


Using Fuzzy Reasoning to Improve Redundancy Elimination for

Data Deduplication in Connected Environments

Sylvana Yakhni
E.C.E. Department,

Lebanese American Univ.

36 Byblos, Lebanon

silvana.yakhni@lau.edu

Joe Tekli
E.C.E. Department,

Lebanese American Univ.

36 Byblos, Lebanon

joe.tekli@lau.edu.lb

Elio Mansour
Univ. Pau & Pays Adour,

E2S UPPA, LIUPPA

Anglet, 64600, France

elio.mansour@univ-pau.fr

Richard Chbeir
Univ. Pau & Pays Adour,

E2S UPPA, LIUPPA

Anglet, 64600, France

richard.chbeir@univ-pau.fr

Abstract—The Internet of things (IoT) is ushering in the era of connected environments where the number and diversity of data

sources (devices and sensors) are inevitably increasing the size of the data that need to be stored locally (at the edge device level) and

transmitted to base storages (at the sink level) of the network. This huge amount of data highlights several challenges including network

bandwidth, consumption of network energy, cloud storage, and I/O throughput. These call for data pre-processing and filtering solutions

to reduce the amount of data being handled and transmitted over the network. In this study, we investigate data deduplication as a

prominent pre-processing method that can be used and adapted to address such challenges. Data deduplication techniques have been

traditionally developed for data storage and data warehousing applications, and aim at identifying and eliminating redundant data items.

Few recent approaches have been designed for connected environments, yet they share various limitations, including: i) detecting

duplicates at one level only of the network (either edge or sink exclusively), ii) overlooking the context and dynamicity of the network

(disregarding device mobility, and overlooking boundary separations and sensor coverage areas), iii) relying on crisp thresholds and

providing minimum-to-no expert control over the deduplication process (disregarding the domain expert’s needs in defining

redundancy). In this study, we propose FREDD, a new approach for Fuzzy Redundancy Elimination for Data Deduplication in a

connected environment. FREDD uses simple natural language rules to represent domain knowledge and expert preferences regarding

data duplication boundaries. It then applies pattern codes and fuzzy reasoning to detect duplicates at both the edge level and the sink

level of the network. This reduces the time required to hard-code the deduplication process, while adapting to the domain expert’s needs

for different data sources and applications. Moreover, FREDD is adapted for multiple scenarios, considering both static and mobile

devices, with different configurations of hard-separated and soft-separated zones, and different sensor coverage areas in the connected

environment. Experiments on a real-world dataset highlight FREDD’s potential and improvement compared with existing solutions.

Keywords—Connected Environments, Fuzzy Reasoning, Data Redundancy, Data Deduplication, Internet of Things (IoT), Cyber-

Physical Systems, Wireless Sensor Networks.

1. Introduction

Recent advances in data management and sensing technologies have allowed physical infrastructures (e.g., buildings, homes, and

cities) to become more connected (Li D. et al. 2019, Kaur R. et al. 2018). In fact, the Internet of Things (IoT) is ushering-in the

era of connected environments, i.e., networks of physical objects that are embedded with sensors, software, and other technologies

for the purpose of connecting and exchanging data with other devices and systems (e.g., smart hospitals, smart buildings, and smart

cities) (Nižetić S. et al. 2020, Lytras M. et al. 2015). These connected environments produce huge amounts of sensed data that can

be exploited for various high-level applications. According to a recent survey conducted by VoucherCloud in (VoucherCloud

2018), 2.5+ quintillions of sensory data are currently generated every day, and over 123109 IoT devices are expected to be

connected within the next 10 years (IoT Analytics 2021). This huge amount of data highlights several challenges including network

bandwidth, consumption of network energy, cloud storage, and I/O throughput. These call for data pre-processing and filtering

techniques to reduce the amount of data being handled and transmitted over the network. In this study, we investigate data

deduplication as a prominent pre-processing method that can address such challenges. Data Deduplication techniques have been

traditionally developed for data storage and data warehousing applications, and aim at identifying and eliminating redundant data

items, where only one unique copy of the data is stored (Ismael W. et al. 2019). Similarly, data deduplication in connected

environments aims at eliminating redundant measurements produced by sensing devices. For instance, there is no need to store

and transmit similar temperature measurements produced by a sensor if they are almost identical within a given timespan. Likewise,

there is no need to process measurements produced by one or multiple sensors located in a certain geographic area, as long as the

area temperature has not significantly changed. A similar behavior is expected from mobile sensors moving within a given area,

or crossing from one area to another, given certain area and network constraints (cf. motivation scenario in Section 2.1). Such

measurements would be considered redundant and need to be eliminated, where only relevant changes are processed by the system.

In this context, few recent approaches have been designed for handling data in connected environments, e.g., (Mansour E. et al.

2020, Ismael W. et al. 2019, Li S. et al. 2019, Patil P. and Kulkarni U. 2013, Qutub B. et al. 2012), yet they share various limitations.

First, they work on one single level: i) at the edge device (sensor) level only, e.g., (Mansour E. et al. 2020, Qutub B. et al. 2012),

disregarding redundancies at the sink level (base station) or at the network core, ii) at the sink level only, e.g., (Ullah A. et al. 2019,

Patil P. and Kulkarni U. 2013), resulting in increased bandwidth and network energy consumption when transmitting the raw data

from the edge device to the sink device or to the network core. Second, existing solutions mostly disregard the dynamicity and

constraints of the network, considering static devices only (e.g., stationary surveillance cameras, pollution sensors), e.g., (Ismael

W. et al. 2019, Li S. et al. 2019, Patil P. and Kulkarni U. 2013), overlooking mobile devices (e.g., phones, tablets), and overlooking

boundary separations (e.g., hard-separated and soft-separated zones) and sensor coverage areas (which may differ from a sensor

to another). Third, most existing solutions rely on crisp evaluation thresholds and provide the domain expert with minimum-to-no

control over the deduplication process (i.e., which data need to be duplicated and which data should be kept intact) hence

overlooking the expert’s requirements and application needs in defining redundancy, e.g., (Mansour E. et al. 2020, Patil P. and

Kulkarni U. 2013).

