dental x-ray image using SVG shapes (b)). Once the SVG image is loaded, the system automatically 

 

 
9 Available online at: http://sigappfr.acm.org/Projects/SSG/ 

10  We adopt Noe4j as a graph database to represent our semantic graphs, versus using a native RDF representation in Protégé [93] for instance, 
due to the latter’s significant efficiency and processing speed compared with the latter. Other graph databases can be used as plug-and-play 
models according to the admin’s preferences. 

(a) 

(b)

(d)

(c)

(e) 

(f)
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extracts SVG image features and produces the SSG graph representation, such that all the geometric object nodes in 
the SSG are filled in a combo-box (titled GeometicObject), and their visual properties are extracted and filled in other 
dedicated combo-boxes: hasCx, hasCy,  hasColor, etc. (c). Users can then choose the geometric objects they wish to 
annotate, by clicking on the offer button to ask for annotation suggestions from the system (e). The SSG image graph 
is then displayed accordingly (f). Users can choose to validate/modify/disregard one/multiple system generated 
annotations, or add their own manual annotations (d). The annotation phase is concluded by clicking the submit button 
in order to save all annotations and append them to the reference KG.[93].  

 
6.2  Application Scenario and Data 
 

While our framework is generic, yet we chose to test it in a real-world application scenario: clinical dental therapy 
(cf. Motivation in Section 2).  Our tests are designed to process a collection of dental panoramic x-ray images in order 
to annotate their consistent teeth objects including: i) the type of each tooth (e.g., incisor, premolar), ii) the shape of 
the teeth (e.g., poorly developed, decaying, etc.), iii) the location of the teeth (juxtaposed, evenly spaced, etc.), and 
iii) the teeth color (ivory for healthy teeth, dark gray for decayed teeth, etc.). To provide domain specific annotations, 
we adopted a reference dental KG from [77], and we manually extended it to include SVG geometric object constructs 
and properties (cf. Figure 19). 

 
  

a. Extract of original dental domain KG concepts [77]11. b. Extract of SVG KB visual concepts developed in our study. 
 

Figure 19. Reference dental KG12. 
 

6.3  Experimental Metrics 
 

The main criteria used to evaluate the effectiveness of automatic annotation approaches are the amount of manual 
work and user effort required to perform the annotation task. This depends on: i) the quality of the produced 
annotations, as well as ii) the time needed to provide automatic annotations.  

On one hand, to evaluate annotation quality, existing text/image annotation approaches in information retrieval 
(IR) propose to first manually produce annotations, and exploit the obtained results as a reference to evaluate the 
quality of the matches produced by the system [94, 95]. Thus, similarly to IR approaches, the precision and recall 
metrics can be utilized in comparing “real” and system generated annotations. Precision (PR) identifies the number 
of correctly generated annotations, w.r.t. the total number of annotations (correct and false) produced by the system. 
Recall (R) underlines the number of correctly identified annotations, w.r.t. the total number of correct annotations, 
including those not identified by the system. Having: 

 

 A the number of correctly identified annotations (true positives), 
 B the number of wrongly identified annotations (false positives), 
 C the number of real annotations not identified by the system (false negatives). 

 

 

 
11     Lille University annotation is a tooth’s annotation scheme, elaborated by the University of Lille in France, which can be integrated in any general 

purpose dental knowledge base [77].
12    The complete knowledge graph is available online on the project prototype Web page. 
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Precision and recall are computed as follows:  
 

          
 [0,1]PR A

A B
 


          [0,1]R A

A C
 

     

2
-  =    [0,1]

+ 

PR R
F value

PR R

 
  (10)

 
 

High precision denotes that the annotation process achieved high accuracy in identifying correct annotations, 
whereas high recall means that very few correct annotations where missed by the system. In addition to evaluating 
precision and recall separately, it is a common practice to consider F-value as a combined measure, representing the 
harmonic mean of precision and recall. High precision and recall, and thus high F-value indicate in our case high 
annotation quality. 

In addition, we evaluate time performance: i) measuring the time to automatically produce semantic annotations, 
ii) evaluating time w.r.t. the size of the reference ontology and how the latter evolves with the number of annotated 
images, and ii) comparing automatic (system) annotation time with manual (user) annotation time.  
 
