
 

Using Fuzzy Reasoning to Improve Redundancy Elimination for 

Data Deduplication in Connected Environments 
 

 

Sylvana Yakhni 
E.C.E. Department, 

Lebanese American Univ. 

36 Byblos, Lebanon 

silvana.yakhni@lau.edu 

Joe Tekli 
E.C.E. Department, 

Lebanese American Univ. 

36 Byblos, Lebanon 

joe.tekli@lau.edu.lb 

Elio Mansour 
Univ. Pau & Pays Adour, 

E2S UPPA, LIUPPA 

Anglet, 64600, France 

elio.mansour@univ-pau.fr 

Richard Chbeir 
Univ. Pau & Pays Adour, 

E2S UPPA, LIUPPA 

Anglet, 64600, France 

richard.chbeir@univ-pau.fr 

 

 
Abstract—The Internet of things (IoT) is ushering in the era of connected environments where the number and diversity of data 

sources (devices and sensors) are inevitably increasing the size of the data that need to be stored locally (at the edge device level) and 

transmitted to base storages (at the sink level) of the network. This huge amount of data highlights several challenges including network 

bandwidth, consumption of network energy, cloud storage, and I/O throughput. These call for data pre-processing and filtering solutions 

to reduce the amount of data being handled and transmitted over the network. In this study, we investigate data deduplication as a 

prominent pre-processing method that can be used and adapted to address such challenges. Data deduplication techniques have been 

traditionally developed for data storage and data warehousing applications, and aim at identifying and eliminating redundant data items. 

Few recent approaches have been designed for connected environments, yet they share various limitations, including: i) detecting 

duplicates at one level only of the network (either edge or sink exclusively), ii) overlooking the context and dynamicity of the network 

(disregarding device mobility, and overlooking boundary separations and sensor coverage areas), iii) relying on crisp thresholds and 

providing minimum-to-no expert control over the deduplication process (disregarding the domain expert’s needs in defining 

redundancy). In this study, we propose FREDD, a new approach for Fuzzy Redundancy Elimination for Data Deduplication in a 

connected environment. FREDD uses simple natural language rules to represent domain knowledge and expert preferences regarding 

data duplication boundaries. It then applies pattern codes and fuzzy reasoning to detect duplicates at both the edge level and the sink 

level of the network. This reduces the time required to hard-code the deduplication process, while adapting to the domain expert’s needs 

for different data sources and applications. Moreover, FREDD is adapted for multiple scenarios, considering both static and mobile 

devices, with different configurations of hard-separated and soft-separated zones, and different sensor coverage areas in the connected 

environment. Experiments on a real-world dataset highlight FREDD’s potential and improvement compared with existing solutions. 

 

Keywords—Connected Environments, Fuzzy Reasoning, Data Redundancy, Data Deduplication, Internet of Things (IoT), Cyber-

Physical Systems, Wireless Sensor Networks. 

1. Introduction 

Recent advances in data management and sensing technologies have allowed physical infrastructures (e.g., buildings, homes, and 

cities) to become more connected (Li D. et al. 2019, Kaur R. et al. 2018). In fact, the Internet of Things (IoT) is ushering-in the 

era of connected environments, i.e., networks of physical objects that are embedded with sensors, software, and other technologies 

for the purpose of connecting and exchanging data with other devices and systems (e.g., smart hospitals, smart buildings, and smart 

cities) (Nižetić S. et al. 2020, Lytras M. et al. 2015). These connected environments produce huge amounts of sensed data that can 

be exploited for various high-level applications. According to a recent survey conducted by VoucherCloud in (VoucherCloud 

2018), 2.5+ quintillions of sensory data are currently generated every day, and over 123109 IoT devices are expected to be 

connected within the next 10 years (IoT Analytics 2021). This huge amount of data highlights several challenges including network 

bandwidth, consumption of network energy, cloud storage, and I/O throughput. These call for data pre-processing and filtering 

techniques to reduce the amount of data being handled and transmitted over the network. In this study, we investigate data 

deduplication as a prominent pre-processing method that can address such challenges. Data Deduplication techniques have been 

traditionally developed for data storage and data warehousing applications, and aim at identifying and eliminating redundant data 

items, where only one unique copy of the data is stored (Ismael W. et al. 2019). Similarly, data deduplication in connected 

environments aims at eliminating redundant measurements produced by sensing devices. For instance, there is no need to store 

and transmit similar temperature measurements produced by a sensor if they are almost identical within a given timespan. Likewise, 

there is no need to process measurements produced by one or multiple sensors located in a certain geographic area, as long as the 

area temperature has not significantly changed. A similar behavior is expected from mobile sensors moving within a given area, 

or crossing from one area to another, given certain area and network constraints (cf. motivation scenario in Section 2.1). Such 

measurements would be considered redundant and need to be eliminated, where only relevant changes are processed by the system. 

In this context, few recent approaches have been designed for handling data in connected environments, e.g., (Mansour E. et al. 

2020, Ismael W. et al. 2019, Li S. et al. 2019, Patil P. and Kulkarni U. 2013, Qutub B. et al. 2012), yet they share various limitations. 

First, they work on one single level: i) at the edge device (sensor) level only, e.g., (Mansour E. et al. 2020, Qutub B. et al. 2012), 

 

 
 



disregarding redundancies at the sink level (base station) or at the network core, ii) at the sink level only, e.g., (Ullah A. et al. 2019, 

Patil P. and Kulkarni U. 2013), resulting in increased bandwidth and network energy consumption when transmitting the raw data 

from the edge device to the sink device or to the network core. Second, existing solutions mostly disregard the dynamicity and 

constraints of the network, considering static devices only (e.g., stationary surveillance cameras, pollution sensors), e.g., (Ismael 

W. et al. 2019, Li S. et al. 2019, Patil P. and Kulkarni U. 2013), overlooking mobile devices (e.g., phones, tablets), and overlooking 

boundary separations (e.g., hard-separated and soft-separated zones) and sensor coverage areas (which may differ from a sensor 

to another). Third, most existing solutions rely on crisp evaluation thresholds and provide the domain expert with minimum-to-no 

control over the deduplication process (i.e., which data need to be duplicated and which data should be kept intact) hence 

overlooking the expert’s requirements and application needs in defining redundancy, e.g., (Mansour E. et al. 2020, Patil P. and 

Kulkarni U. 2013). 

In this study, we propose: FREDD, a new approach for Fuzzy Redundancy Elimination for Data Deduplication in a connected 

environment. FREDD uses simple natural language rules to represent domain knowledge and expert preferences regarding data 

duplication boundaries. It then applies pattern codes and fuzzy reasoning to detect duplicates on the general network infrastructure 

including both the edge level and the sink level of the network. This reduces the time required to hard-code the deduplication 

process, while adapting to the domain expert needs and application requirements. Moreover, FREDD is adapted for multiple 

scenarios, considering both static and mobile devices, with different configurations of hard-separated and soft-separated zones, 

and different sensor coverage areas in the connected environment. Experiments on a real-world dataset highlight FREDD’s 

potential and improvement compared with existing solutions. 

The remainder of this paper is organized as follows. Section 2 presents the background and motivations of our study. Section 

3 briefly reviews the literature and related works. Section 4 describes the FREDD framework and its modules. Section 5 describes 

different deduplication use-cases and the approach to handle each case. Section 5 describes our experimental evaluation and results. 

Finally, Section 7 concludes with future directions. 

 

2. Background and Motivations 
 

 

2.1. Motivation Scenario 
 

Consider the following example that illustrates a smart hospital, describing the motivations, needs, and challenges behind this 

work. Figure 1 depicts two wards of the hospital, each hosting a set of static sensing devices that provide humidity and temperature 

measurements (among others) from the environment. Similar measurements are also provided by mobile devices such as smart 

phones and tablets operated by the medical staff. Devices have built-in memories to buffer chunks of sensory data before 

transmission to the network’s sink nodes. Every ward of the hospital has a specific set of locations/rooms separated by either hard 

physical entities (e.g., walls, windows) or soft entities (e.g., open cubicles, curtains). The type of separation (i.e., hard or soft) is 

decided based on health and safety requirements (e.g., walls for the Intensive Care Unit -ICU, cubicles for staff offices). Every 

ward has a static sink node that aggregates all the data from its connected edge devices into the sink node storage memory1.  

  

 
 

Figure 1.  Motivating scenario example of a smart hospital connected environment.  

 
1 In this scenario, we disregard inter-sink node connectivity (i.e., inter-sink node collaboration) and their connectivity with the network’s base station. The latter configurations bring forth 

additional challenges including sink node mobility, sink node coverage area overlapping, and composite redundancies by data fusion from multiple edged and sink nodes, which we 

report to a future dedicated study. 



Technicians need to monitor the hospital environment to regulate air quality in specific areas (e.g., ICU, nursery) and to ensure 

the prevention of overheating or underheating in certain areas (e.g., drug storage room). To do so, we highlight the following needs: 

need 1 - retrieving non-redundant and concise humidity/temperature data from individual locations (i.e., directly from the edge 

devices) and from entire zones (i.e., from the wards’ sink nodes); need 2 - retrieving non-redundant and concise 

humidity/temperature while considering device mobility (e.g., data from mobile devices like medical staff tablets, smartphones), 

spatial constraints of the hospital (e.g., locations and zone separations) and their impact on sensing/sensor coverage areas (e.g., 

sensor coverage areas are blocked by walls but not by open cubicles); need 3 - defining health-related constraints for specific areas 

in the hospital (e.g., normal value range and significant variations of humidity levels in the nursery, normal value range and 

significant variations of temperature measurements in the drug storage room and staff offices) and calibrating data storage and 

retrieval based on the aforementioned constraints. 

In this setup, the sensing devices produce and exchange huge amounts of data that often contain redundancies (i.e., duplicate 

values that are not necessary for processing and storage). For instance, if humidity is stable in a specific room, multiple unnecessary 

duplicate values are sent to the sink. This can exhaust network and device resources, as it requires more resources for data 

processing, storage, and retrieval. While many duplicate measurements would qualify as useless data redundancies, yet this is not 

the case for all duplicates, especially when the measurements are made by the same mobile sensor moving between different 

locations, or when the measurements are made by different sensors at different locations in the hospital (identical measurements 

made at the same time in two different rooms do not qualify as redundancies at the room level, yet they might qualify as 

redundancies at the floor or ward level including both rooms; also, mobile devices can be located in the same ward yet separated 

by an opaque wall, such that their measurements are unrelated and would not qualify as redundancies). In this context, data 

deduplication can be utilized to answer the aforementioned needs: allowing to properly detect and eliminate uselessly redundant 

measurements, taking into account the different device and environment properties and constraints, in order to increase storage 

capacities and improve performance without affecting data processing and retrieval accuracy. More specifically, we consider the 

following challenges mapping to the aforementioned needs: challenge 1 - how to accurately detect data redundancies and remove 

them at the device and sink levels; challenge 2 - how to consider the physical constraints of the environment when deduplicating 

data (e.g., device mobility, spatial constraints, soft and hard zone separations, and sensor coverage areas); challenge 3 - how to 

configure the deduplication process in order to inject domain insights and knowledge (e.g., assigning different membership scores 

to certain measurement variations and defining variation boundaries, based on expert preferences) for a more adapted and accurate 

redundancy detection process.  

In this work, we tackle data deduplication in connected environments and design our framework solution based the fuzzy logic 

paradigm to address the aforementioned challenges. 

 

2.2. Preliminaries on Data Deduplication 
 

Devices/sensors in connected environments are often densely deployed to monitor the environment and report observations. These 

devices generate huge amounts of redundant data by sensing the environment. Sensed data is often spatially and temporally tagged. 