In this study, we propose: FREDD, a new approach for Fuzzy Redundancy Elimination for Data Deduplication in a connected

environment. FREDD uses simple natural language rules to represent domain knowledge and expert preferences regarding data

duplication boundaries. It then applies pattern codes and fuzzy reasoning to detect duplicates on the general network infrastructure

including both the edge level and the sink level of the network. This reduces the time required to hard-code the deduplication

process, while adapting to the domain expert needs and application requirements. Moreover, FREDD is adapted for multiple

scenarios, considering both static and mobile devices, with different configurations of hard-separated and soft-separated zones,

and different sensor coverage areas in the connected environment. Experiments on a real-world dataset highlight FREDD’s

potential and improvement compared with existing solutions.

The remainder of this paper is organized as follows. Section 2 presents the background and motivations of our study. Section

3 briefly reviews the literature and related works. Section 4 describes the FREDD framework and its modules. Section 5 describes

different deduplication use-cases and the approach to handle each case. Section 5 describes our experimental evaluation and results.

Finally, Section 7 concludes with future directions.

2. Background and Motivations

2.1. Motivation Scenario

Consider the following example that illustrates a smart hospital, describing the motivations, needs, and challenges behind this

work. Figure 1 depicts two wards of the hospital, each hosting a set of static sensing devices that provide humidity and temperature

measurements (among others) from the environment. Similar measurements are also provided by mobile devices such as smart

phones and tablets operated by the medical staff. Devices have built-in memories to buffer chunks of sensory data before

transmission to the network’s sink nodes. Every ward of the hospital has a specific set of locations/rooms separated by either hard

physical entities (e.g., walls, windows) or soft entities (e.g., open cubicles, curtains). The type of separation (i.e., hard or soft) is

decided based on health and safety requirements (e.g., walls for the Intensive Care Unit -ICU, cubicles for staff offices). Every

ward has a static sink node that aggregates all the data from its connected edge devices into the sink node storage memory1.

Figure 1. Motivating scenario example of a smart hospital connected environment.

1 In this scenario, we disregard inter-sink node connectivity (i.e., inter-sink node collaboration) and their connectivity with the network’s base station. The latter configurations bring forth

additional challenges including sink node mobility, sink node coverage area overlapping, and composite redundancies by data fusion from multiple edged and sink nodes, which we

report to a future dedicated study.

Technicians need to monitor the hospital environment to regulate air quality in specific areas (e.g., ICU, nursery) and to ensure

the prevention of overheating or underheating in certain areas (e.g., drug storage room). To do so, we highlight the following needs:

need 1 - retrieving non-redundant and concise humidity/temperature data from individual locations (i.e., directly from the edge

devices) and from entire zones (i.e., from the wards’ sink nodes); need 2 - retrieving non-redundant and concise

humidity/temperature while considering device mobility (e.g., data from mobile devices like medical staff tablets, smartphones),

spatial constraints of the hospital (e.g., locations and zone separations) and their impact on sensing/sensor coverage areas (e.g.,

sensor coverage areas are blocked by walls but not by open cubicles); need 3 - defining health-related constraints for specific areas

in the hospital (e.g., normal value range and significant variations of humidity levels in the nursery, normal value range and

significant variations of temperature measurements in the drug storage room and staff offices) and calibrating data storage and

retrieval based on the aforementioned constraints.

In this setup, the sensing devices produce and exchange huge amounts of data that often contain redundancies (i.e., duplicate

values that are not necessary for processing and storage). For instance, if humidity is stable in a specific room, multiple unnecessary

duplicate values are sent to the sink. This can exhaust network and device resources, as it requires more resources for data

processing, storage, and retrieval. While many duplicate measurements would qualify as useless data redundancies, yet this is not

the case for all duplicates, especially when the measurements are made by the same mobile sensor moving between different

locations, or when the measurements are made by different sensors at different locations in the hospital (identical measurements

made at the same time in two different rooms do not qualify as redundancies at the room level, yet they might qualify as

redundancies at the floor or ward level including both rooms; also, mobile devices can be located in the same ward yet separated

by an opaque wall, such that their measurements are unrelated and would not qualify as redundancies). In this context, data

deduplication can be utilized to answer the aforementioned needs: allowing to properly detect and eliminate uselessly redundant

measurements, taking into account the different device and environment properties and constraints, in order to increase storage

capacities and improve performance without affecting data processing and retrieval accuracy. More specifically, we consider the

following challenges mapping to the aforementioned needs: challenge 1 - how to accurately detect data redundancies and remove

them at the device and sink levels; challenge 2 - how to consider the physical constraints of the environment when deduplicating

data (e.g., device mobility, spatial constraints, soft and hard zone separations, and sensor coverage areas); challenge 3 - how to

configure the deduplication process in order to inject domain insights and knowledge (e.g., assigning different membership scores

to certain measurement variations and defining variation boundaries, based on expert preferences) for a more adapted and accurate

redundancy detection process.

In this work, we tackle data deduplication in connected environments and design our framework solution based the fuzzy logic

paradigm to address the aforementioned challenges.

2.2. Preliminaries on Data Deduplication

Devices/sensors in connected environments are often densely deployed to monitor the environment and report observations. These

devices generate huge amounts of redundant data by sensing the environment. Sensed data is often spatially and temporally tagged.

This allows an elaborate evaluation of inconsistencies that might result from temporal and spatial data redundancies. A temporal

redundancy is caused by a single stationary sensor producing redundant observations at different time stamps (e.g., a temperature

sensor producing identical or similar measurements in a certain continuous period of time). A spatial redundancy is caused by a

group of stationary sensors deployed in close vicinity of each other and producing redundant observations (e.g., multiple

temperature sensors located in the same room and producing identical or similar measurements). A spatial-temporal redundancy

is produced by mobile sensors/devices which are moving around the network and generating redundant observations at different

time stamps and locations simultaneously. In this context, most existing works in the literature perform deduplication on identical

data (e.g., measurements 18.2C at time t and 18.2C at time t+1 are considered to be redundant and are thus duplicated by

eliminating one measurement and keeping the other), yet they do not address data similarities (e.g., 18.2C at t and 18.3C at t+1

are considered to be different measurements, and are consequently processed, stored, and transmitted across the network, cf.

Section 3). In this study, we highlight the need to consider both identical and similar data items in performing deduplication, since

data fluctuations are common in connected environments due to the real-world conditions and constraints of sensing devices (e.g.,

18.2C at t and 18.3C at t+1 might represent unintentional fluctuations in temperature measurements due to sensing device

accuracy or domain constraints, and thus can to be considered redundant at the data level and processed for deduplication). As a

result, we adopt fuzzy reasoning to detect duplicates among similar data measurements, considering device specs, domain

knowledge, and expert preferences in defining the data deduplication boundaries. We provide a sneak peek on fuzzy reasoning in

the following subsection.