6.4  Experimental Data 
 

We have created an SVG dataset consisting of 22,553 labelled objects from 750 images based on panoramic dental x-
ray images. To our knowledge, it is the first significant dataset of labelled SVG objects and images, which we make 
available online as a benchmark for future research in this area. We first acquired dental x-rays from the UFBA_UESC 
dental images dataset [96], considering 750 images including structural variations regarding the number of teeth, 
restorations, implants, appliances, and the size of the mouth and jaws. We applied proper filters to clean the images, 
and performed edge detection using Python’s OpenCV library. We generated contour points to approximate the shape 
of each tooth and created an SVG file for each object. Figure 20 depicts the process of cleaning, detecting, and 
generating the contours of each tooth in the image. Consequently, we organized the SVG images under 4 labelled 
clusters: full teeth (including exactly 32 teeth), images missing a few teeth (between 26 and 31), images missing 
several teeth (less than 26), and images of supernumerary cases containing extra teeth (more than 32). We also 
considered 10 object clusters: incisor, canine, molar, premolar, and wisdom tooth each being upper jaw, lower 
jaw, healthy, synthetic, and decayed. These seed images and objects form the first visual concepts in the 
reference KG, which will be populated gradually as new images and new objects are annotated by the system. 
 

 

 
 

  

 

  

a. Input raster image b. Image filtering and cleaning c. Edge detection  d. Contour generation 
 

Figure 20. Sample images depicting our SVG image and object data preparation pipeline 
(the resulting SSG image graph following the annotation process is shown in Figure 21) 

 
6.5 Evaluating Annotation Quality 

 

6.5.1 Evaluating System Annotations 
 

We conducted a battery of tests to evaluate the quality of our annotation process. The expert user first provides seed 
images and seed objects to form the representatives of the target clusters. In our experiments, we considered the seed 
image and object clusters produced in our experimental dataset (cf. Section 4.4). Consequently, the system starts 
offering annotation suggestions for each new image in the input stream, along with its constituent objects. The 
produced system annotations are compared against the user-labelled dataset (cf. Section 6.4), and are considered either 
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relevant (true positives) or irrelevant (false positives), allowing to compute PR, R, and F-value scores accordingly. 
Annotations are gradually added to the reference KG. The process is repeated using five different similarity thresholds 
ThreshSim: 0.5, 0.6, 0.7, and 0.8 ( [0, 1], cf. Figure 16), resulting in a total of 7503 + 22,5533 = 69,909 annotation 
tasks. Similarity weight parameters are considered with different values, after testing and choosing weight 
combinations that maximize result quality (i.e., wshape=0.4, warea=0.2, wposition=0.3, wcolor= 0.1, and equal weights for 
the remaining parameters: wmajor = wminor = wecc = 0.3334, wlengh = wslope = 0.5, etc.). These weights can be tweaked by 
the user according to the application scenario. Note that fine-tuning the similarity weight parameters is an optimization 
problem that can be solved using a number of techniques that apply linear programming or machine learning to 
identify the best weights for a given problem class, e.g., [78-80]. Providing such a capability, in addition to manual 
tuning, would enable users to optimize the process according to their needs. We do not further address the fine-tuning 
of weights here since it is out of the scope of this paper, and will be addressed in a dedicated study. Average results 
are presented in Figure 22. 
 

 
 

Figure 21. SSG image graph representation from the example in Figure 18. 
 

    

a. Precision b. Recall c. F-value d. Average results 
 

Figure 22. Image annotation results 
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Precision (PR): For each of the image annotation results, the worst (minimum) precision value (=0) is reached 

when the system returns zero relevant annotation offers to the user and the best (maximum) precision value (=1) is 
reached when 750 relevant annotation offers are returned to the user corresponding to 750 images. Results in Figure 
22 show that annotation precision for the first 50 images is very low for all similarity thresholds (varying between 
PR=0.065-and-0.22 for ThreshSim=0.7 and 0.6 respectively). This is because the reference KG initially includes the 
seed images only, and is gradually populated with the incoming stream of 50 images, which might not be sufficient 
to fully form the target clusters. It increases throughout the experiment as the number of annotated images increases 
in the KG, reaching maximum levels when all 750 images have been annotated and added to the KG (varying between 
PR=0.8-and-0.89 for ThreshSim=0.5 and 0.8 respectively). As more images are fed into the system, it is learning and 
dynamically changing the representatives to choose the ones that resemble the clusters the most. The maximum 
precision value PR=0.89 is obtained for highest ThreshSim=0.8. This is because increasing the similarity threshold 
reduces the number of irrelevant annotation offers: a higher threshold means higher similarity between image and KG 
representatives, producing higher annotation accuracy). 