This allows an elaborate evaluation of inconsistencies that might result from temporal and spatial data redundancies. A temporal 

redundancy is caused by a single stationary sensor producing redundant observations at different time stamps (e.g., a temperature 

sensor producing identical or similar measurements in a certain continuous period of time). A spatial redundancy is caused by a 

group of stationary sensors deployed in close vicinity of each other and producing redundant observations (e.g., multiple 

temperature sensors located in the same room and producing identical or similar measurements). A spatial-temporal redundancy 

is produced by mobile sensors/devices which are moving around the network and generating redundant observations at different 

time stamps and locations simultaneously. In this context, most existing works in the literature perform deduplication on identical 

data (e.g., measurements 18.2C at time t and 18.2C at time t+1 are considered to be redundant and are thus duplicated by 

eliminating one measurement and keeping the other), yet they do not address data similarities (e.g., 18.2C at t and 18.3C at t+1 

are considered to be different measurements, and are consequently processed, stored, and transmitted across the network, cf. 

Section 3). In this study, we highlight the need to consider both identical and similar data items in performing deduplication, since 

data fluctuations are common in connected environments due to the real-world conditions and constraints of sensing devices (e.g., 

18.2C at t and 18.3C at t+1 might represent unintentional fluctuations in temperature measurements due to sensing device 

accuracy or domain constraints, and thus can to be considered redundant at the data level and processed for deduplication). As a 

result, we adopt fuzzy reasoning to detect duplicates among similar data measurements, considering device specs, domain 

knowledge, and expert preferences in defining the data deduplication boundaries. We provide a sneak peek on fuzzy reasoning in 

the following subsection. 

 

2.3. Preliminaries on Fuzzy Logic 
 

Fuzzy logic is a multivalued logic that allows the definition and usage of intermediate values between conventional evaluations 

like true/false, yes/no, duplicate/not duplicate, etc. It is a paradigm for processing data by using partial set membership, where an 

element can be part of one set and its compliment albeit with varying membership degrees (e.g., 70% true and 30% false). It usually 

incorporates a condition-action rule-based IF X AND Y THEN Z approach rather than attempting to model a system mathematically 

(Ross T. J. 2016). The model and its fuzzy membership functions are defined empirically, and rely on the designer’s experience 

and understanding of the system and its environment (Vlachos I. K. and Sergiadis G. D. 2007). For example, rather than dealing 



with data values in terms of humidity = 95 µg/m3 and temperature = 18.2 C, expressions like IF Low(humidity_value1) AND 

VeryHigh(humidity_value2) THEN NotDuplicate(status) are used. While they seem imprecise, yet such expressions can be very 

descriptive and provide a necessary level of abstraction on top of the crisp data values, allowing to guide the decision-making 

process. A typical fuzzy logic agent consists of 5 main components (Ross T. J. 2016, Zadeh L. A. 1984): i) fuzzification, ii) 

condition-action rules, iii) inference, iv) aggregation, and v) defuzzification. Fuzzification consists in transforming input crisp 

values (received from sensors) into fuzzy membership scores associated with a set of linguistic variables (e.g., low humidity, high 

temperature) defined by the system designer (e.g., humidity = 95 µg/m3 is transformed into 25% low and 75% medium humidity). 

Condition-action rules are defined as Boolean logic (IF-THEN) expressions that reflect the common sense logic applied by a 

domain expert to guide the decision making process. Inference consists in applying a set of designate condition-action rules on the 

fuzzified data in order to produce fuzzy outputs. Multiple rules can produce different outputs, and need to be aggregated in order 

to produce one single fuzzy output function. The fuzzy output function is consequently defuzzified in order to produce crisp values 

as the final output of the agent. 

In this study, we adopt the fuzzy logic paradigm in order to automate the redundancy detection process in a connected 

environment, while handling the different needs and challenges mentioned in our motivation scenario. We review next the related 

works, before describing and evaluating our proposal. 

 

3. Related Works 
 

Data deduplication techniques have been widely researched in data storage and data warehousing systems, and have been recently 

investigated in the context of IoT and connected environments.  
 
 

 

3.1. Deduplication in Data Storage and Data Warehousing 
 

The automatic removal of duplicate data tokens has been primarily used in archival and backup systems (e.g., Microsoft Farsite, 

HYDRAstore, DEBAR), primary storage (e.g., Microsoft Windows Server, Oracle ZFS), RAM2 (e.g., VMWare ESX, Linux 

KSM), and SSDs3 (e.g., Cache Acceleration Software CAS by CAFTL) (Paulo J. and Pereira J. 2014). They mostly rely on chunk-

level deduplication which splits the incoming data into multiple chunks, and generates a unique hash value for every individual 

chunk, referred to as the chunk’s fingerprint (Malhotra J. and Bakal J. 2015). Deduplication is then performed by eliminating the 

chunks having identical fingerprints. Among the many chunking algorithms are Rabin fingerprinting algorithm, TD (Two Divisors) 

algorithm, TTTD (Two Thresholds, Two Divisors) algorithm, and MAXP algorithm (Bhalerao A. and Pawar A. 2017, Malhotra J. 

and Bakal J. 2015). Data deduplication is also a necessary step in data cleaning, also referred to as data scrubbing in data 

warehousing (Christen P. 2012). It consists in matching data records that relate to the same entities from several databases. Many 

techniques have been used in this context, including correlated subqueries, temporary tables, derived tables, Common Table 

Expressions (CTEs), and dynamic SQL (Attigeri G. et al. 2010). Most of these techniques are deterministic and require a unique 

entity identifier (or key) available across all the records/databases to be linked, or for all the databases to have the same structure. 

Some of them also consist of holding all distinct records in temporary or new tables which require big storage space. One major 

issue with the latter techniques is the time overhead needed to perform the extensive comparison operations between data records. 

More recent approaches aim at reducing data record comparison time by performing a pre-processing indexing step where each 

record is assigned a Blocking Key Value (BKV), and then records having the same or similar BKVs are clustered and compared 

together (Christen P. 2012). Some of the used clustering techniques include Sorted Neighborhood, Q-gram based clustering, and 

Canopy clustering (Christen P. 2012). 
 

Discussion: Most deduplication techniques for data storage and data warehousing assume textual data duplicates only and 

disregard numerical values, e.g., (Bhalerao A. and Pawar A. 2017, Malhotra J. and Bakal J. 2015, Christen P. 2012). The few 

methods which address numerical data, e.g., (Attigeri G. et al. 2010) assume exact duplicates (e.g., exact temperature 

measurements) and disregard approximations (e.g., 15C and 15.1C are considered as different tokens). However, numerical 

tokens are of central importance in connected environment, where most data collected from sensors are scalar. 
 

3.2. Deduplication in Connected Environments 
 

We categorize deduplication approaches in connected environments following the challenges described in our motivation scenario 

(cf. Section 2.1): challenge 1 - considering redundancies at the edge or at the sink: stating if the approach handles data redundancy 

at the source (device level) and if it prevents redundancies from reaching the core; challenge 2 - considering the dynamicity and 

physical constraints of the environment, including: device mobility, zone separations, and sensor coverage areas; and challenge 3 

- considering expert-centric data deduplication: specifying if the approach considers the domain experts’ needs when removing 

redundancies. 

In (Patil P. and Kulkarni U. 2013), the authors address data redundancies at the core of the network using a supervised machine 

learning solution based on Support Vector Machines (SVM). They build an aggregation tree for the given size of the network and 

then apply SVM to recognize data redundancies. The authors target temporal and spatial redundancies once the data is consolidated 
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in a central node, which provides a redundancy-free data repository that can be mined using dedicated data processing techniques 

(cf. challenge 1). However, redundancies are not handled at the edge level, and data exchange between devices at the edge remains 

costly due to unnecessary communications. In (Ullah A. et al. 2019), the authors provide a data deduplication technique in 

healthcare-based IoT, and introduce a Controlled Window-size based Chunking Algorithm (CWCA) to identify cut-points in sensor 

data distributions. Yet similarly to (Patil P. and Kulkarni U. 2013), the solution in (Ullah A. et al. 2019) only performs data 

deduplication at sink nodes and does consider redundancies at edge devices (cf. challenge 1). Moreover, the solutions in (Ullah A. 

et al. 2019, Patil P. and Kulkarni U. 2013) do not consider spatial-temporal redundancies generated by mobile devices (cf. challenge 

2). In (Ismael W. et al. 2019), the authors present a data reduction scheme using data filtering and fusion. They handle redundancies 

at the edge device level before forwarding non-redundant data to the sink level. Redundancy detection is based on data value 

deviations only, and does not consider redundant data from mobile devices (cf. challenge 2). In (Chowdhury S. and Benslimane 

A. 2018), the authors focus on the spatial distribution of sensors in the environment, and how it can be managed to prevent 

redundancies. The authors build a graph of nodes and events in order to detect “redundant” nodes: i.e., nodes producing identical 

events. Consequently, redundant nodes are either relocated or put into sleep mode using a circle packing technique to enhance 

coverage, while minimizing energy usage during relocation. This work only handles redundancy from a sensor deployment 

perspective (i.e., avoiding deploying sensors that provide the same type of data in the same area). The approach focuses on detecting 

redundant sensor nodes rather than the data itself, and does not consider sensor mobility (cf. challenge 2). The authors in (Li S. et 

al. 2019) propose a data redundancy elimination technique using an unsupervised learning approach based on data clustering. The 

authors suggest clustering edge nodes based on their produced sensory data in order to aggregate identical data to eliminate 

redundancies, before storing the data in the cloud. However, they do not consider device mobility and spatial-temporal 

redundancies (cf. challenge 2). 

In a continuous sensing setup, triggering mechanisms are available to restrict the number of transmissions between the sensor 

node and the monitoring node without degrading the tracking of the sensed measurements, e.g., (Liansheng T. and Wu M. 2015, 

Santini S. and Romer K. 2006). These mechanisms can also be used for filtering redundant spatial-temporal data, in order to trigger 

transmissions from sensor node (edge) to monitoring node (sink) only when there are changes in the sensed measurements. These 

approaches fall into the category of edge-based data deduplication solutions, and rely on a simple crisp deviation threshold v. 

Therefore, if consecutive measurements at time t and t+1 are higher than the threshold, |vt – vt+1|  v, the edge sends the data to 

the sink. If not, duplicates are eliminated and the oldest value is usually flushed. In this context, relying on crisp thresholds can 

lead to deduplication accuracy drops, where even the slightest variations in the sensed measurements are processed similarly to 

extremely large variations (e.g., given a temperature variation threshold v = 1C, variations of 1.5 C and 20.5 C are processed 

exactly the same). Similarly, variations which are slightly below the variation threshold will be completely ignored (e.g., given a 

temperature variation threshold v=1C, a variation of 0.99 C goes unprocessed). Hence, relying on crisp thresholds restricts 

domain insights and expert knowledge (cf. challenge 3), and might lead to i) missing certain relevant redundancies or ii) removing 

certain data values that might not be redundant. 

More recently, the authors in (Mansour E. et al. 2020) proposed a Data Redundancy Management Framework (DRMF) that 

handles data redundancies at the edge device level (cf. challenge 1) considering both static and mobile devices (cf. challenge 2). 

It clusters the data based on an expert/system defined crisp deviation threshold (cf. challenge 3), while also keeping track of the 

temporal and spatial-temporal spread (or coverage) of each cluster (i.e., sets of redundant data). The algorithm sorts all data tokens 

and checks if the current token belongs to the current cluster by comparing it with the cluster’s centroid, considering a expert-

defined deviation threshold 𝛿𝑣. Otherwise, a new cluster is created with the current data item added as its centroid. In another 

relevant study in (Khriji S. et al. 2018), the authors introduce the Redundancy Elimination Data Aggregation (REDA) algorithm 

to perform deduplication at individual edge nodes and also among nodes in the same cluster (cf. challenge 1). Assuming that data 

is presented as a set of scalar values (e.g., temperature, humidity), the range of numbers is divided into crisp intervals that depend 

on the domain expert requirements (cf. challenge 3), then a lookup table is generated for each cluster containing the ranges of each 

interval and their associated pattern codes (e.g., 10-15C are associated with pattern code 1, 16-20 are associated with pattern 

code 2). For the first iteration (t=0), each sensor (edge) computes and sends its own pattern code to the cluster head (sink) where 

only a unique code is saved. For the following iterations (t>0), each senor computes its new pattern code and compares it with the 

last one. The new value is sent from the sensor (device) to the cluster head (sink) only if its pattern code is different from that of 

the cluster head. Note that both (Mansour E. et al. 2020, Khriji S. et al. 2018) rely on crisp deviation thresholds, and share the 

same limitations of crisp processing mentioned above.  
 