2.3. Preliminaries on Fuzzy Logic

Fuzzy logic is a multivalued logic that allows the definition and usage of intermediate values between conventional evaluations

like true/false, yes/no, duplicate/not duplicate, etc. It is a paradigm for processing data by using partial set membership, where an

element can be part of one set and its compliment albeit with varying membership degrees (e.g., 70% true and 30% false). It usually

incorporates a condition-action rule-based IF X AND Y THEN Z approach rather than attempting to model a system mathematically

(Ross T. J. 2016). The model and its fuzzy membership functions are defined empirically, and rely on the designer’s experience

and understanding of the system and its environment (Vlachos I. K. and Sergiadis G. D. 2007). For example, rather than dealing

with data values in terms of humidity = 95 µg/m3 and temperature = 18.2 C, expressions like IF Low(humidity_value1) AND

VeryHigh(humidity_value2) THEN NotDuplicate(status) are used. While they seem imprecise, yet such expressions can be very

descriptive and provide a necessary level of abstraction on top of the crisp data values, allowing to guide the decision-making

process. A typical fuzzy logic agent consists of 5 main components (Ross T. J. 2016, Zadeh L. A. 1984): i) fuzzification, ii)

condition-action rules, iii) inference, iv) aggregation, and v) defuzzification. Fuzzification consists in transforming input crisp

values (received from sensors) into fuzzy membership scores associated with a set of linguistic variables (e.g., low humidity, high

temperature) defined by the system designer (e.g., humidity = 95 µg/m3 is transformed into 25% low and 75% medium humidity).

Condition-action rules are defined as Boolean logic (IF-THEN) expressions that reflect the common sense logic applied by a

domain expert to guide the decision making process. Inference consists in applying a set of designate condition-action rules on the

fuzzified data in order to produce fuzzy outputs. Multiple rules can produce different outputs, and need to be aggregated in order

to produce one single fuzzy output function. The fuzzy output function is consequently defuzzified in order to produce crisp values

as the final output of the agent.

In this study, we adopt the fuzzy logic paradigm in order to automate the redundancy detection process in a connected

environment, while handling the different needs and challenges mentioned in our motivation scenario. We review next the related

works, before describing and evaluating our proposal.

3. Related Works

Data deduplication techniques have been widely researched in data storage and data warehousing systems, and have been recently

investigated in the context of IoT and connected environments.

3.1. Deduplication in Data Storage and Data Warehousing

The automatic removal of duplicate data tokens has been primarily used in archival and backup systems (e.g., Microsoft Farsite,

HYDRAstore, DEBAR), primary storage (e.g., Microsoft Windows Server, Oracle ZFS), RAM2 (e.g., VMWare ESX, Linux

KSM), and SSDs3 (e.g., Cache Acceleration Software CAS by CAFTL) (Paulo J. and Pereira J. 2014). They mostly rely on chunk-

level deduplication which splits the incoming data into multiple chunks, and generates a unique hash value for every individual

chunk, referred to as the chunk’s fingerprint (Malhotra J. and Bakal J. 2015). Deduplication is then performed by eliminating the

chunks having identical fingerprints. Among the many chunking algorithms are Rabin fingerprinting algorithm, TD (Two Divisors)

algorithm, TTTD (Two Thresholds, Two Divisors) algorithm, and MAXP algorithm (Bhalerao A. and Pawar A. 2017, Malhotra J.

and Bakal J. 2015). Data deduplication is also a necessary step in data cleaning, also referred to as data scrubbing in data

warehousing (Christen P. 2012). It consists in matching data records that relate to the same entities from several databases. Many

techniques have been used in this context, including correlated subqueries, temporary tables, derived tables, Common Table

Expressions (CTEs), and dynamic SQL (Attigeri G. et al. 2010). Most of these techniques are deterministic and require a unique

entity identifier (or key) available across all the records/databases to be linked, or for all the databases to have the same structure.

Some of them also consist of holding all distinct records in temporary or new tables which require big storage space. One major

issue with the latter techniques is the time overhead needed to perform the extensive comparison operations between data records.

More recent approaches aim at reducing data record comparison time by performing a pre-processing indexing step where each

record is assigned a Blocking Key Value (BKV), and then records having the same or similar BKVs are clustered and compared

together (Christen P. 2012). Some of the used clustering techniques include Sorted Neighborhood, Q-gram based clustering, and

Canopy clustering (Christen P. 2012).

Discussion: Most deduplication techniques for data storage and data warehousing assume textual data duplicates only and

disregard numerical values, e.g., (Bhalerao A. and Pawar A. 2017, Malhotra J. and Bakal J. 2015, Christen P. 2012). The few

methods which address numerical data, e.g., (Attigeri G. et al. 2010) assume exact duplicates (e.g., exact temperature

measurements) and disregard approximations (e.g., 15C and 15.1C are considered as different tokens). However, numerical

tokens are of central importance in connected environment, where most data collected from sensors are scalar.

3.2. Deduplication in Connected Environments

We categorize deduplication approaches in connected environments following the challenges described in our motivation scenario

(cf. Section 2.1): challenge 1 - considering redundancies at the edge or at the sink: stating if the approach handles data redundancy

at the source (device level) and if it prevents redundancies from reaching the core; challenge 2 - considering the dynamicity and

physical constraints of the environment, including: device mobility, zone separations, and sensor coverage areas; and challenge 3

- considering expert-centric data deduplication: specifying if the approach considers the domain experts’ needs when removing

redundancies.