Recall (R): Similarly, recall varies from 0 (minimum) to 1 (maximum) when the system returns 0 or 750 relevant 
annotation offers respectively (corresponding to each of the 750 images). Results show that as more images are 
annotated and fed into the reference KG, recall levels increase almost regularly. Moreover, the recall levels tend to 
decrease as the threshold increases. This is because increasing the similarity threshold reduces the number of 
annotation offers returned to the user: filtering-out certain potentially relevant annotations which might be less similar 
to the image being annotated. In other words, increasing the similarity threshold increases the risk of disregarding 
relevant results, reflected in our case by decreasing recall levels.  

F-value: In cases where higher/lower precision/recall levels are obtained simultaneously, the f-value measure 
allows evaluating the overall loss and gain in average precision/recall, in order to evaluate result quality. Results in 
Figure 22.c show that average f-value levels increase from 0.74-to-0.764 with ThreshSim=0.5 and 0.6, and then 
decrease from 0.696-to-341 with ThreshSim=0.7 and 0.8. This reflects the increase and decrease in both precision and 
recall levels, and illustrates what we have seen before: when the threshold increases, precision increases yet recall 
decreases, hence inducing an increasing-and-decreasing slope with f-value levels. 

 
    

a. Precision b. Recall c. F-value d. Average results 
 

Figure 23. Object annotation results 
 

Similar observations can be made for the object annotations results in Figure 23. We ran the tests on 5 random 
subsets from our experimental dataset, each consisting of 750 SVG objects. Precision increases with the increase in 
number of annotated objects and the increase in similarity threshold, reaching a maximum PR=0.902 with # of 
annotations = 750 and ThreshSim=0.8. Precision improves as more objects are annotated and integrated in the reference 
KG. Also, increasing the similarity threshold reduces the number of irrelevant annotation offers, thus increasing 
precision accordingly. Recall levels remain almost stable with the varying number of object annotations, yet decrease 
with the increase in similarity threshold, reaching a minimum R=0.113 with ThreshSim=0.8 and # of annotations = 50. 
This is because increasing the similarity threshold reduces the number of annotation suggestions: filtering-out certain 
potentially relevant annotations which might be less similar to the object being annotated. F-value levels increase and 
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decrease with the number of annotations and the similarity thresholds. This is expected and reflects the increase and 
decrease in both precision and recall levels mentioned above: improving as the KG appends more annotated objects 
and increases in expressiveness, while decreasing with the increase in threshold filtering-out certain potentially 
relevant annotations. 
 
6.5.2 Ablation Study on the Clustering Process 
 

We have conducted an ablation study to evaluate the impact of the clustering component on the SSG annotation 
pipeline. We evaluate the impact of clustering on both object annotation and image annotation levels. We ran the tests 
on our SVG image dataset, using the same 5 subsets of objects from our previous experiment each consisting of 750 
SVG objects. Figures 24 and 25 report the average precision, recall, and f-value results obtained with similarity 
threshold ThreshSim = 0.7 (similar results were obtained with ThreshSim = 0.5, 0.6, and 0.8). Precision results show that 
annotation quality improves with the number of processed images and objects, where average precision levels are 
slightly higher without clustering compared with clustering. This is due to the fact that clustering is a data-centric 
process that requires a significant amount of data to execute effectively. In other words, the larger the amount of 
similar data grouped in every cluster (i.e., the larger the sizes of the image and object clusters), the higher the chances 
of having good representatives for the clusters taking into account cluster formation and diversity, and thus the better 
the quality of the upcoming clustering iterations allowing to incorporate new images and new objects more accurately 
in their respective clusters. Recall levels are consistent across both experiments, and produce almost equal results with 
and without clustering. 

The impact of clustering is largely perceived when evaluating system performance, where it drastically reduces 
annotation time compared with the one-on-one – without clustering, similarity computation process (cf. Section 6.6.2). 