3.3. Discussion 
 
 

To wrap up, we highlight the main issues facing data deduplication methods in connected environments, in light of the main 

challenges considered in our study. Considering challenge 1, most approaches focus on handling redundancies at the edge level 

only (Mansour E. et al. 2020, Li S. et al. 2019) or at the sink (core) level only (Murtadha H. and Sami S. 2016, Mortadha H. and 

Jihad A. 2015, Attigeri G. et al. 2010, Shahri H. and Barforush A. 2004). Very few methods address both edge and sink data 

redundancies (Ismael W. et al. 2019, Papageorgiou A. et al. 2015, Patil P. and Kulkarni U. 2013), and they do so in specific 

scenarios. For instance, in (Khriji S. et al. 2018), the authors consider clusters of geographically neighboring sensors that elect 

cluster heads (as sink nodes) where deduplication takes place. However, this design choice is not necessarily applicable when sink 

nodes are not bound by geographic proximity (e.g., temperature sensors in different building floors can be connected to the same 



sink, however this does not mean that data from all these sensors can be considered for deduplication). Considering challenge 2, 

most existing solutions consider the case of static (stationary) devices only and disregard mobile devices (Ismael W. et al. 2019, 

Li S. et al. 2019, Papageorgiou A. et al. 2015, Patil P. and Kulkarni U. 2013). Only one approach provided in (Mansour E. et al. 

2020) handles device mobility, considering data measurement location (in the form of spatial-temporal redundancies). Yet, the 

authors in (Mansour E. et al. 2020) do not address zone separations (hard/soft) and device coverage areas (coverage radius). 

Considering challenge 3, most existing works focus solely on the network or device properties in designing their deduplication 

solutions, and perform crisp deduplication processing using crisp evaluation thresholds, thus providing minimum-to-no expert 

intervention or adaptability when eliminating redundancies. 

 

4. FREDD Framework 
 

To address the aforementioned challenges, we introduce FREDD: a new framework for Fuzzy Redundancy Elimination for Data 

Deduplication in a connected environment. FREDD detects data duplicates at both edge and sink levels (criterion 1), considers 

data redundancies from static and mobile devices with varying boundaries and coverage areas (criterion 2), and combines simple 

natural language rules with a fuzzy inference mechanism designed to adapt the deduplication process following the expert’s needs 

(criterion 3). FREDD’s core architecture for edge-level deduplication is depicted in Fig. 1. It consists of six main modules: i) 

sensor data representation which defines the spatial and temporal representations of data measurements/items, ii) measurement 

separation which separates the input data into measurement-based data collections, iii) pattern code generation which associates 

data items with pattern codes based on expert-defined lookup tables, iv) duplicate candidate filtering which determines whether 

data items are candidates for fuzzy duplication, v) fuzzy redundancy detection which identifies duplicate data items using fuzzy 

reasoning based on expert-defined condition-action rules, and vi) redundancy removal which eliminates redundant data items 

and produces deduplicated data. We describe each of the latter modules for edge-level deduplication in the following sub-sections. 

FREDD’s handling of sink-level deduplication use-cases is subsequently described in Section 5. 

 

   

 

 

Figure 2. Simplified diagram describing FREDD's core architecture 

 

4.1. Sensor Data Representation 
 

Connected environments contain diverse devices each embedding one or more sensors that provide data from the real world. Static 

devices are immobile; therefore, the data generated by such devices can be redundant temporally. However, mobile devices produce 

data while moving around the environment, which potentially generates spatial-temporal redundancies. Here, we adopt a set of 

formal definitions from (Mansour E. et al. 2020) that allow us to describe data items following both temporal and spatial 

dimensions (cf. criterion 2). 

 
Definition 1 - Data Items:  A data item d is defined as a 5-tuple: 
 

d = m ; v ; t ; l ; s (1) 

 

where m is the data measurement, v is the data value, t is the creation temporal stamp of d (cf. Definition 2), l is the creation 

location stamp of d (cf. Definition 3), and s is the data source that sensed/created d  

 
Definition 2 - Temporal Stamp:  A temporal stamp t is defined as a single discrete temporal value represented as a 2-tuple: 
 

t = format ; value (2) 

 

where format is a string indicating the format of the date-time value of t (e.g., "dd-MM-yyyy hh:mm:ss"), and value is the 

timestamp value (e.g., 10-11-2020 15:34:23 following the sample time format mentioned above)  
 

Definition 3 – Location Stamp:  A location stamp l is defined as a discrete and instantaneous location value represented as a 2-

tuple: 

l = format ; value 

 

(3) 

where format is the location referential format of the location value (e.g., default GPS, or Cartesian, Spherical, Cylindrical), and 

value = x ; y ; z is a discrete and instantaneous value where x, y, and z designate individual coordinate values (the coordinates 

can be translated into the referential of choice following the designated format)  



Table 1 shows the representation of sample sensory data after being sensed/produced by an edge device (source) S1 embedding 

two sensors producing humidity and temperature measurements respectively. 

 
Table 1. Sample sensory data items 

 

Measurement m Value v 

Time stamp 𝒕 Location stamp l 

Source s 
format value  format 

value  

x y z 

Humidity 92 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian 1 2 3 S1 

Temperature 16 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian 2 5 3 S1 

Humidity 94 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 4 2 7 S1 

Temperature 19.5 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 5 6 3 S1 

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 Cartesian 8 6 3 S1 

Humidity 103 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 5 2 7 S1 

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 8 6 3 S1 

Humidity 104 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 Cartesian 7 2 7 S1 

 
4.2. Measurement Separation 
 

Since the device can embed various sensors, its internal memory might store different measurements (i.e., features such as humidity 

and temperature in Table 1). Therefore, in order to detect redundancies in the data stored locally on the edge device, we start by 

filtering the data into collections having the same measurements. To illustrate the measurement filtering process, the data shown 

in Table 1 produces two distinct data collections: the first for humidity data (first four tuples - cf. Table 2), and the second for 

temperature data (containing the last tuples). Consequently, the measurement data collections are processed separately for data 

deduplication. Note that the domain expert decides about the selection of measurements to be processed for deduplication. 

 

Table 2. Data collections produced following the measurement separation of the data from Table 1 
 

a. Humidity data collection 

Measurement m Value 𝒗 

Time stamp 𝒕 Location stamp l 

Source 𝒔 
format value format  

value  

x y z 

Humidity 92 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian 1 2 3 S1 

Humidity 94 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 4 2 7 S1 

Humidity 103 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 5 2 7 S1 

Humidity 104 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 Cartesian 7 2 7 S1 

 

b. Temperature data collection 
 

Measurement m Value 𝒗 
Time stamp 𝒕 Location stamp l 

Source 𝒔 
format value format  

value  

x y z 

Temperature 16 C  dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian 2 5 3 S1 

Temperature 19.5 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 5 6 3 S1 

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 Cartesian 8 6 3 S1 

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 8 6 3 S1 

 
4.3. Pattern Code Generation 
 

4.3.1. Value Pattern Codes 
 

The pattern code generation module transforms ranges of data item values for a given measurement (e.g., humidity, temperature) 

into interval values that are defined based on reference lookup tables. Edge and sink devices handling the same measurements refer 

to the corresponding measurement lookup tables (e.g., humidity lookup table, or temperature lookup table), where lookup tables 

are created based on expert preferences or application requirements. Here, we distinguish between two kings of lookup tables 

allowing: i) disjoint data ranges, and ii) intersecting data ranges. 

 

 

 
 

 



Table 3. Sample disjoint value lookup tables for humidity and temperature measurements, 

considering ranges 90-110 µg/m 4 and 15-28 C respectively 
 

a. Disjoint humidity data ranges b. Disjoint temperature data ranges 
 

Interval 

values 

[90, 96] 

µg/m3 

]96, 104] 

µg/m3 

]104, 110] 

µg/m3 

Pattern  

code 
H1 H2 H3 

 

 

Interval 

values 

[15-19] 

C 

]19-24] 

C 

]24-28] 

C 

Pattern 

code 
T1 T2 T3 

 

 

Table 4. Sample intersecting value lookup tables for humidity and temperature 

measurements, considering ranges 90-110  µg/m3 and 15-28 C respectively  
 

a. Intersecting humidity data ranges b. Intersecting temperature data ranges 
 

Interval 

values 

[90, 98]  

µg/m3 

[94, 106] 

µg/m3 

[102, 110] 

µg/m3 

Pattern 

code 
H1 H2 H3 

 

 

Interval 

values 

[15-20]  

C 

[18-25]  

C 

[23-28]  

C 

Pattern 

code 
T1 T2 T3 

 

 

Disjoint data ranges (cf. Table 3) allow simple pattern code generation, yet they produce disconnected pattern codes where values 

on the range boundaries might be misrepresented (e.g., it is not clear which pattern code can be assigned with values 96.2 µg/m3 

or 104.7 µg/m3 following Table 3). Intersecting data ranges (cf. Table 4) allow the generation of combined pattern codes when the 

target value belongs to more than one range (e.g., humidity values 103, 104, and 105 µg/m3 belong to both H2 and H3 patter codes 

following Table 4).  

In this study, we consider intersecting ranges to allow more efficient processing (duplicate candidate filtering, cf. Section 4.4) 

and more accurate data deduplication (fuzzy redundancy detection, cf. Section 4.5) 

 

4.3.2. Zone Pattern Codes 
 

In case data measurements are produced by mobile sensors (e.g., mobile phones, car sensors), deciding if a pair of data is duplicate 

or not will involve an extra step: making sure that the two data items are sensed in the same location zone (i.e., in close proximity). 

Here, we consider that mobile measurements taken at separate location zones represent separate data items, and will not be 

considered for deduplication. To this end, we introduce zone lookup tables which organize location zones within a connected 

environment. Our pattern code generation module transforms ranges of location stamps for a given measurement into interval 

location stamps that are defined based on the zone lookup tables. Edge and sink devices handling the same measurements refer to 

the corresponding zone lookup tables, where zones can be defined at the level of the network as a whole, or at the level of individual 

sink or edge nodes, based on the expert and application needs. Table 5 shows a sample zone lookup table describing a sample 

zoning in our smart hospital example shown in Figure 3, where each zone is associated a non-intersecting set of location stamps. 

Note that a zone can take any shape and size based on the expert and application needs. 

 

 
 

Figure 3. Zone divisions in our smart connected hospital motivation example (cf. Section 2.1) 

 
Table 5. Zone lookup table for Sinkleft in the smart connected hospital example from Figure 3 

Interval values {p1, …, pk} {pk+1, …, pm} {pm+1, …, pn} {pn+1, …, po} {po+1, …, pp} 

Label 
Drug Storage 

Room 
Nursery ICU Room1 ICU Room2 Hallway 

Pattern code Z1 Z2 Z3 Z4 Z5 

 

 
4 Microgram Per Cubic Meter 



Table 6. Zone lookup table for SinkRight in the smart connected hospital example from Figure 3 

Interval values {pp+1, …, pq} {pq+1, …, pr} {pr+1, …, ps} {ps+1, …, pt} {pt+1, …, pu} 

Label Cubicle Zone4 Cubicle Zone3 Cubicle Zone 1 Cubicle Zone2 Hallway 

Pattern code Z6 Z7 Z8 Z9 Z10 

 
4.3.3. Combined Pattern Codes 
 

For every data item to be deduplicated, our pattern code generation module produces one (or more) value pattern code(s) and a 

zone pattern code based on the reference value and zone lookup tables, and then combines them into value-zone pattern code(s) 

as shown in Table 7 (cf. Algorithm 1 in Figure 4). The value-zone codes are used for fast duplicate candidate filtering as described 

in the following section. 
 