In (Patil P. and Kulkarni U. 2013), the authors address data redundancies at the core of the network using a supervised machine

learning solution based on Support Vector Machines (SVM). They build an aggregation tree for the given size of the network and

then apply SVM to recognize data redundancies. The authors target temporal and spatial redundancies once the data is consolidated

2 Random Access Memory
3 Solid State Drive

in a central node, which provides a redundancy-free data repository that can be mined using dedicated data processing techniques

(cf. challenge 1). However, redundancies are not handled at the edge level, and data exchange between devices at the edge remains

costly due to unnecessary communications. In (Ullah A. et al. 2019), the authors provide a data deduplication technique in

healthcare-based IoT, and introduce a Controlled Window-size based Chunking Algorithm (CWCA) to identify cut-points in sensor

data distributions. Yet similarly to (Patil P. and Kulkarni U. 2013), the solution in (Ullah A. et al. 2019) only performs data

deduplication at sink nodes and does consider redundancies at edge devices (cf. challenge 1). Moreover, the solutions in (Ullah A.

et al. 2019, Patil P. and Kulkarni U. 2013) do not consider spatial-temporal redundancies generated by mobile devices (cf. challenge

2). In (Ismael W. et al. 2019), the authors present a data reduction scheme using data filtering and fusion. They handle redundancies

at the edge device level before forwarding non-redundant data to the sink level. Redundancy detection is based on data value

deviations only, and does not consider redundant data from mobile devices (cf. challenge 2). In (Chowdhury S. and Benslimane

A. 2018), the authors focus on the spatial distribution of sensors in the environment, and how it can be managed to prevent

redundancies. The authors build a graph of nodes and events in order to detect “redundant” nodes: i.e., nodes producing identical

events. Consequently, redundant nodes are either relocated or put into sleep mode using a circle packing technique to enhance

coverage, while minimizing energy usage during relocation. This work only handles redundancy from a sensor deployment

perspective (i.e., avoiding deploying sensors that provide the same type of data in the same area). The approach focuses on detecting

redundant sensor nodes rather than the data itself, and does not consider sensor mobility (cf. challenge 2). The authors in (Li S. et

al. 2019) propose a data redundancy elimination technique using an unsupervised learning approach based on data clustering. The

authors suggest clustering edge nodes based on their produced sensory data in order to aggregate identical data to eliminate

redundancies, before storing the data in the cloud. However, they do not consider device mobility and spatial-temporal

redundancies (cf. challenge 2).

In a continuous sensing setup, triggering mechanisms are available to restrict the number of transmissions between the sensor

node and the monitoring node without degrading the tracking of the sensed measurements, e.g., (Liansheng T. and Wu M. 2015,

Santini S. and Romer K. 2006). These mechanisms can also be used for filtering redundant spatial-temporal data, in order to trigger

transmissions from sensor node (edge) to monitoring node (sink) only when there are changes in the sensed measurements. These

approaches fall into the category of edge-based data deduplication solutions, and rely on a simple crisp deviation threshold v.

Therefore, if consecutive measurements at time t and t+1 are higher than the threshold, |vt – vt+1|  v, the edge sends the data to

the sink. If not, duplicates are eliminated and the oldest value is usually flushed. In this context, relying on crisp thresholds can

lead to deduplication accuracy drops, where even the slightest variations in the sensed measurements are processed similarly to

extremely large variations (e.g., given a temperature variation threshold v = 1C, variations of 1.5 C and 20.5 C are processed

exactly the same). Similarly, variations which are slightly below the variation threshold will be completely ignored (e.g., given a

temperature variation threshold v=1C, a variation of 0.99 C goes unprocessed). Hence, relying on crisp thresholds restricts

domain insights and expert knowledge (cf. challenge 3), and might lead to i) missing certain relevant redundancies or ii) removing

certain data values that might not be redundant.

More recently, the authors in (Mansour E. et al. 2020) proposed a Data Redundancy Management Framework (DRMF) that

handles data redundancies at the edge device level (cf. challenge 1) considering both static and mobile devices (cf. challenge 2).

It clusters the data based on an expert/system defined crisp deviation threshold (cf. challenge 3), while also keeping track of the

temporal and spatial-temporal spread (or coverage) of each cluster (i.e., sets of redundant data). The algorithm sorts all data tokens

and checks if the current token belongs to the current cluster by comparing it with the cluster’s centroid, considering a expert-

defined deviation threshold 𝛿𝑣. Otherwise, a new cluster is created with the current data item added as its centroid. In another

relevant study in (Khriji S. et al. 2018), the authors introduce the Redundancy Elimination Data Aggregation (REDA) algorithm

to perform deduplication at individual edge nodes and also among nodes in the same cluster (cf. challenge 1). Assuming that data

is presented as a set of scalar values (e.g., temperature, humidity), the range of numbers is divided into crisp intervals that depend

on the domain expert requirements (cf. challenge 3), then a lookup table is generated for each cluster containing the ranges of each

interval and their associated pattern codes (e.g., 10-15C are associated with pattern code 1, 16-20 are associated with pattern

code 2). For the first iteration (t=0), each sensor (edge) computes and sends its own pattern code to the cluster head (sink) where

only a unique code is saved. For the following iterations (t>0), each senor computes its new pattern code and compares it with the

last one. The new value is sent from the sensor (device) to the cluster head (sink) only if its pattern code is different from that of

the cluster head. Note that both (Mansour E. et al. 2020, Khriji S. et al. 2018) rely on crisp deviation thresholds, and share the

same limitations of crisp processing mentioned above.

3.3. Discussion

To wrap up, we highlight the main issues facing data deduplication methods in connected environments, in light of the main

challenges considered in our study. Considering challenge 1, most approaches focus on handling redundancies at the edge level

only (Mansour E. et al. 2020, Li S. et al. 2019) or at the sink (core) level only (Murtadha H. and Sami S. 2016, Mortadha H. and

Jihad A. 2015, Attigeri G. et al. 2010, Shahri H. and Barforush A. 2004). Very few methods address both edge and sink data

redundancies (Ismael W. et al. 2019, Papageorgiou A. et al. 2015, Patil P. and Kulkarni U. 2013), and they do so in specific

scenarios. For instance, in (Khriji S. et al. 2018), the authors consider clusters of geographically neighboring sensors that elect

cluster heads (as sink nodes) where deduplication takes place. However, this design choice is not necessarily applicable when sink

nodes are not bound by geographic proximity (e.g., temperature sensors in different building floors can be connected to the same

sink, however this does not mean that data from all these sensors can be considered for deduplication). Considering challenge 2,

most existing solutions consider the case of static (stationary) devices only and disregard mobile devices (Ismael W. et al. 2019,

Li S. et al. 2019, Papageorgiou A. et al. 2015, Patil P. and Kulkarni U. 2013). Only one approach provided in (Mansour E. et al.

2020) handles device mobility, considering data measurement location (in the form of spatial-temporal redundancies). Yet, the

authors in (Mansour E. et al. 2020) do not address zone separations (hard/soft) and device coverage areas (coverage radius).