 

 
 

 
  

 

 

a. Precision b. Recall c. F-value d. Average results 

 

Figure 24. Image annotation results, obtained with and without clustering 
 

    

a. Precision b. Recall c. F-value d. Average results 

 
Figure 25. Object annotation results, obtained with and without clustering 
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6.5.3 Comparative Quality Evaluation  
 

We have also compared our solution with two existing SVG similarity evaluation measures. Since existing solutions 
only perform SVG object similarity computation and do not provide a pipeline for semantic image annotation, we 
perform two separate evaluations. First, we evaluate the similarity measures independently, as standalone solutions, 
where each input object is compared with the existing objects in the KG and is associated with the one having the 
highest similarity score, inheriting its label accordingly. Second, we evaluate the similarity measures as embedded 
solutions, after integrating them within our cluster-based annotation framework (i.e., we replace our similarity 
measure with each of the existing solutions and run the annotation pipeline accordingly). We ran the experiments on 
5 random subsets from our experimental dataset, each consisting of 750 SVG objects. The same subsets were used 
for both standalone and embedded evaluations. Average precision, recall, and f-value results are shown in Figure 26. 
Results for both standalone and embedded experiments show that our integrated object similarity evaluation measure 
produces improved object annotation results compared with its predecessors. This is mostly due to the following: 
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Figure 26. Comparative quality results, considering standalone (a ,b, c) and embedded (d, e, f) evaluations 
 

i) Existing solutions in [11, 60] combine shape, color, and position similarities and disregard area similarity 
which we consider in our integrated measure. In practice, SVG objects might have similar shapes (e.g., similar 
rectangles or similar hexagon shapes), while having different area coverages (e.g., pre-molar and molars might 
have similar shapes, yet they will be distinguished by their coverage areas), which highlights the need to 
consider a dedicated area coverage similarity measure. 

ii) Existing solutions use distance measures to compare the angle and length sequences describing object shapes 
(i.e., [11] uses Euclidian distance and [60] uses edit distance), while we utilize the cosine similarity measure. 
Different from distance measures which are sensitive to the sequences’ vector modules, cosine is a correlation 
measure which only considers vector angles and is completely insensitive to their modules. It compares vectors 
accordingly to their angle variations, making it more suitable with high-dimensional data where module 
variations are usually dismissed as noise. Variations in vector modules might distinguish between highly 
similar SVG objects (similarly to comparing high-dimensional text vectors in information retrieval, e.g., [94, 
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97])13. Other correlation measures like Pearson Correlation Coefficient can also be used in this context, yet we 
adopt cosine similarity due to its common usage in information retrieval literature, e.g., [94, 97]. 

 
We further highlight the performance impact of our embedded annotation pipeline, compared with standalone 
similarity-based annotation, in the following subsection. 

 
6.6  Performance Evaluation  
 

6.6.1 Evaluating System Performance 
 

In addition to testing the annotation quality of our approach, we evaluate its time performance. The complexity of our 
method comes down to O(Nk|Img|2) where N is the number of SVG images being processed, k the number of 
clusters (i.e., the number of image and object categories), and |Img| the number of objects per image. It simplifies to 
to O(Nk) since usually N >> |Img|. Timing experiments were carried out on a PC with an Intel(R) Core(TM) i7-
7500U 2.7 GHz processor with 16GB RAM. Figure 27 shows that the time needed to produce automatic annotations 
for geometric objects in an image grows in a linear fashion with the number of images (Figure 27.a), the number of 
clusters (Figure 27.b) used, and the number of objects per image (Figure 27.c). In addition, Figure 29 shows that the 
size of the KG increases in an almost perfect linear fashion with the number of images and objects being annotated 
and appended to the KG. The effect of increasing the number of objects per image (i.e., increasing image size) is also 
apparent in Figure 29, since every new object is annotated and then integrated as a visual concept instance in the 
reference KG, which increases the KG size accordingly.  
 