Table 7. Value, zone, and combined pattern codes for sample data from Table 1. 
 

a. Humidity data collection 
 

Measurement m Value 𝒗 
Value 

Pattern 

Code 

Time stamp 𝒕 Location stamp l Zone 

Pattern 

Code 

Combined 

Pattern Code 
Source 𝒔 

format  value  format  
value  

x y z 

Humidity 92 µg/m3 {H1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian 1 2 3 Z1 {H1_Z1} S1 

Humidity 94 µg/m3 {H1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 4 2 7 Z5 {H1_Z5} S1 

Humidity 103 µg/m3 {H2,H3} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 5 2 7 Z5 {H2_Z5, H3_Z5} S1 

Humidity 104 µg/m3 {H2,H3} dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 Cartesian 7 2 7 Z5 {H2_Z5, H3_Z5} S1 
 
 

b. Temperature data collection 
 

Measurement m Value 𝒗 
Value 

Pattern 

Code 

Time stamp 𝒕 Location stamp l Zone 

Pattern 

Code 

Combined 

Pattern Code 
Source 𝒔 

format  value  format  
value  

x y z 

Temperature 16 C {T1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian 2 5 3 Z2 {T1_Z2} S1 

Temperature 19.5 C {T1,T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 5 6 3 Z4 {T1_Z4, T2_Z4} S1 

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 Cartesian 8 6 3 Z4 {T2_Z4} S1 

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 8 6 3 Z4 {T2_Z4} S1 

 

4.4. Duplicate Candidate Filtering 
 

Since sensor data items are produced and ordered per sensing time stamp, each data item to be deduplicated is evaluated with its 

previous one to check if the data is duplicate or not. Our duplicate candidate filtering algorithm is depicted in Figure 4. It accepts 

as input two consecutive data items and produces as output a decision of whether the data items are duplicates, non-duplicates, or 

candidates for deduplication, based on the following rules: i) if two data items share one value-zone pattern code, then they are 

considered duplicates (cf. Figure 4, lines 4-5), ii) if the data items share one or more value-zone pattern codes, they are considered 

as candidates for deduplication (cf. Fig. , lines 6-7), and iii) if the data items do not share any value-zone pattern code, they are 

considered as non-duplicates (cf. Figure 4, lines 8-9), 

Table 8 shows the output of the filtering algorithm applied on the input data from Table 7, where 6 data items are identified 

as either duplicates/non-duplicates, such that 2 of the original 8 items need to be further considered for fuzzy deduplication. 

Depending on the data patterns generated in the target connected environment, duplicate filtering can significantly reduce the 

number of data items to be processed for fuzzy redundancy detection, thus significantly improving overall processing performance 

especially at the device level (cf. experimental results in Section 7). 

 
Algorithm 1 – Duplicate Candidate Filtering 

Input: DataItem1, DataItem2 
Output: DeduplicationStatus 

Begin 
1 pattern1  pattern code for DataItem1 
2 pattern1  pattern code for DataItem2 
3 interLen  length of intersection between DataItem1 and DataItem2 
4 if (pattern1 = pattern2) and (interLen =1) then 
5 DeduplicationStatus  Duplicates 
6 else if interLen > 1 then 
7 DeduplicationStatus  Candidates 
8 else 
9 DeduplicationStatus  NotDuplicates 

End 
 

Figure 4. Pseudocode of our duplicate candidate filtering algorithm 



Table 8. Output of the filtering algorithm applied on input data from Table 7 

 

 
 

a. Humidity data collection 
 

Measurement m Value 𝒗 
Value 

Pattern 

Code 

Time stamp 𝒕 Location stamp l Zone 

Pattern 

Code 

Combined 

Pattern Code 
Source s 

format  value  format  
value  

x y z 

Humidity 92 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian 1 2 3 Z1 {H1_Z1} S1 

Humidity 94 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 4 2 7 Z1 {H1_Z1} S1 

Humidity 103 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 5 2 7 Z5 {H2_Z5, H3_Z5} S1 

Humidity 104 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 Cartesian 7 2 7 Z5 {H2_Z5, H3_Z5} S1 

 

b. Temperature data collection 
 

Measurement m Value 𝒗 
Value 

Pattern 

Code 

Time stamp 𝒕 Location stamp l Zone 

Pattern 

Code 

Combined 

Pattern Code 
Source s 

format  value  format  
value  

x y z 

Temperature 16 C {T1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian 2 5 3 Z2 {T1_Z2} S1 

Temperature 19.5 C {T1,T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 5 6 3 Z4 {T1_Z4, T2_Z4} S1 

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 Cartesian 8 6 3 Z4 {T2_Z4} S1 

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 8 6 3 Z4 {T2_Z4} S1 
                  

 

4.5. Fuzzy Redundancy Detection 
 

4.5.1. Fuzzy Inference Agent 
 

The fuzzy redundancy detection module’s overall process is shown in Figure 5. It is designed as a fuzzy agent which accepts as 

input data items that are candidates for redundancy detection, and then produces as output their deduplication status (i.e., duplicates 

or non-duplicates).  
 

 
 

Figure 5. Simplified diagram describing the fuzzy redundancy detection module’s overall process 

 

Fuzzification: First, the scalar data item values are fuzzified, producing linguistic values associated with fuzzy membership 

degrees (e.g., humidity value 103 µg/m3 becomes 75%H2 and 25% H3 following Figure 6). The fuzzy partitions for every 

measurement are defined based on the corresponding lookup table ranges, where the fuzzy membership functions can be defined 

following the expert and application needs. Figure 6.a and b show the fuzzy partitions for humidity and temperature measurements 

which we adopt in our motivating scenario5. The same partitions are utilized to fuzzify both input data values associated with the 

same measurement. The output deduplication status variable represents a percentage value, and is depicted in Figure 6.c using one 

membership function varying from 0-to-100% duplication. 
 

 

 
 

 

 
 

 

 
 

a. Input humidity fuzzy partitions, cf. Table 4.a b. Input temperature fuzzy partitions, cf. Table 4.b c. Output deduplication status fuzzy partitions 
 

Figure 6. Input humidity and temperature fuzzy partitions, and output deduplication status fuzzy partitions defined using the trapezoidal 

function following the lookup tables in Table 4 

 

 
5 In this example, we adopt trapezoidal functions, yet any other function can be used (e.g., triangular, sinusoidal, or Gaussian) based on domain expert and application needs. 
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Condition-action rules: As for the fuzzy agent’s condition-action rules, they reflect the common sense logic applied by an 

domain expert to determine whether two data items are duplicates or not, based on their measurement’s look-up tables. We provide 

below the set of condition-actions rules that we define for the humidity and temperature measurements following our application 

scenario: 
 

Rule 1.   IF  (Humidity_DataItem1 is H1)  AND  (Humidity _DataItem2 is  H1) THEN  DedupStatus is Duplicate 

Rule 2.   IF  (Humidity_DataItem1 is H2)  AND  (Humidity _DataItem2 is  H2) THEN  DedupStatus is Duplicate 

Rule 3.   IF  (Humidity_DataItem1 is H3)  AND  (Humidity _DataItem2 is  H3) THEN  DedupStatus is Duplicate 
 

Rule 4.   IF  (Temp_DataItem1 is T1)  AND  (Temp_DataItem2 is  T1) THEN  DedupStatus is Duplicate 

Rule 5.   IF  (Temp_DataItem1 is T2)  AND  (Temp_DataItem2 is  T2) THEN  DedupStatus is Duplicate 

Rule 6.   IF  (Temp_DataItem1 is T3)  AND  (Temp_DataItem2 is  T3) THEN  DedupStatus is Duplicate 
 

Inference: Fuzzy inference consists in applying the concerned condition-action rules on the fuzzified data in order to produce 

fuzzy outputs. The logical connectors in the condition-action rules are translated into mathematical formulas that operate on the 

fuzzy data. For instance, the AND fuzzy logic operator can be any t-norm function, including min (minimum) which is commonly 

adopted in the literature. Also, THEN can be a number of inference functions including Zadeh’s implication (traditional Boolean 

implication formula), Mamdan’s implication (a simplified version of Boolean implication, cf. Formula 4), or Larsen’s implication 

(which comes down to a form of arithmetic multiplication) (Ross T. J. 2016). In our agent, we adopt Mamdani’s implication 

operator as the default inference function given its common usage in the literature (Salloum G. and Tekli J. 2021, Bouchon-Meunier 

B. et al. 2003). Yet the aforementioned inference formulas are available through the implemented system, and can be activated 

following the expert’s preferences. 
 

Aggregation: It allows grouping the outputs of multiple inference operations executed on multiple condition-action rules, in 

order to produce on single fuzzy output result. Multiple mathematical operations can be utilized to simulate fuzzy aggregation, 

including maximization (aggregating by electing the fuzzy result with the highest membership degree), bounded sum (aggregating 

by summing the fuzzy membership degrees of the different results, as long as the sum does not surpass 100% membership), and 

weighted sum (assigning different weights to different inference results, highlighting the importance of different condition-action 

rules on the decision making process). In our agent, we adopt the maximization aggregation function (Formula 5) given its common 

usage in the literature (Salloum G. and Tekli J. 2021, Ross T. J. 2016). Yet any aforementioned formula can be utilized following 

the expert’s preferences. 
 

Deduplication: It allows transforming the fuzzy output produced by the aggregation function into a crisp output that represents 

the final result of the agent. Multiple mathematical operations can be used to perform defuzzification, including center of gravity 

(using the barycenter formula to pinpoint the crisp center of the fuzzy aggregated result), maximum to the left (choosing the smallest 

crisp value from the aggregated result that has the highest membership degree), and maximum to the right (choosing the highest 

crisp value that has the highest membership degree). In our agent, we adopt center of gravity (Formula 6) given its common usage 

in the literature (Salloum G. and Tekli J. 2021, Ross T. J. 2016). Yet any aforementioned formula can be utilized following the 

expert’s preferences.  
 

Note that our framework is flexible in allowing experts to apply other fuzzy inference, aggregation, or defuzzification functions 

of their choosing. 

 
Mamdani’s implication: 
 

Given fuzzy sets f1, f2 : 
 

f1  Mamdani f2     f1  f2   min(f1, f2) 
 

where  is the AND fuzzy logic operator6 

 

 

 

(4) 

Maximization aggregation: 
 

Given fuzzy sets f1, f2, …, fn:  
 

Fagg= FMax = max(f1, f2, …, fn) 

 

 

 

 

(5) 

Center of gravity defuzzification: 
 

Given aggregate fuzzy set FAgg: 
 

× ×

×

  ( )  

( )  

agg

agg

x F x dx
x

F x dx




=

 

 

 

 

(6) 

 

4.5.2. Computation Example 
 

We consider in Table 8 two cases for humidity and temperature measurements studied in our motivation scenario. The detailed 

computation process for humidity is described in Figure 7. A similar computation process for temperature is provided in the 

appendix. For the humidity case, the agent recommends that input 103 µg/m3 and 104 µg/m3 data values are duplicates with a 76% 

fuzzy membership degree, which seems reasonable given the humidity lookup tables and value ranges defined in Table 4 (H2 and 

H3 fuzzy partitions intersect between [102, 106] µg/m3, where 103 is much closer to the 102 µg/m3  boundary of H2 than to the 

106 µg/m3 boundary of H3, but also 103 µg/m3 and 104 µg/m3 are close to each other). Similarly for the temperature case, the 

agent recommends that the inputs 19.5C and 21C are 78.2% duplicates which seems accurate following the temperature lookup 

tables and ranges defined in Table 4 (T1 and T2 fuzzy partitions intersect between [18, 20] C, where 19.5 is closer to the 20 C 

 
6  The AND fuzzy logic operator can be any t-norm function, including min which is commonly adopted in the literature. 



boundary of T2 than to the 18 C boundary of T1). The fuzzy inference agent produces recommendations that simulate the domain 

expert’s deduplication capability, and behaves following the expert’s design choices and needs (cf. experiments in Section 7). 

Given our running example data from Table 8, the identified humidity and temporal redundancies following the fuzzy 

redundancy detection process are shown in Table 9. 