Considering challenge 3, most existing works focus solely on the network or device properties in designing their deduplication

solutions, and perform crisp deduplication processing using crisp evaluation thresholds, thus providing minimum-to-no expert

intervention or adaptability when eliminating redundancies.

4. FREDD Framework

To address the aforementioned challenges, we introduce FREDD: a new framework for Fuzzy Redundancy Elimination for Data

Deduplication in a connected environment. FREDD detects data duplicates at both edge and sink levels (criterion 1), considers

data redundancies from static and mobile devices with varying boundaries and coverage areas (criterion 2), and combines simple

natural language rules with a fuzzy inference mechanism designed to adapt the deduplication process following the expert’s needs

(criterion 3). FREDD’s core architecture for edge-level deduplication is depicted in Fig. 1. It consists of six main modules: i)

sensor data representation which defines the spatial and temporal representations of data measurements/items, ii) measurement

separation which separates the input data into measurement-based data collections, iii) pattern code generation which associates

data items with pattern codes based on expert-defined lookup tables, iv) duplicate candidate filtering which determines whether

data items are candidates for fuzzy duplication, v) fuzzy redundancy detection which identifies duplicate data items using fuzzy

reasoning based on expert-defined condition-action rules, and vi) redundancy removal which eliminates redundant data items

and produces deduplicated data. We describe each of the latter modules for edge-level deduplication in the following sub-sections.

FREDD’s handling of sink-level deduplication use-cases is subsequently described in Section 5.

Figure 2. Simplified diagram describing FREDD's core architecture

4.1. Sensor Data Representation

Connected environments contain diverse devices each embedding one or more sensors that provide data from the real world. Static

devices are immobile; therefore, the data generated by such devices can be redundant temporally. However, mobile devices produce

data while moving around the environment, which potentially generates spatial-temporal redundancies. Here, we adopt a set of

formal definitions from (Mansour E. et al. 2020) that allow us to describe data items following both temporal and spatial

dimensions (cf. criterion 2).

Definition 1 - Data Items: A data item d is defined as a 5-tuple:

d = m ; v ; t ; l ; s (1)

where m is the data measurement, v is the data value, t is the creation temporal stamp of d (cf. Definition 2), l is the creation

location stamp of d (cf. Definition 3), and s is the data source that sensed/created d 

Definition 2 - Temporal Stamp: A temporal stamp t is defined as a single discrete temporal value represented as a 2-tuple:

t = format ; value (2)

where format is a string indicating the format of the date-time value of t (e.g., "dd-MM-yyyy hh:mm:ss"), and value is the

timestamp value (e.g., 10-11-2020 15:34:23 following the sample time format mentioned above) 

Definition 3 – Location Stamp: A location stamp l is defined as a discrete and instantaneous location value represented as a 2-

tuple:

l = format ; value

(3)

where format is the location referential format of the location value (e.g., default GPS, or Cartesian, Spherical, Cylindrical), and

value = x ; y ; z is a discrete and instantaneous value where x, y, and z designate individual coordinate values (the coordinates

can be translated into the referential of choice following the designated format) 

Table 1 shows the representation of sample sensory data after being sensed/produced by an edge device (source) S1 embedding

two sensors producing humidity and temperature measurements respectively.

Table 1. Sample sensory data items

Measurement m Value v

Time stamp 𝒕 Location stamp l

Source s
format value format

value

x y z

Humidity 92 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian 1 2 3 S1

Temperature 16 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian 2 5 3 S1

Humidity 94 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 4 2 7 S1

Temperature 19.5 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 5 6 3 S1

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 Cartesian 8 6 3 S1

Humidity 103 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 5 2 7 S1

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 8 6 3 S1

Humidity 104 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 Cartesian 7 2 7 S1

4.2. Measurement Separation

Since the device can embed various sensors, its internal memory might store different measurements (i.e., features such as humidity

and temperature in Table 1). Therefore, in order to detect redundancies in the data stored locally on the edge device, we start by

filtering the data into collections having the same measurements. To illustrate the measurement filtering process, the data shown

in Table 1 produces two distinct data collections: the first for humidity data (first four tuples - cf. Table 2), and the second for

temperature data (containing the last tuples). Consequently, the measurement data collections are processed separately for data

deduplication. Note that the domain expert decides about the selection of measurements to be processed for deduplication.

Table 2. Data collections produced following the measurement separation of the data from Table 1

a. Humidity data collection

Measurement m Value 𝒗

Time stamp 𝒕 Location stamp l

Source 𝒔
format value format

value

x y z

Humidity 92 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian 1 2 3 S1

Humidity 94 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 4 2 7 S1

Humidity 103 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 5 2 7 S1

Humidity 104 µg/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 Cartesian 7 2 7 S1

b. Temperature data collection

Measurement m Value 𝒗
Time stamp 𝒕 Location stamp l

Source 𝒔
format value format

value

x y z

Temperature 16 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian 2 5 3 S1

Temperature 19.5 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 5 6 3 S1

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 Cartesian 8 6 3 S1

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 8 6 3 S1

4.3. Pattern Code Generation

4.3.1. Value Pattern Codes

The pattern code generation module transforms ranges of data item values for a given measurement (e.g., humidity, temperature)

into interval values that are defined based on reference lookup tables. Edge and sink devices handling the same measurements refer

to the corresponding measurement lookup tables (e.g., humidity lookup table, or temperature lookup table), where lookup tables

are created based on expert preferences or application requirements. Here, we distinguish between two kings of lookup tables

allowing: i) disjoint data ranges, and ii) intersecting data ranges.

Table 3. Sample disjoint value lookup tables for humidity and temperature measurements,

considering ranges 90-110 µg/m 4 and 15-28 C respectively

a. Disjoint humidity data ranges b. Disjoint temperature data ranges

Interval

values

[90, 96]

µg/m3

]96, 104]

µg/m3

]104, 110]

µg/m3

Pattern

code
H1 H2 H3

Interval

values

[15-19]

C

]19-24]

C

]24-28]

C

Pattern

code
T1 T2 T3

Table 4. Sample intersecting value lookup tables for humidity and temperature

measurements, considering ranges 90-110 µg/m3 and 15-28 C respectively

a. Intersecting humidity data ranges b. Intersecting temperature data ranges

Interval

values

[90, 98]

µg/m3

[94, 106]

µg/m3

[102, 110]

µg/m3

Pattern

code
H1 H2 H3

Interval

values

[15-20]

C

[18-25]

C

[23-28]

C

Pattern

code
T1 T2 T3

Disjoint data ranges (cf. Table 3) allow simple pattern code generation, yet they produce disconnected pattern codes where values

on the range boundaries might be misrepresented (e.g., it is not clear which pattern code can be assigned with values 96.2 µg/m3

or 104.7 µg/m3 following Table 3). Intersecting data ranges (cf. Table 4) allow the generation of combined pattern codes when the

target value belongs to more than one range (e.g., humidity values 103, 104, and 105 µg/m3 belong to both H2 and H3 patter codes

following Table 4).