 

 

  

a. Varying the # of images and clusters, 
while fixing the # of objects-per-image to 10 

b. Varying the # of images and objects-per-
image, while fixing the # of clusters to 5 

c. Varying the # of clusters and images, 
while fixing the # of clusters to 5 

 

Figure 27. Time performance results 
 
6.6.2 Performance of Clustering Process 
 

We have also evaluated the impact of the clustering component on the performance of the SSG annotation pipeline. 
Results in Figure 28 show the difference in time performance of SSG with clustering (i.e., our suggested process) 

 

 
13  The cosine measure only detects variations in vector angles, which highlight differences between the feature vectors’ directions. This is 

commonly adopted in image annotation and retrieval where images of the same label might have significant feature vector module 
variations while sharing similar vector directions. This is especially useful with high-dimensional data where vector similarity is 
commonly evaluated as the similarity between the vectors’ directions, versus vector module similarity which is considered to be too 
specific and oftentimes misleading especially with higher dimensionality, e.g. [94, 97]. 
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versus SSG without clustering (i.e., replacing the clustering process with one-on-one image and object comparisons). 
Results clearly show the significant impact of clustering on reducing computation time by almost 25 fold. This 
highlights the reduction in processing time when images and objects are compared with the cluster representatives, 
versus comparing all images (and objects) against each other one-on-one to perform the annotation process. Hence, 
while SSG with clustering and SSG without clustering produced comparable quality results in Section 6.5.2, yet SSG 
with clustering allows to drastically reduce computation time as shown below, and is thus integrated in SSG’s main 
process. 
 

 

 

  

a. Varying the # of images while fixing the 
# of objects-per-image to 10, the number of 
images-per-cluster to 10, and the number of 

clusters to 5 

b. Varying the # of images while fixing the 
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Figure 28. Time performance results, evaluated with and without clustering. 
 
6.6.3 Comparative Performance Evaluation 
 

We also compare our solutions’ performance with existing similarity-based solutions and with manual annotation 
time. Figure 30 compares average annotation time for a stream of random 200 images from our experimental dataset, 
each image containing 16 objects (consisting of the upper jaw teeth in panoramic dental X-ray images). Three graduate 
students participated in the manual annotation exercises, and were requested to manually annotate the teeth in every 
panoramic image. They were provided with “pause” and “resume” buttons in the annotation GUI14 allowing them to 
pause and resume the annotation task as needed, according to their fatigue levels. Manual time was paused and 
recorded accordingly to account exactly for the amount of time spent on the annotation task. Average annotation times 
for each tooth are compiled and shown in Figure 30. Results underline the following observations: 
 

- The impact of automatic annotation versus manual annotation is evident in the significant difference in time 
scale between both tasks: the average manual annotation time for an individual tooth (object) is 1.125 seconds, 
compared with 0.243, 0.236, and 0.008 seconds for automatic annotation following Approach 1, Approach 2, 
and our SSG solution respectively. The manual annotation task required around 1 hour to complete all 200 
images, compared with 13, 12.6, and 0.45 seconds with automated Approach 1, Approach 2, and our solution 
respectively. 

- Comparing the automated solutions together, results show that our solution does not seem to seriously reduce 
annotation time in the early stages of the experiment compared with existing methods, i.e., when annotating the 
first 50 images. That is because the reference KG only contains a reduced number of geometric object 

 

 
14 Graphical user interface 
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descriptions in the beginning, where the number of images is almost equivalent to the number of clusters. This 
defeats the purpose of performing clustering in the first place, since comparing with the cluster representatives 
comes down to comparing with almost every image in the KG. Nonetheless, the efficiency of performing 
clustering becomes apparent with the increase in the number of images, namely going beyond 50 images where 
clustering reduces annotation time by an increasing polynomial factor reaching almost 2,800% reduction 
compared with similarity-based annotation time (i.e., our solution required 27 seconds to annotate 200 images, 
versus 780 seconds with Approach 1 and 756 seconds with Approach 2).  

 
 

 
 

 

 
 

 

 

Figure 29. KG size variations w.r.t. the 
number of annotated images and image 

size (in # of objects) 

Figure 30. Comparing our solutions’ 
performance with manual annotation and 

existing similarity-based approaches 
 

Figure 31. Comparing manual and semi-
automated annotation time 

 