 
 

 

1. Fuzzification: Given case 1’s input data: Humidity_DataItem1 = 103 µg/m3 and Humidity_DataItem2 = 104 µg/m3, we 

compute the corresponding fuzzy membership values following the humidity fuzzy functions in Figure 6.a (reported below): 
 

 

- For Humidity_DataItem1:  

fH1 (103) = 0, fH2 (103) = 0.75, and fH3 (103) = 0.25        

 

 

- For Humidity_DataItem2: 

fH1 (104) = 0, fH2 (104) = 0.5, and fH3 (104) = 0.5 

 
 

2. Condition-Action rules: Based on the input membership values, the following condition-action rules are invoked: 
 

- Rule 2:  H2(Humidity_DataItem1)  ∧  H2(Humidity_DataItem2)  ⇒  Duplicate(DedupStatus)  

- Rule 3:  H3(Humidity_DataItem1)  ∧  H3(Humidity_DataItem2)  ⇒  Duplicate(DedupStatus)  
 

3. Inference: Applying Mamdani’s inference mechanism:  
 

Rule 2:  

Executing the AND fuzzy operator5: 
 

   Humidity_DataItem1 Humidity_DataItem2

H2 H2(103) , (104)  = 0.75, 0.5 0.5min f f min 

 

                             

 

Executing the implication fuzzy operator: 
 

 0.5, (DedupStatus)Rule2f  = min Duplicate  

Rule 3:  

Executing the AND fuzzy operator: 
 

   Humidity_DataItem1 Humidity_DataItem2

H3 H3(103) , (104)  = 0.25, 0.5 0.25min f f min 

 

                             

 

Executing the implication fuzzy operator: 
 

 0.25, (DedupStatus)Rule3f  = min Duplicate            
 

 

 

 
 

 

4. Aggregation By applying the maximization aggregation 

function, Fagg = Fmax = max(fRule2, fRule3), the agent produces 

the fuzzy coverage areas subsumed by the inference 

membership functions (represented in transparent grey 

color in the below graph).  

 

 
 

5. Defuzzification: The center of gravity defuzzification 

function is applied on the fuzzy coverage area to compute 

the corresponding center of gravity point (represented as 

a red dot in the aggregation graph), and then identify the 

corresponding deduplication status (on the x axis) as the 

agent’s output = 76%.    
 

 
 

6. Result: Depending on the domain expert or system deduplication threshold, a decision is made whether the two data items 

are duplicates or not. Given dedupthreshold = 75% in our running example, and since the output of the defuzzification step is 76% 

 dedupthreshold, the agent’s final output becomes: dedupStatus = duplicates 
 

 

 

Figure 7. Fuzzy redundancy detection process for the humidity sample case considered in our running example (cf. Table 8) 

 
4.6. Redundancy Removal 
 

Once redundancies are identified, the redundancy removal process occurs. Here, we propose two redundancy removal modes: i) 

the auto-removal mode summarizes a sequence of redundancies into one representative data item using the median or mean 

representative values; and ii) the expert-centric mode which considers domain expert requests that describe the deduplication 
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requirements/conditions when removing redundancies. Following our running example data from Table 9, the identified humidity 

and temporal redundancies can be removed using the auto-removal median function in Table 10. 

 
 

Table 9. Output of the fuzzy redundancy detection process applied on the running example data from Table 8 
 

a. Humidity data collection 
 

Measurement m Value v 
Value 

Pattern 

Code 

Time stamp 𝒕 Location stamp l Zone 

Pattern 

Code 

Combined 

Pattern Code 
Source s 

format  value  format  
value  

x y z 

Humidity 92 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian 1 2 3 Z1 {H1_Z1} S1 

Humidity 94 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 4 2 7 Z1 {H1_Z1} S1 

Humidity 103 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 5 2 7 Z5 {H2_Z5, H3_Z5} S1 

Humidity 104 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 Cartesian 7 2 7 Z5 {H2_Z5, H3_Z5} S1 

 

b. Temperature data collection 
 

Measurement m Value v 
Value 

Pattern 

Code 

Time stamp 𝒕 Location stamp l Zone 

Pattern 

Code 

Combined 

Pattern Code 
Source s 

format  value  format  
value  

x y z 

Temperature 16 C {T1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian 2 5 3 Z2 {T1_Z2} S1 

Temperature 19.5 C {T1,T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 5 6 3 Z4 {T1_Z4, T2_Z4} S1 

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 Cartesian 8 6 3 Z4 {T2_Z4} S1 

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 8 6 3 Z4 {T2_Z4} S1 

 

Note that domain experts might have different needs for redundancy removal. For instance, a database could require a specific 

amount of data from each device per day (thus affecting the deduplication ratio). An expert could have different requirements 

based on available resources (e.g., high deduplication ratio if resources are low). Similarly, devices and services consuming data 

might have specifications for the redundancy removal process. In order to consider these needs (cf. challenge 3), experts can 

provide their requirements in the form of simple consumer requests that the module translates into redundancy removal rules: 

 
Definition 4 – Consumer Request:  We define a consumer request as a 3-tuple: 
 

req = c_id ; s_id ; P (7) 
 

where c_Id is the consumer (expert or device) identifier, s is the data source (device) identifier, and P is a set of consumer 

preferences for the sensory data produced by the data source. Consumer preferences can be expressed as a 4-tuple:  
 

P = targeta ; freq ; type ;  frep (8) 

   

where targetm is the data measurement targeted by the request (e.g. humidity, temperature), freq is the data consumption frequency 

(expressed in units of time, e.g., per second, every 30 seconds, every hour), type is the deduplication type (expressed in terms of 

required deduplication ratio or percentage, or allowed memory size, CPU consumption, or energy consumption levels during 

deduplication), and frep is the data item representative selection function (including mean, median, minimum, maximum, as well as 

earliest value and latest value based on the data item’s time stamp)   

 
Table 10. Output of redundancy removal using the auto-removal median function applied on the redundant data collections from Table 9 

 

a. Humidity data collection 

Measurement m Value v 
Time stamp 𝒕 Location stamp l 

Source 𝒔 
format value format  

value  

x y z 

Humidity 92 g/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian 1 2 3 S1 

Humidity 103 g/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 5 2 7 S1 
 

b. Temperature data collection 
 

Measurement m Value v 
Time stamp 𝒕 Location stamp l 

Source 𝒔 
format value format  

value  

x y z 

Temperature 16 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian 2 5 3 S1 

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 8 6 3 S1 
                                              

 

Duplicate Non-Duplicate 

Duplicates 

Duplicates 

Duplicates 



Figure 8.a shows a sample consumer request where the expert requires a specific deduplication ratio from a given device. 

Figure 8.b shows the deduplicated data based on the consumer request, considering the running example data from Table 9. 

 

 

Measurement m Value 𝒗 

Time stamp 𝒕 Location stamp l 
Source 

𝒔 format value format 
value 

x y z 

Humidity 93 g/m3 
dd/MM/yyyy 

hh:mm:ss 
10/02/2019 

10:01:00 
Cartesian 2.5 2 5 S1 

Humidity 103.5 g/m3 
dd/MM/yyyy 

hh:mm:ss 
10/02/2019 

10:05:30 
Cartesian 6 2 7 S1 

 

a. Sample consumer request b. Redundancy-free data based on the consumer request 
 

 

Figure 8. Sample consumer request, and the resulting redundancy removal based on the running example data from Table 9 

 

5. FREDD Sink-Level Deduplication 
 

As mentioned in the motivation of our study, deduplication in connected environments should/can be evaluated on different levels 

of the network, namely: at the edge level (described in Section 4) and at the sink level, and needs to be adapted for static and 

mobile edge devices with different configurations of hard-separated or soft-separated zones and coverage areas. In this section, we 

describe the different sink-level deduplication use cases and explain how FREDD handles every case.  

 

5.1. Use Cases 
 

Generally, an edge device (made of one or multiple sensors) can cover an observation if it occurs within its coverage area (i.e., 

sensing range), where every event that takes place in this area can be detected by the device. The coverage area of an edge device 

is usually defined by the device manufacturer following its sensor(s) specifications. As for sink devices, their coverage areas are 

usually defined by experts based on the sinks’ connectivity in the environment. A sink device’s coverage area can be defined as 

one or multiple non-overlapping zones, following the network designer’s needs (cf. Figure 9). In addition, sink-level zones can be 

hard-separated or soft-separated. With hard-separated zones, a sensor’s coverage area lies in one single zone from which it can 

collect data (e.g., camera sensors separated by walls, cf. Figure 9.a). With soft-separated zones, a sensor’s coverage area spans 

more than one zone allowing the sensor to collect data from multiple zones simultaneously (e.g., camera sensors separated by glass 

doors, cf. Figure 9.b). 

 

 
 

a. Hard-zone separations b. Soft-zone separations 
 

Figure 9. Examples of sink node coverage areas, with multiple zones including hard and soft separations  

 

As a result, we consider and discuss four different sink-level deduplication use cases summarized in Table 11: i) zone-based 

with hard separations, ii) zone-and-coverage based with hard separations, iii) zone-based with soft separations, and iv) zone-and-

coverage based with soft separations.  
 

Table 11. Sink-level deduplication uses cases 
 

 Considers  
Sink Zones 

Considers Sensor 
Coverage Areas 

Hard Separations 
between Zones 

Soft Separations 
between zones 

Case 1     

Case 2     

Case 3     

Case 4     

 
Note that in this study, we focus on deduplication within individual sink zones, where each sink comprises an independent 

system and there is no deduplication or coordination required between the sinks. Yet, we can extend our scenario to consider inter-

sink collaborations for handling redundancies that occur in overlapping sink zones. This would add a new layer of deduplication 

handling within the connected network environment, which we plan to investigate in a dedicated future study.  

 



5.1.1. Case 1: Zone-based with Hard Zone Separations 
 

In this case, we assume: i) the sink node coverage zones are hard-separated, and ii) data from multiple sensors are considered for 

deduplication if the two sensors are located in the same zone (cf. Figure 9.a where data from sensors S1-and-S2 are considered for 

deduplication, likewise for data from sensors S3-and-S4). While it seems simple and straightforward, yet this use case neglects the 

issue of edge device (sensor) coverage area. In other words, this use case might not be entirely practical, since sensors might be 

located in the same zone but their coverage areas do not overlap (e.g., the case of sensors S3-and-S4). For example, two cameras 

might be located next to each other in the same room, but each camera covers its own corner in the room. In such situations, sensor 

will be producing separate data feeds which are not combined and deduplicated at the sink node, since they describe different 

things. This can be handled in the following use case #2. 

 

5.1.2. Case 2: Zone-and-Coverage based with Hard Zone Separations 
 

In this case, we assume: i) the sink node coverage zones are hard-separated; and ii) data from multiple sensors are considered for 

deduplication if (1) the sensors collect data from the same zone (i.e., their coverage areas are included in the same zone), and (2) 

the sensors’ coverage areas are largely overlapping (e.g., sensors S1-and-S2 in Figure 9.a. For instance, the data feeds of two 

cameras located in the same room and covering largely overlapping areas of the room will be considered for deduplication at the 

sink node. Yet, if the cameras’ coverage areas do not largely overlap, their data feeds will be processed separately and will not be 

considered for deduplication at the sink (cf. sensors S3-and-S4 in Figure 9.a). Deciding whether two coverage areas largely overlap 

or not is done by evaluating the spatial topological relations between the areas (e.g., equal, overlap, and, disjoint, cf. Section 5.2). 

 

5.1.3. Case 3: Zone-based with Soft Zone Separations 
 

In this case, we assume: i) the sink node coverage zones are soft-separated; and ii) data from multiple sensors are considered for 

deduplication if the sensors collect data from the same zone, i.e., if their coverage areas are included in or largely overlap with the 

same zone (e.g., sensors S5-and-S6 and sensors S7-and-S8 in Figure 9.b). Deciding on coverage area-zone inclusion7 and 

overlapping is done by evaluating the spatial topological relations between the areas and the zones (similarly to area-area 

topological relations, cf. Section 5.2). 

 

5.1.4. Case 4: Zone-and-Coverage based with Soft Zone Separations 
 

In this case, we assume: i) the sink node coverage zones are soft-separated; and ii) data from multiple sensors are considered for 

deduplication if (1) the sensors collect data from the same zone (their coverage areas are entirely included in or largely overlap 

with the same zone), and (2) the sensors’ coverage areas are largely overlapping, e.g., sensors S5-and-S6 in Figure 9.b). For 

instance, the data feeds from two temperature sensors collecting data from the same room such that their coverage areas do not 

overlap (e.g., sensors S7-and-S8 in Figure 9.b) will not be considered for deduplication at the sink node. 