In this study, we consider intersecting ranges to allow more efficient processing (duplicate candidate filtering, cf. Section 4.4)

and more accurate data deduplication (fuzzy redundancy detection, cf. Section 4.5)

4.3.2. Zone Pattern Codes

In case data measurements are produced by mobile sensors (e.g., mobile phones, car sensors), deciding if a pair of data is duplicate

or not will involve an extra step: making sure that the two data items are sensed in the same location zone (i.e., in close proximity).

Here, we consider that mobile measurements taken at separate location zones represent separate data items, and will not be

considered for deduplication. To this end, we introduce zone lookup tables which organize location zones within a connected

environment. Our pattern code generation module transforms ranges of location stamps for a given measurement into interval

location stamps that are defined based on the zone lookup tables. Edge and sink devices handling the same measurements refer to

the corresponding zone lookup tables, where zones can be defined at the level of the network as a whole, or at the level of individual

sink or edge nodes, based on the expert and application needs. Table 5 shows a sample zone lookup table describing a sample

zoning in our smart hospital example shown in Figure 3, where each zone is associated a non-intersecting set of location stamps.

Note that a zone can take any shape and size based on the expert and application needs.

Figure 3. Zone divisions in our smart connected hospital motivation example (cf. Section 2.1)

Table 5. Zone lookup table for Sinkleft in the smart connected hospital example from Figure 3

Interval values {p1, …, pk} {pk+1, …, pm} {pm+1, …, pn} {pn+1, …, po} {po+1, …, pp}

Label
Drug Storage

Room
Nursery ICU Room1 ICU Room2 Hallway

Pattern code Z1 Z2 Z3 Z4 Z5

4 Microgram Per Cubic Meter

Table 6. Zone lookup table for SinkRight in the smart connected hospital example from Figure 3

Interval values {pp+1, …, pq} {pq+1, …, pr} {pr+1, …, ps} {ps+1, …, pt} {pt+1, …, pu}

Label Cubicle Zone4 Cubicle Zone3 Cubicle Zone 1 Cubicle Zone2 Hallway

Pattern code Z6 Z7 Z8 Z9 Z10

4.3.3. Combined Pattern Codes

For every data item to be deduplicated, our pattern code generation module produces one (or more) value pattern code(s) and a

zone pattern code based on the reference value and zone lookup tables, and then combines them into value-zone pattern code(s)

as shown in Table 7 (cf. Algorithm 1 in Figure 4). The value-zone codes are used for fast duplicate candidate filtering as described

in the following section.

Table 7. Value, zone, and combined pattern codes for sample data from Table 1.

a. Humidity data collection

Measurement m Value 𝒗
Value

Pattern

Code

Time stamp 𝒕 Location stamp l Zone

Pattern

Code

Combined

Pattern Code
Source 𝒔

format value format
value

x y z

Humidity 92 µg/m3 {H1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian 1 2 3 Z1 {H1_Z1} S1

Humidity 94 µg/m3 {H1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 4 2 7 Z5 {H1_Z5} S1

Humidity 103 µg/m3 {H2,H3} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 5 2 7 Z5 {H2_Z5, H3_Z5} S1

Humidity 104 µg/m3 {H2,H3} dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 Cartesian 7 2 7 Z5 {H2_Z5, H3_Z5} S1

b. Temperature data collection

Measurement m Value 𝒗
Value

Pattern

Code

Time stamp 𝒕 Location stamp l Zone

Pattern

Code

Combined

Pattern Code
Source 𝒔

format value format
value

x y z

Temperature 16 C {T1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian 2 5 3 Z2 {T1_Z2} S1

Temperature 19.5 C {T1,T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 5 6 3 Z4 {T1_Z4, T2_Z4} S1

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 Cartesian 8 6 3 Z4 {T2_Z4} S1

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 8 6 3 Z4 {T2_Z4} S1

4.4. Duplicate Candidate Filtering

Since sensor data items are produced and ordered per sensing time stamp, each data item to be deduplicated is evaluated with its

previous one to check if the data is duplicate or not. Our duplicate candidate filtering algorithm is depicted in Figure 4. It accepts

as input two consecutive data items and produces as output a decision of whether the data items are duplicates, non-duplicates, or

candidates for deduplication, based on the following rules: i) if two data items share one value-zone pattern code, then they are

considered duplicates (cf. Figure 4, lines 4-5), ii) if the data items share one or more value-zone pattern codes, they are considered

as candidates for deduplication (cf. Fig. , lines 6-7), and iii) if the data items do not share any value-zone pattern code, they are

considered as non-duplicates (cf. Figure 4, lines 8-9),

Table 8 shows the output of the filtering algorithm applied on the input data from Table 7, where 6 data items are identified

as either duplicates/non-duplicates, such that 2 of the original 8 items need to be further considered for fuzzy deduplication.

Depending on the data patterns generated in the target connected environment, duplicate filtering can significantly reduce the

number of data items to be processed for fuzzy redundancy detection, thus significantly improving overall processing performance

especially at the device level (cf. experimental results in Section 7).