In addition, we evaluate the efficiency of our solution in minimizing the amount of manual work needed to 
perform the annotation task. To do so, we compare our tool’s semi-automatic processing with manual user annotation 
time. Semi-automatic time comprises of two subsequent intervals: i) the average time required by the system to 
automatically generate annotation offers, and ii) the average time required by the user to verify and (maybe) correct 
the resulting system annotations. Figure 31 compares average user time and semi-automatic annotation time for a 
stream of 50 random images from our dataset, each image containing 16 objects (consisting of the upper jaw teeth in 
panoramic dental X-ray images, totaling 5016 = 800 manual annotation tasks). The same manual annotation process 
was adopted from the previous experiment. Average annotation times for each tooth are compiled and shown in Figure 
31. Results show that the semi-automatic annotation process does not seem to seriously reduce time in the early stages 
of the experiment, i.e., when annotating the first couple of images. That is because the reference KG lacks geometric 
object descriptions in the beginning, and hence the system is not capable of providing useful automatic annotation 
offers at first. Nonetheless, as the KG becomes semantically richer by appending newly annotated images, results 
(starting from image #4 in Figure 31, i.e., starting from object #64) show that semi-automatic annotation reduces 
annotation time by a factor of 0.42 on average. In other words, the asymptotic values of the automatic and manual 
curves in Figure 31 seem to stabilize at around 1.1 ( ) and 1.9 ( ) respectively, highlighting an approximate 42% 
time reduction from manual to semi-automatic annotation. 

 
7. Conclusion 

 

In this paper, we introduce an original framework titled SSG which automatically converts a stream of SVG images 
and objects into a semantic graph representation. We introduce an incremental clustering approach to semantically 
annotate SVG images and their constituent objects in a fast and efficient manner, using an aggregation of shape, area, 
color, and location similarity measures. We then produce an RDF graph representation of the input image and 
integrate it in a reference knowledge graph, incrementally extending its semantic expressiveness to improve future 
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annotation tasks. Our solution achieves semantization of vector image contents with minimum human effort and 
training data, while complying with native Web standards (i.e., SVG and RDF) to preserve transparency in 
representing and searching images using Semantic Web stack technologies. Our solution is of linear complexity in 
the sizes of the image and knowledge graph used. We have created a large SVG dataset consisting of 22,553 labelled 
objects from 750 images based on panoramic dental x-ray images. To our knowledge, this is the first significant 
dataset of labelled SVG objects which we make available for future research in this area. Experimental results 
highlight our approach’s effectiveness, and its applicability in a practical application domain.  

Note that while designed for vector images, yet SSG can also be extended to raster images. This requires 
raster image contours to be extracted using traditional image segmentation and contour detection techniques 
[98], which are then used to generate vector graphics. 

As continuing work, we are currently investigating the extension of our approach to integrate in our KG 
representation different kinds of objects including social media data [99] and video metadata [100]. This requires 
considering time and space dimensions [101] and extending our SSG representation model accordingly. We are also 
investigating auto-calibration and optimization techniques, e.g., [102, 103], to study the effect of different similarity 
measures (shape, area, location, and color) on annotation quality, aiming to suggest weighting schemes that could 
help users tune their input parameters to obtain optimal results. In the near future, we plan to investigate methods to 
mine the collective knowledge of an image collection compiled within its KG, using (semi-)automated RDF inference 
[54, 104] and fuzzy processing techniques [53, 105], which can help improve image accessibility, management, and 
exchange between automated Web agents and services. 

 
Declarations 
 

An early version of the SVG object similarity module and a preliminary annotation module is described in [17]. 
It consists of: i) an aggregate similarity measure for comparing SVG objects (the current paper redefines and 
extends the aggregate SVG object similarity measure to perform polygon similarity computation for non-
identical object types, and adds a new SVG image similarity measure, cf. Section 4.2), ii) a basic similarity-
based annotation process to recommend the most similar SVG object labels (the current paper introduces an 
unsupervised cluster-based framework, consisting of a two-layered clustering process to perform both SVG 
object and SVG image annotation, cf. Section 4.3), iii) a limited experimental evaluation described in one page 
(the present study performs an in-depth experimental evaluation, and introduces a new labelled SVG dataset 
consisting of 22,553 objects from 750 images – the first significant dataset of labelled SVG objects and images 
which we make available online, cf. Section 6). The present study also introduces a new knowledge graph 
representation model, allowing to convert SVG objects and images into semantic representations and provide 
annotation recommendations accordingly (cf. Section 4.1), as well as a dedicated motivation scenario (cf. 
Section 2) and an in-depth investigation of related solutions (cf. Section 3). 
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