 

5.2. Sink-Level Deduplication Process 

 

 
 

Figure 10. FREDD’s sink-level deduplication process 

 

The overall process of sink-level deduplication using FREDD is depicted in Figure 10. We start by performing zone-based edge 

device clustering to group together edge devices (sensors) bellowing to the same zone. These are the sensors located within the 

same hard-separated zones (following cases 1-and-2), or the sensors which coverage areas are included in or largely overlap with 

the soft-separated zones (following cases 3-and-4). Deciding whether an edge device coverage area and a sink device (soft-

separated) zone overlap or not is achieved by evaluating the spatial topological relations between them (e.g., equal, overlap, and, 

disjoint), which comes down to evaluating their geometric similarity in a referential (e.g., Euclidian) geometric space, formally 

(Abebe M. et al. 2020, Taddesse F.G. et al. 2009): 

 
7   Note that inclusion is an asymmetric equality relation which is evaluates based on an asymmetric similarity measure (i.e., area-zone inclusion is evaluated using 

| ( , ) |
( )

| |
ASum

Intersection area zone
Sim area, zone

area
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, where the relation occurs if SimAsym(area, zone)  ThreshInclude e.g., (Abebe M. et al. 2020, Taddesse F.G. et al. 2009). 
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(9.2)  

 

 The amount of overlapping between an area and a zone is controlled by the expert through a dedicated similarity threshold 

(cf. Figure 11.a, e.g., Sim(area, zone)  ThreshOverlap means the sensor coverage area largely overlaps with the sink zone). 
 

  

a. Using a symmetric similarity measure (cf. Formulas 9.1 & 9.2) b. Using an asymmetric similarity measure (cf. Formula 10) 
 

Figure 11. Basic spatial topological relationships following (Abebe M. et al. 2020, Taddesse F.G. et al. 2009) 

 
Similarly, the inclusion relation between and area and a zone is evaluated using an asymmetric version of the geometric 

similarity measure, more formally (Abebe M. et al. 2020, Ehrig M. and Sure Y. 2004): 
 

| ( , ) |
( )

| |
Asym

Intersection area zone
Sim area, zone

area
=  (10) 

 

where the inclusion relation occurs if SimAsym(area, zone)  ThreshInclude (cf. Figure 11.b). 

Consequently, in cases 2-and-4 where edge device coverage areas are taken into account, we perform area-based edge device 

sub-clustering, by evaluating edge device (sensor) coverage area similarity (cf. Formula 9.2) and grouping together edge devices 

having largely overlapping coverage areas. The amount of overlapping between two areas to be considered eligible for sink-level 

deduplication – is controlled by the expert through a dedicated similarity threshold (cf. Figure 11.a, e.g., Sim(area1, area2)  

ThreshOverlap then coverage areas largely overlap and their edge devices are eligible for sink-level deduplication). 

After all edge devices (sensors) have been clustered and sub-clustered following their target use cases, data from the final 

clusters are run separately through the FREDD framework to perform the deduplication process. 

 

6. Complexity Analysis 
 

The overall time complexity of our FREDD approach simplifies to: O(N  E2) where N designates the number of data items 

considered per edge device, and E the number of edge devices considered per sink node. Complexity is evaluated as the sum of 

the complexities of the main modules of FREDD, considered both edge-level and sink-level processing: 

- For edge-level (and sink-level only) deduplication: the complexities of FREDD’s modules are linear w.r.t. the number of 

data items being processed at the edge (or at the sink), and simplify in the worst case scenario to O(N) + … + O(N), which 

comes down to an overall O(N). 

- For edge-and-sink level deduplication: we facture-in: i) the number of edge devices E per sink node, where the system 

requires worst case O(((E(E-1))/2), and simplifies to O(E2) considering all edge nodes are present in the same sink zone and 

need to be compared together pair-wise to identify their coverage area intersections, ii) the number of sink nodes S (i.e., 

number of zones) in the environment, where the system requires worst case O(ES) to compare every edge node with every 

sink zone to identify their area-zone intersections. As a result, FREDD’s overall complexity when performing edge-and-sink 

level deduplication comes down to O(N  (E2 + ES)) which simplifies to  O(N  E2) since E is generally much larger than S. 

 

7. Experimental Evaluation 
 

We have implemented our FREDD framework as a web-based application, using methods from the jFuzzyLogic open source library 

(Cingolani P. and Alcalá-Fdez J. 2013, Cingolani P. and Alcala-Fdez J. 2012) in implementing our fuzzy logic agent, to allow easy 

manipulation for domain experts in operating and evaluating the system8. We have empirically tested the different components of 

our system using multiple sets of experiments which we categorize in two main groups: i) quality evaluation: comparing 

deduplication accuracy, data reduction ratio, size of transmitted data, and size of stored data in order to evaluate deduplication 

quality, and ii) performance evaluation: comparing the time performance of the different components of the system, in order to 

evaluate its time complexity. We first start by describing our test data and experimental metrics, before we present our empirical 

results. The system implementation, experimental datasets, and test results are available online9. 

 

 
8  On the server-side, we adopt a three-layer architecture consisting of: i) a Web API layer that allows client-side applications to communicate with the server to request data, 

services and to define all the domain expert parameters such as the deduplication threshold, the value and zone lookup tables, the different fuzzy parameters, etc.; ii) a 

Business Logic layer where FREDD’s main decision making processes are implemented based on the different parameters the expert provided; and iii) a Data Access layer 

where data storage and retrieval take place. Every layer is internally designed in a modular way to allow for separate testing and evaluation of every module.  
9   http://sigappfr.acm.org/Projects/FREDD/ 
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7.1. Experimental Test Data 
 

We build three datasets for edge device, mobile device, and sink device measurements collected from the Intel Lab Berkeley 

dataset (Bodik P. et al. 2019) obtained from 54 Micra2Dot sensors depicted in the Figure 12. Sensors provide weather data 

including temperature, humidity, light, (and voltage at the time of the sensor reading), as well as the list of Cartesian coordinates 

for each of the 54 sensors, and the time when each data measurement is collected. We consider humidity and temperature 

measurements in our experimental evaluation and describe our datasets below: 
 

- Dataset 1: Static edged device dataset – It consists of 20k humidity and temperature data measurements collected from 

sensor S1 on 28/2/2004.   

- Dataset 2: Mobile edge device dataset - We assume a mobile device M1 and construct its dataset from the static 

Micra2Dot sensors as follows: i) humidity and temperature data for M1 is collected from nine sensors: S1-to-S4 and S6-

to-S10 between 28/2/2004 and 29/2/2004, ii) data collected from all these sensors is first ordered chronologically by date 

and time, and then filtered to simulate the following path of the mobile sensor (S1  S2  …  S9  S10  S9  

S8… S1), iii) mobile sensor M1 collects from each location a random number of data measurements10, resulting in a 

dataset of 3,416 entries. The resulting dataset simulates the behavior of a mobile sensor where the location of each data 

measurement is that of the source static sensor collecting it in the Micra2Dot schematic. 

- Dataset 3: Sink device dataset – We assume a sink device Sink1 and construct its dataset from the static Micra2Dot 

sensors as follows: i) humidity and temperature data for Sink1 is collected from the following nine sensors (used 

previously to create Dataset 2): S1-to-S4 and S6-to-S10 between 28/2/2004 and 29/2/2004, ii) data is ordered 

chronologically by date and time  producing a dataset of 31,135 data entries. The resulting dataset simulates the behavior 

of a sink device collecting data from 9 different edge devices, where the location of each data measurement is that of the 

source static sensor collecting it in the Micra2Dot schematic. 

 

 
 

Figure 12. Schematic of the Intel Lab Berkeley Micra2Dot sensors 
 

7.2. Evaluation Metrics 
 

We utilize four evaluation metrics to evaluate FREDD’s deduplication effectiveness. At the edge device, we utilize i) deduplication 

accuracy, and ii) data reduction percentage; and at the sink device, we add two more metrics: iii) size of transmitted data, and iv) 

size of stored data. We describe the four metrics below. 

 

Deduplication accuracy is defined as a time series similarity between the original data and the deduplicated data, after 

modifications have been applied on the deduplicated data set in order to reconstruct a set that has the same dimension (length) of 

the original one (Ismael W. et al. 2019). More formally, given TSo = [(t1,vo_1), (t2, vo_2 ), …,  (tn, vo_n)] as the time series 

representation of the original data where n is the length of the data, and TSd = [(t1, vd_1 ); (t2, vd_2 ), …,  (tm, vd_m)] as the time series 

representation of the deduplicated data where m is the length of the deduplicated data such that m < n and TSd   TSo, we generate 

TSr = [(t1, vr_1), (t2, vr_2 ), …,  (tn, vr_n)] as the reconstructed time series from the deduplicated data where the missing (deduplicated) 

values are padded to reach the same dimensionality of the initial data. For instance, given TSo = [(t0, 16C), (t1, 19.5 C), (t2, 21C), 

(t3, 21C)] and TSd = [(t0, 16 C), (t3,  21 C)], then TSr =[(t0, 16C), (t1, 21C), (t2,  21 C), (t3, 21 C)] where the missing values 

 
10 We use a random integer between 1 and 5, where a small integer will increase the chance of changing zone pattern codes between two consecutive data 

measurements, emphasizing the idea of mobility. 



at t1 and t2 have been padded by the deduplicated value at t0. Consequently, deduplication accuracy is measured as the Jaccard 

similarity coefficient between the original time series and the reconstructed (same dimensionality) time series as follows: 
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(11) 

 

A good deduplication solution would produce a higher similarity between the original data and the reconstructed data, resulting in 

higher deduplication accuracy. 

 

Data reduction ratio represents the amount of data that has been eliminated as a result of applying the deduplication process. 

More formally, it is defined as the ratio of the difference between the original data and the duplicated data: 
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(12) 

 

where |TSo| represents the size of the original data, |TSd | the size of the deduplicated data, and | | | |

| |

o d

o

TS TS

TS

  the data saving ratio. 

A good deduplication solution would produce a lower data saving ratio (i.e., smaller difference between original and deduplicated 

data size), resulting in a higher data reduction ratio. 

 

Size of transmitted data (|datatrans|) represents the size of the data transmitted from the edge devices to the sink device. A good 

deduplication solution would reduce both the size of data transmitted over the network in order to gain in network bandwidth. 

 

Size of stored data (|datastored|) represents the size of the data stored at the sink device11. A good deduplication solution would 

reduce the size of the data stored at the sink in order to gain in processing efficiency, speed, and throughput at the sink level. 

 

7.3. Quality Evaluation 
 

We conduct multiple sets of experiments to evaluate FREDD’s deduplication effectiveness considering various parameters and 

use case scenarios, evaluating: i) data range overlap size, ii) fuzzy deduplication threshold, iii) sink zone granularity, iv) number 

of edge devices connected to the sink, and v) sensor coverage area size. We also conduct a vi) baseline comparison evaluating 

FREDD’s deduplication quality compared with its most recent alternatives. We describe the experiments and their results in the 

below sub-sections.  