Algorithm 1 – Duplicate Candidate Filtering

Input: DataItem1, DataItem2
Output: DeduplicationStatus

Begin
1 pattern1  pattern code for DataItem1
2 pattern1  pattern code for DataItem2
3 interLen  length of intersection between DataItem1 and DataItem2
4 if (pattern1 = pattern2) and (interLen =1) then
5 DeduplicationStatus  Duplicates
6 else if interLen > 1 then
7 DeduplicationStatus  Candidates
8 else
9 DeduplicationStatus  NotDuplicates

End

Figure 4. Pseudocode of our duplicate candidate filtering algorithm

Table 8. Output of the filtering algorithm applied on input data from Table 7

a. Humidity data collection

Measurement m Value 𝒗
Value

Pattern

Code

Time stamp 𝒕 Location stamp l Zone

Pattern

Code

Combined

Pattern Code
Source s

format value format
value

x y z

Humidity 92 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian 1 2 3 Z1 {H1_Z1} S1

Humidity 94 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 4 2 7 Z1 {H1_Z1} S1

Humidity 103 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 5 2 7 Z5 {H2_Z5, H3_Z5} S1

Humidity 104 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 Cartesian 7 2 7 Z5 {H2_Z5, H3_Z5} S1

b. Temperature data collection

Measurement m Value 𝒗
Value

Pattern

Code

Time stamp 𝒕 Location stamp l Zone

Pattern

Code

Combined

Pattern Code
Source s

format value format
value

x y z

Temperature 16 C {T1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian 2 5 3 Z2 {T1_Z2} S1

Temperature 19.5 C {T1,T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 5 6 3 Z4 {T1_Z4, T2_Z4} S1

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 Cartesian 8 6 3 Z4 {T2_Z4} S1

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 8 6 3 Z4 {T2_Z4} S1

4.5. Fuzzy Redundancy Detection

4.5.1. Fuzzy Inference Agent

The fuzzy redundancy detection module’s overall process is shown in Figure 5. It is designed as a fuzzy agent which accepts as

input data items that are candidates for redundancy detection, and then produces as output their deduplication status (i.e., duplicates

or non-duplicates).

Figure 5. Simplified diagram describing the fuzzy redundancy detection module’s overall process

Fuzzification: First, the scalar data item values are fuzzified, producing linguistic values associated with fuzzy membership

degrees (e.g., humidity value 103 µg/m3 becomes 75%H2 and 25% H3 following Figure 6). The fuzzy partitions for every

measurement are defined based on the corresponding lookup table ranges, where the fuzzy membership functions can be defined

following the expert and application needs. Figure 6.a and b show the fuzzy partitions for humidity and temperature measurements

which we adopt in our motivating scenario5. The same partitions are utilized to fuzzify both input data values associated with the

same measurement. The output deduplication status variable represents a percentage value, and is depicted in Figure 6.c using one

membership function varying from 0-to-100% duplication.

a. Input humidity fuzzy partitions, cf. Table 4.a b. Input temperature fuzzy partitions, cf. Table 4.b c. Output deduplication status fuzzy partitions

Figure 6. Input humidity and temperature fuzzy partitions, and output deduplication status fuzzy partitions defined using the trapezoidal

function following the lookup tables in Table 4

5 In this example, we adopt trapezoidal functions, yet any other function can be used (e.g., triangular, sinusoidal, or Gaussian) based on domain expert and application needs.

0

0.2

0.4

0.6

0.8

1

90 92 94 96 98 100 102 104 106 108 110Fu
zz

y
M

e
m

b
e

rs
h

ip

Humidity

H1 H2 H3

0

0.2

0.4

0.6

0.8

1

15 16 17 18 19 20 21 22 23 24 25 26 27 28Fu
zz

y
M

e
m

b
e

rs
h

ip

Temperature

T1 T2 T3

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Fu
zz

y
M

e
m

b
e

rs
h

ip

DeduplicationStatus

Duplicate

Duplicate Non-Duplicate Candidate for Deduplication

Duplicates

Non-Duplicates

Candidates

Candidates

Duplicates

Non-Duplicates

Condition-action rules: As for the fuzzy agent’s condition-action rules, they reflect the common sense logic applied by an

domain expert to determine whether two data items are duplicates or not, based on their measurement’s look-up tables. We provide

below the set of condition-actions rules that we define for the humidity and temperature measurements following our application

scenario:

Rule 1. IF (Humidity_DataItem1 is H1) AND (Humidity _DataItem2 is H1) THEN DedupStatus is Duplicate

Rule 2. IF (Humidity_DataItem1 is H2) AND (Humidity _DataItem2 is H2) THEN DedupStatus is Duplicate

Rule 3. IF (Humidity_DataItem1 is H3) AND (Humidity _DataItem2 is H3) THEN DedupStatus is Duplicate

Rule 4. IF (Temp_DataItem1 is T1) AND (Temp_DataItem2 is T1) THEN DedupStatus is Duplicate

Rule 5. IF (Temp_DataItem1 is T2) AND (Temp_DataItem2 is T2) THEN DedupStatus is Duplicate

Rule 6. IF (Temp_DataItem1 is T3) AND (Temp_DataItem2 is T3) THEN DedupStatus is Duplicate

Inference: Fuzzy inference consists in applying the concerned condition-action rules on the fuzzified data in order to produce

fuzzy outputs. The logical connectors in the condition-action rules are translated into mathematical formulas that operate on the

fuzzy data. For instance, the AND fuzzy logic operator can be any t-norm function, including min (minimum) which is commonly

adopted in the literature. Also, THEN can be a number of inference functions including Zadeh’s implication (traditional Boolean

implication formula), Mamdan’s implication (a simplified version of Boolean implication, cf. Formula 4), or Larsen’s implication

(which comes down to a form of arithmetic multiplication) (Ross T. J. 2016). In our agent, we adopt Mamdani’s implication

operator as the default inference function given its common usage in the literature (Salloum G. and Tekli J. 2021, Bouchon-Meunier

B. et al. 2003). Yet the aforementioned inference formulas are available through the implemented system, and can be activated

following the expert’s preferences.

Aggregation: It allows grouping the outputs of multiple inference operations executed on multiple condition-action rules, in

order to produce on single fuzzy output result. Multiple mathematical operations can be utilized to simulate fuzzy aggregation,

including maximization (aggregating by electing the fuzzy result with the highest membership degree), bounded sum (aggregating

by summing the fuzzy membership degrees of the different results, as long as the sum does not surpass 100% membership), and

weighted sum (assigning different weights to different inference results, highlighting the importance of different condition-action

rules on the decision making process). In our agent, we adopt the maximization aggregation function (Formula 5) given its common

usage in the literature (Salloum G. and Tekli J. 2021, Ross T. J. 2016). Yet any aforementioned formula can be utilized following

the expert’s preferences.

Deduplication: It allows transforming the fuzzy output produced by the aggregation function into a crisp output that represents

the final result of the agent. Multiple mathematical operations can be used to perform defuzzification, including center of gravity

(using the barycenter formula to pinpoint the crisp center of the fuzzy aggregated result), maximum to the left (choosing the smallest

crisp value from the aggregated result that has the highest membership degree), and maximum to the right (choosing the highest

crisp value that has the highest membership degree). In our agent, we adopt center of gravity (Formula 6) given its common usage

in the literature (Salloum G. and Tekli J. 2021, Ross T. J. 2016). Yet any aforementioned formula can be utilized following the

expert’s preferences.