 

7.3.1. Data Range Overlap Size evaluation 
 

In this experiment, we evaluate the behavior of FREDD’s fuzzy redundancy detection process when varying the size of the data 

overlap between boundary value ranges. This allows the domain expert to easily update the fuzzy membership functions according 

to the size of the boundary overlapping, and thus allows more flexibility in fine-tuning the solutions’ behavior following the 

expert’s needs (cf. challenge 3 from our motivation scenario). We consider four different pattern code fuzzy membership functions 

as shown in Figure 13: i) rectangular functions with no overlapping boundaries amounting to 0% fuzzy computation, ii) trapezoidal 

functions with small overlapping boundaries amounting to 30% fuzzy computation.  iii) trapezoidal functions with large 

overlapping boundaries amounting to 50% fuzzy computation, and iv) triangular functions with completely overlapping boundaries 

amounting to 100% fuzzy computation. Deduplication accuracy and data reduction ratio results, applied on static edge data from 

dataset 1, are shown in Figure 14. Results show that: i) deduplication accuracy (acc) increases and ii) reduction ratio (redu) 

decreases when the overlap size between boundary ranges increases. On the one hand, an increase in boundary overlapping leads 

to more fuzzy duplicate candidates being evaluated and detected by the system. This leads to higher acc since the deduplicated 

values resulting from the fuzzy process will be closer to the original data values within the overlapping boundaries (compared with 

performing a crisp decision making where the deduplicated values are restricted to the crisp boundaries, which are naturally farther 

away from the original data values within those boundaries). On the other hand, an increase in fuzzy processing leads to a lower 

redu since larger fuzzy ranges allow more candidate data to be considered for redundancy check. This leads to an increase in the 

amount of data considered for processing and persisting after the deduplication process (in contrast, a larger amount of data that is 

directly deduplicated following the crisp approach produces a leaner deduplication result, albeit with less accuracy compared with 

the original data). 
 

 
11  We follow the typical sensor network setup where edge devices do not perform any long-term data storage. 



      
a. Rectangular with 0% overlap                                                                      b. Trapezoidal with 30% overlap 

 

    
 

c. Trapezoidal with 50% overlap                                                                        d. Triangular with 100% overlap 
 

Figure 13. Different humidity pattern code fuzzy membership functions with different boundary range overlapping sizes 

  
a. Deduplication accuracy (acc)  b. Data reduction ratio (redu) 

 

Figure 14. Acc and redu results when varying the overlapping size of boundary data ranges 

 

7.3.2. Fuzzy Deduplication Threshold evaluation 
 

In this experiment, we vary the fuzzy deduplication threshold, allowing the fuzzy redundancy detection process to decide on the 

deduplication status of candidate data items, and evaluate FREDD’s behavior accordingly. We perform this experiment at both 

edge node and sink node levels (cf. challenge 1 from our motivation scenario), and consider the impact of device mobility on the 

deduplication process (cf. challenge 2). This allows the domain expert to choose a suitable deduplication threshold in order to 

achieve the desired accuracy and deduplication ratio following the expert’s needs (cf. challenge 3). Figures 15 and 16 show the 

results of deduplication quality metrics when applied on static edge data from dataset 1 (Figure 15.a), and on mobile edge data 

from dataset 2 (Figure 15.b), by varying the deduplication threshold. For both cases, when the threshold increases: i) acc increases 

while ii) redu decreases. This is due to the fact that a higher deduplication threshold means less candidate pairs are considered for 

duplication. We notice a similar behavior in Figure 16, which shows the results of deduplication quality metrics considering sink 

device data from dataset 3. Here, we highlight the following observations: 
 

- While acc increases and redu decrease when increasing the threshold for the different deduplication methods, we note that 

the redu is relatively higher when deduplicating at both the edge-and-sink level, compared with edge-only and sink-only 

deduplications. 

- The size of data transmitted to the sink (|datatrans|) and the size of data stored at the sink (|datastored|) are both increased with 

the increase in deduplication threshold. This is mainly due to the decrease in redu, resulting in more data being sent and 

processed at the sink node.  
- |dataTrans| levels are equal when deduplicating at edge-only and at edge-and-sink, and is less than the |dataTrans| level when 

deduplicating at sink-only, since data in the latter case are sent directly from the edge to the sink without edge-level 

deduplication. 
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- |dataStored| is smallest in case of deduplication at edge-and-sink, compared with edge-only and sink-only, since deduplication 

is performed at two levels.   
 

Note that fine-tuning and optimizing the evaluation metric values can be handled automatically as a multi-objective 

optimization problem. This can be solved using a number of known techniques that apply linear programming and machine learning 

to identify the best weights for a given problem class, e.g., (Zou F. et al. 2021, Gal A. et al. 2016, Hopfield J. J. 1989). We do not 

further discuss evaluation metric optimization here since it is out of the scope of this paper, and we report it to a dedicated future 

study. 
 

          
 

a. Resuls with static device data from dataset 1 b. Resuls with mobile device data from dataset 2 
        

Figure 15. Acc and redu results with varying fuzzy deduplication thresholds  
  

                    
 

 
 

 

 

           a. Deduplication accuracy (acc) 

 

 

b. Data reduction ratio (redu) 

 
 

 

 

 
 

c.    Size of data transmitted to the sink (|dataTrans|) d.    Size of data stored at the sink (|dataTrans|) 
 

Figure 16. Deduplication quality metrics obtained with varying fuzzy deduplication thresholds 

 

7.3.3. Sink Zone Granularity evaluation 
 

In this experiment, we evaluate the impact of sink zone granularity on the deduplication process. Consider the sample zone 

granularity configurations shown in Figure 17. We first consider the area shown in Figure 17.a as one single zone including 9 

sensor devices, and then gradually divide it into smaller non-overlapping zones: 2, 3, 5, and 9 zones respectively (Figures 17.b-to-

f). We perform this experiment considering deduplication at the edge and sink levels (cf. challenge 1 of our motivation scenario), 

and deduplication with static and mobile devices (cf. challenge 2). It also highlights the domain expert’s ability to divide the 

connected environment into different sink zone granularities in order to achieve the desired behavior based on the expert and 

application needs (cf. challenge 3).       
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a. One single sink zone b. Two sink zones c. Three sink zones 

 

 

 
 

 

 e. Five sink zones f. Nine (individual device) sink zones  
 

Figure 17. Sample sink zone granularities using an extract of our reference Micra2Dot dataset (cf. Figure 12) 

 

Figures 18 and 19 show the results of deduplication quality metrics when applied on static edge data from dataset 1 (Figure 18), 

and on mobile edge data from dataset 2 (Figure 19), by varying the number of zones in a sink coverage area. We highlight the 

following observations: 
 

- In the case of static devices (where nodes are not changing zones over time), results show that an increase in zone 

granularity does not have any impact on the deduplication results (deduplication metrics remain unaffected) 

- In the case of mobile device (where nodes are changing zones over time), results show that an increase in zone granularity 

allows to i) increase acc and ii) decrease redu. Increasing the number of zones within a certain area means there is a higher 

chance that mobile devices will exit one zone and enter another, hence data from the device becomes less likely to be 

considered for deduplication. 

 

We notice a similar behavior in Figure 19 which shows the results of deduplication quality metrics considering sink device 

data from dataset 3. Here, we highlight the following observations: 
 

- Considering deduplication at edge-only: results show that an increase in zone granularity does not have any impact on the 

deduplication metrics, since all edge devices in dataset 3 are static devices, and no additional deduplication is performed 

at the sink level.  

- Considering deduplication at sink-only and at edge-and-sink: an increase in zone granularity produces: i) an increase in 

acc and ii) a decrease in redu. This is because a higher number of zones means less sensors will be collecting data from 

the same zone in a certain time span. Similarly, |datatrans| from the edges to the sink and |datastored| at the sink will increase 

since less data are being deduplicated at the edge level.  

- In case only one sensor is collecting data in each zone (considering 9 different zones in our empirical use case), all three 

deduplications (edge-only, sink-only, and edge-and-sink) will produce the same results since edge devices are not 

clustered together at the sink-level. 
 

 

   

 

 
 

a. Resuls with static device data from dataset 1 b. Resuls with mobile device data from dataset 2 
        

Figure 18. Acc and redu results with varying zone granularities considering static edge nodes 
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a. Deduplication accuracy (acc) b. Data reduction ratio (redu) 

 
 

 

 

 
 

c. Size of data transmitted to the sink (|dataTrans|) d. Size of data stored at the sink (|dataStored|) 
 

Figure 19. Deduplication quality metrics obtained with varying zone granularities considering mobile edge nodes 

 
 

7.3.4. Number of Edge Devices connected to Sink Nodes 
 

In this experiment, we evaluate the impact of changing the number of edge devices connected to the sink node. We consider a 1-

zone (1-sink) granularity scenario, and we vary the number of edge devices in the zone from 1-to-9. We perform this experiment 

considering deduplication at the edge-and-sink level considering a varying number of edge devices per sink node based on the 

domain expert and application needs (cf. challenge 3). Figure 20  shows deduplication quality metrics  applied on sink node data 

from dataset 3 while varying the number of devices dataset 3 is collected from. Results in Figure 20.a show a decrease in acc and 

a slight increase redu at the sink node, when the number of edge devices is increased per sink node. This is because more data 

from more sensors is processed at the sink node, where sensors are more dispersed in the zone and might produce different 

measurements which are not always suitable for deduplication. In addition, results in Figure 20.b show drastic increases in both 

|datatrans| and |datastored| when the number of edge devices increases per sink node, highlighting the fact that more data is being 

transmitted to and stored at the sink.    
 

 

 

  

   
 

a. Deduplication accuracy (acc) and data reduction ratio (redu) b. Size of data transmitted (|dataTrans|) and stored (|dataStored|) at the sink 
 

Figure 20. Deduplication quality metrics applied on sink node data (dataset 3), when varying the number of devices per sink zone 

 
7.3.5. Sensor Coverage Area Size evaluation 
 

In this experiment, we evaluate the impact of varying the radius of sensor coverage areas on the deduplication process (cf. challenge 

3). We consider in Figure 21 multiple configurations of sink coverage areas divided into three zones including both hard and soft 

separations following our use case scenarios (cf. Section 5.1). For every use case, we vary the sensor coverage area radius from 1 

(i.e., data is only collected at the exact location of the sensor) to whole sink zone (i.e., data is collected from the whole sink zone 

where the sensor device is located). Deduplication is performed at the edge-and-sink level. 
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a. Illustrations of hard separations between zones with coverage area radius = 1, 4, and 6 respectively 
 

                  
 

b. Illustrations of soft separations between zones use with coverage area radius = 1, 4, and 6 respectively 
 

Figure 21. Sample sink zone use cases with sensor coverage area radius variations using an extract of the Micra2Dot dataset 

 

Figure 22 shows deduplication quality metrics when applied on sink node data from dataset 3. Here, we highlight the following 

observations: 
  

- In case 1 – zone-based with hard separations (Figure 22.a): acc, redu, and |datastored| are not affected by the size of the 

sensor’s coverage area, since the deduplication process is only affected by the location of the sensor, and not its coverage 

area. Note that |datatrans| in unaffected in all cases since the present use case variations do not target the data transmitted 

from edge to sink: deduplication at the edge level is not affected by a sensor’s coverage area. 

- In case 2 – zone-and-coverage based with hard separations (Figure 22.a) and in case 4 – zone-and-coverage based with 

soft separations (cf. Figure 22.b), results show that an increase in the coverage area size leads to i) a decrease in acc, ii) an 

increase redu, and iii) a decrease in |datastored|, since more sensors are being considered for deduplication (clustered together) 

due to their coverage area overlaps. However, we notice that acc and redu for case 2 stop decreasing/increasing and stabilize 

after reaching the limit of the zone area, since the zone separations in this case are hard (i.e., the number of sensors that 

could be clustered together will reach its limit).  
 

 

 

 

 
a. Deduplication accuracy (acc) b. Data reduction ratio (redu) 

 
 

 

 

 
 

c. Size of data transmitted to the sink (|dataTrans|) d. Size of data stored at the sink (|dataStored|) 
 

Figure 22. Deduplication quality metrics applied on sink node data (dataset 3), when varying sensor coverage area radius with 

multiple hard/soft separation use cases 
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- In case 3 – zone-based with soft separations (Figure 22.b), redu increases with the increase in coverage area size since 

separations between zones are soft, since more sensors in this case will belong to more than one zone at the same time. 

- For use cases 2 and 4 (zone-and-coverage), redu levels are smaller than those for cases 1 and 3 (zone-based only). This is 

because cases 2 and 4 consider the similarities between sensor coverage areas belonging to the same zones, allowing to 

detect redundant measurements between similar sensors, thus affecting the deduplication process accordingly. 

- For a coverage area radius =1, acc and redu accuracy for both cases 1 and 2 are the same. This is because the coverage area 

size is too small, and hence, each sensor will belong to one zone whether the separations are hard or soft. |dataStored| increases 

with redu since deduplication is performed on the edge-and-sink level. 
 

7.3.6. Baseline Comparison with Existing Approaches 
 

In order to further evaluate our solution, we conducted a comparative study to assess its effectiveness with respect to recent 

alternatives in the literature. On the one hand, our solution i) handles redundancies at both edge device and sink device levels of 

the network (cf. challenge 1 of our motivation scenario), ii) handles static and mobile devices, taking into account zone separations 

(hard/soft) and coverage area variations (challenge 2), and iii) allows adapting the deduplication process behavior following the 

expert’s needs (challenge 3). Most of the latter challenges are overlooked by existing solutions, except for device mobility which 

is handled in (Mansour E. et al. 2020) (cf. comparative Table 12). On the other hand, our solution performs fuzzy processing, 

allowing for improved deduplication quality compared with the crisp deduplication processes employed in existing solutions.  
 

Table 12. Comparing FREDD with alternative solutions 
 

 

Challenge 1 Challenge 2 Challenge 3 
 

Edge-level 

deduplication 

Sink-level 

deduplication 
Device mobility 

Zone separations 

(hard/soft) 

Sensor coverage 

area size 

Domain expert 

control 

SVM (Patil P. and 

Kulkarni U. 2013) 
      

CWCA (Ullah A. et al. 

2019) 
      

REDA (Khriji S. et al. 

2018) 
      

DRMF (Mansour E. et 

al. 2020) 
      

FREDD  

(our solution) 
      

 

We experimentally compare our method's effectiveness with two of its most recent alternatives: i.e., REDA (Khriji S. et al. 

2018) and DRMF (Mansour E. et al. 2020). To test REDA, we consider the crisp humidity ranges shown in Figure 13.a. To test 

FREDD, we consider the fuzzy humidity ranges in Figure 13.b where 11 pattern codes are defined, and we set the deduplication 

threshold to 0.8. We also consider two variations of DRMF: i) the first one with a deviation threshold equal to one quarter of the 

width of the crisp range  = 3/4 (which we refer to as DRMF_1), and ii) the second one with a deviation threshold equal to one 

eighth of the width of the crisp range  = 3/8 (which we refer to as DRMF_2).  

Figure 23 shows the acc and redu results obtained from each of the four algorithms when varying the number of data 

measurements of dataset1. Results show that FREDD consistently achieves the best acc results across all data variations compared 

with both REDA and DRMF1/2. This is specifically due to FREDD’s fuzzy processing capability, allowing to detect approximate 

redundancies and process them for deduplication, compared with the crisp decision-making processes performed by both REDA 

and DRMF.     
 

 

 
 

 

 
 

 

a. Deduplication accuracy (acc)  
 

b. Data reduction ratio (redu) 
 

Figure 23. Comparison of the deduplication quality metrics between RED, DRMF1/2 and FREDD, when varying the number of data 

measurements of dataset1 

 

To further explain the results in Figure 23, we conduct a second experiment where we compare the decision-making behavior 

of each algorithm applied on different pairs of humidity data measurement; the first data item is fixed at a certain value, while the 
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second item is varied within a controlled range. Figure 24 shows the percentage of deduplication produced by each algorithm for 

a first humidity value of 39.5 g/m3, and the second value with a variation range of  2.5 g/m3.  

 

 
 

Figure 24. Percentage of deduplicates when fixing the first humidity data to 39.5 g/m3 and varying the second between [37, 42] g/m3  

 

Considering REDA’s results, all values that lie between [38, 41] g/m3 are considered automatic duplicates (i.e., 100% 

duplicates) and are assigned the same pattern code. With DRMF1, considering a delta =2/3 and given a cluster centroid of 39.5 

g/m3, all values that lie between [38, 41] g/m3 are considered duplicates, and a new cluster centroid is computed outside those 

boundaries Such a behavior decreases acc since a good number of pairs are considered automatic duplicates, producing 100% 

duplicates in Figure 24. A similar behavior is also noticed for DRMF2. In contrast, each pattern code range in FREDD is divided 

into: i) a crisp range where pairs are automatically considered duplicates (i.e., from [39, 40] g/m3), and ii) a fuzzy range (i.e., 

between [37, 39] g/m3 and [40, 42] g/m3) where boundaries from different other ranges overlap. In the fuzzy range, the 

deduplication decision is made based on a fuzzy inference system and a set of fuzzy rules, allowing the percentage of duplicates 

to vary accordingly (e.g., for a second value of 38 g/m3, the percentage of duplicates is 70%). By deciding on an appropriate 

deduplication threshold (e.g., 0.8), only pairs that result in a deduplication percentage bigger than 80% will be considered 

duplicates. Implementing such behavior makes the deduplication decision more accurate and intelligent. Less duplicate pairs are 

considered automatic duplicates and the accuracy of the deduplication process increases accordingly (as shown in Figure 24).  
 

 

 

 

 

 

a. Edge-level processing time when varying the number of data items b. Edge-level processing time on different hardware devices, 

considering 50% data item overlap 

 
 

 
 

c. Edge-and-sink level processing time when varying the number                

of edge devices per sink note 

d. Edge-and-sink level processing time when varying the number of 

sink nodes, considering a fixed # of 10 edge devices per sink 
 

Figure 25. FREDD’s time performance consider edge-level and edge-and-sink level deduplication processes with varying parameters 
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7.4. Performance Evaluation 
 

In addition to testing the quality of our approach in identifying redundant data items and performing deduplication, we also evaluate 

its efficiency in terms of execution time. Tests were carried out on a PC with an Intel I7 system with 2.9 GHz CPU/16GB RAM. Edge-

level computations were also carried out on Arduino Uno, PIC32MX and Raspberry PI devices, with 16 MHz/2KB RAM, 50 MHz/32KB 

RAM and 1.5GHz/4GB RAM respectively. Results in Figure 25.a and b highlight the linear complexity of FREDD’s edge-based 

deduplication process when varying the number of data items per edge node, reflecting O(N) time complexity. Results in Figure 

25.b reflect the linear computation overhead added by less performing hardware edge devises like PIC32MX and Arduino Uno, 

compared with the more powerful Raspberry PI. Results in Figure 25.c highlight the polynomial complexity of FREDD’s edge-and-

sink deduplication process when varying the number of edge devices per sink node, reflecting O(E2) time. Figure 25.d highlights 

FREDD’s its linear complexity when varying the number of sink nodes, reflecting O(ES) time.  
 

 
Figure 26. FREDD’s time performance compared with its recent alternatives, considering a fixed data size of 1000 items per edge, and a fixed 

number of 10 edge devices per sink node 

 
We have also compared FREDD’s time complexity with its recent alternatives, REDA, DRMF_1 and DRMF_2, using 

different configurations when varying the number of data items per edge node. Figure 26 shows representative running time results 

considering a fix data size per edge device =1000 items and a fixed number of edges per sink node = 10. Results show that REDA 

is the most efficient approach due to its fast and crisp pattern code assignment approach. FREDD requires more processing time 

than REDA due to its fuzzy computation process. DRMF is seemingly the most time consuming approach due to its data clustering 

process which is utilized to perform data aggregation. This means that our approach is able to produce improved deduplication 

quality while increasing execution time compared with the crisp REDA approach, and outperforming the execution time of DRMF. 

8. Conclusion 

In this study, we introduce FREDD: a new approach for Fuzzy Redundancy Elimination for Data Deduplication in a connected 

environment. FREDD uses simple natural language rules to represent domain knowledge and expert preferences regarding data 

duplication boundaries. It then applies pattern codes and fuzzy reasoning to detect duplicates on the general network infrastructure 

including both the edge level and the sink level of the network. Moreover, it is adapted for multiple scenarios, considering both 

static and mobile devices, with different configurations of hard-separated and soft-separated zones, and different sensor coverage 

areas. Experiments on a real-world dataset highlight FREDD’s potential and improvement compared with existing solutions. 

We are currently investigating the use of parametric learners (Wen X. 2021, Abboud R. and Tekli J. 2019) and meta-heuristic 

algorithms (Nguyen T. 2021, Azar D. et al. 2016) allowing to (semi) automatically configure the pattern codes’ interval ranges 

and the corresponding fuzzy rules based on expert defined, data related, or application related features. In the near future, we plan 

to extend this work to cover data redundancies at the base station level of the network, where data is aggregated from multiple sink 

nodes. In this context, different cases need to be considered including sink node mobility, sink node coverage area overlapping, 

and inter-sink collaboration. We also aim to detect composite redundancies (Jebbaoui H. et al. 2015) that are generated by data 

fusion from multiple sensors, where deduplication would be handled at the edge, sink, and base station levels of the network. These 

entail special challenges depending on the structure, connectivity, dynamics, and overall properties of the connected environment. 

In the long run, we plan to investigate data recovery (Haraty R. and El Sai M. 2017, Haraty R. et al. 2016) in connected 

environments, including damage assessment and recovery from deduplicated data. 
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Appendix 
 

 

1. Fuzzification: Given case 1’s input data: Temp_DataItem1 = 19.5 C, and Temp_DataItem2 = 21 C, we compute the 

corresponding fuzzy membership values following the temperature fuzzy functions in Figure 6.b (reported below): 
 

 

- For Temp_DataItem1:  

FT1 (19.5) = 0.25, fT2 (19.5) = 0.75, and fT3 (19.5) = 0       

      
 

 

- For Temp_DataItem2: 

FT1 (21) = 0, fT2 (21) = 1, and fT3 (21) = 0 

 
 

 

2. Condition-Action rules: Based on the input membership values, the following condition-action rules are invoked: 

   - Rule 4:  T1(Temp_DataItem1)  ∧  T1(Temp_DataItem2)  ⇒  Duplicate(DedupStatus) 

- Rule 5:  T2(Temp_DataItem1)  ∧  T2(Temp_DataItem2)  ⇒  Duplicate(DedupStatus)  
 

3. Inference: Applying Mamdani’s inference mechanism:  
 

Rule 4:  

Executing the AND fuzzy operator: 
 

𝑚𝑖𝑛(𝑓(19.5)T1
Temp_DataItem1

, 𝑓(21)T1
Temp_DataItem2

)  = 𝑚𝑖𝑛(0.25, 0) = 0

 
                             

 

Executing the implication fuzzy operator: 
 

𝑓𝑅𝑢𝑙𝑒4  =  𝑚𝑖𝑛 (0, 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒(𝐷𝑒𝑑𝑢𝑝𝑆𝑡𝑎𝑡𝑢𝑠)) 
 

 

Rule 5:  

Executing the AND fuzzy operator: 
 

𝑚𝑖𝑛(𝑓(19.5)T2
Temp_DataItem1

, 𝑓(21)T2
Temp_DataItem2

)  = 𝑚𝑖𝑛(0.75, 1) = 0.75

 
                             

 

Executing the implication fuzzy operator: 
 

𝑓𝑅𝑢𝑙𝑒5  =  𝑚𝑖𝑛 (0.75, 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒(𝐷𝑒𝑑𝑢𝑝𝑆𝑡𝑎𝑡𝑢𝑠))           
 

 
 

 

 

4. Aggregation By applying the maximization aggregation 

function, Fagg = Fmax = max(fRule4, fRule5), the agent produces 

the fuzzy coverage areas subsumed by the inference 

membership functions (represented in transparent grey 

color in the below graph).  

 

 

 
 

5. Defuzzification: The center of gravity defuzzification 

function is applied on the fuzzy coverage area to compute 

the corresponding center of gravity point (represented as 

a red dot in the aggregation graph), and then identify the 

corresponding deduplication status (on the x axis) as the 

agent’s output = 78.2%.    

 

 
 

6. Result: Depending on the user or system deduplication threshold, a decision is made whether the two data items are duplicates 

or not. Given dedupthreshold = 75% in our running example, and since the output of the defuzzification step is 78.2%  dedupthreshold, 

the agent’s final output becomes: dedupStatus = duplicates 
 

 

 

Figure 27. Fuzzy redundancy detection process for the temperature sample case considered in our running example (cf. Table 8). 
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