Note that our framework is flexible in allowing experts to apply other fuzzy inference, aggregation, or defuzzification functions

of their choosing.

Mamdani’s implication:

Given fuzzy sets f1, f2 :

f1  Mamdani f2  f1  f2  min(f1, f2)

where  is the AND fuzzy logic operator6

(4)

Maximization aggregation:

Given fuzzy sets f1, f2, …, fn:

Fagg= FMax = max(f1, f2, …, fn)

(5)

Center of gravity defuzzification:

Given aggregate fuzzy set FAgg:

× ×

×

 ()

()

agg

agg

x F x dx
x

F x dx




=

(6)

4.5.2. Computation Example

We consider in Table 8 two cases for humidity and temperature measurements studied in our motivation scenario. The detailed

computation process for humidity is described in Figure 7. A similar computation process for temperature is provided in the

appendix. For the humidity case, the agent recommends that input 103 µg/m3 and 104 µg/m3 data values are duplicates with a 76%

fuzzy membership degree, which seems reasonable given the humidity lookup tables and value ranges defined in Table 4 (H2 and

H3 fuzzy partitions intersect between [102, 106] µg/m3, where 103 is much closer to the 102 µg/m3 boundary of H2 than to the

106 µg/m3 boundary of H3, but also 103 µg/m3 and 104 µg/m3 are close to each other). Similarly for the temperature case, the

agent recommends that the inputs 19.5C and 21C are 78.2% duplicates which seems accurate following the temperature lookup

tables and ranges defined in Table 4 (T1 and T2 fuzzy partitions intersect between [18, 20] C, where 19.5 is closer to the 20 C

6 The AND fuzzy logic operator can be any t-norm function, including min which is commonly adopted in the literature.

boundary of T2 than to the 18 C boundary of T1). The fuzzy inference agent produces recommendations that simulate the domain

expert’s deduplication capability, and behaves following the expert’s design choices and needs (cf. experiments in Section 7).

Given our running example data from Table 8, the identified humidity and temporal redundancies following the fuzzy

redundancy detection process are shown in Table 9.

1. Fuzzification: Given case 1’s input data: Humidity_DataItem1 = 103 µg/m3 and Humidity_DataItem2 = 104 µg/m3, we

compute the corresponding fuzzy membership values following the humidity fuzzy functions in Figure 6.a (reported below):

- For Humidity_DataItem1:

fH1 (103) = 0, fH2 (103) = 0.75, and fH3 (103) = 0.25

- For Humidity_DataItem2:

fH1 (104) = 0, fH2 (104) = 0.5, and fH3 (104) = 0.5

2. Condition-Action rules: Based on the input membership values, the following condition-action rules are invoked:

- Rule 2: H2(Humidity_DataItem1) ∧ H2(Humidity_DataItem2) ⇒ Duplicate(DedupStatus)

- Rule 3: H3(Humidity_DataItem1) ∧ H3(Humidity_DataItem2) ⇒ Duplicate(DedupStatus)

3. Inference: Applying Mamdani’s inference mechanism:

Rule 2:

Executing the AND fuzzy operator5:

   Humidity_DataItem1 Humidity_DataItem2

H2 H2(103) , (104) = 0.75, 0.5 0.5min f f min 

Executing the implication fuzzy operator:

 0.5, (DedupStatus)Rule2f = min Duplicate

Rule 3:

Executing the AND fuzzy operator:

   Humidity_DataItem1 Humidity_DataItem2

H3 H3(103) , (104) = 0.25, 0.5 0.25min f f min 

Executing the implication fuzzy operator:

 0.25, (DedupStatus)Rule3f = min Duplicate

4. Aggregation By applying the maximization aggregation

function, Fagg = Fmax = max(fRule2, fRule3), the agent produces

the fuzzy coverage areas subsumed by the inference

membership functions (represented in transparent grey

color in the below graph).

5. Defuzzification: The center of gravity defuzzification

function is applied on the fuzzy coverage area to compute

the corresponding center of gravity point (represented as

a red dot in the aggregation graph), and then identify the

corresponding deduplication status (on the x axis) as the

agent’s output = 76%.

6. Result: Depending on the domain expert or system deduplication threshold, a decision is made whether the two data items

are duplicates or not. Given dedupthreshold = 75% in our running example, and since the output of the defuzzification step is 76%

 dedupthreshold, the agent’s final output becomes: dedupStatus = duplicates

Figure 7. Fuzzy redundancy detection process for the humidity sample case considered in our running example (cf. Table 8)

4.6. Redundancy Removal

Once redundancies are identified, the redundancy removal process occurs. Here, we propose two redundancy removal modes: i)

the auto-removal mode summarizes a sequence of redundancies into one representative data item using the median or mean

representative values; and ii) the expert-centric mode which considers domain expert requests that describe the deduplication

0

0.2

0.4

0.6

0.8

1

90 92 94 96 98 100 102 104 106 108 110Fu
zz

y
M

em
b

er
sh

ip

Humidity

H1 H2 H3

0

0.2

0.4

0.6

0.8

1

90 92 94 96 98 100 102 104 106 108 110Fu
zz

y
M

em
b

er
sh

ip

Humidity

H1 H2 H3

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Fu
zz

y
M

em
b

er
sh

ip

DeduplicationStatus

Duplicate

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Fu
zz

y
M

em
b

er
sh

ip

DeduplicationStatus

Duplicate

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Fu
zz

y
M

e
m

b
er

sh
ip

DeduplicationStatus

Duplicate

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Fu
zz

y
M

e
m

b
er

sh
ip

DeduplicationStatus

Duplicate

fRule2
fRule3

Fagg Fagg

requirements/conditions when removing redundancies. Following our running example data from Table 9, the identified humidity

and temporal redundancies can be removed using the auto-removal median function in Table 10.

Table 9. Output of the fuzzy redundancy detection process applied on the running example data from Table 8

a. Humidity data collection

Measurement m Value v
Value

Pattern

Code

Time stamp 𝒕 Location stamp l Zone

Pattern

Code

Combined

Pattern Code
Source s

format value format
value

x y z

Humidity 92 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian 1 2 3 Z1 {H1_Z1} S1

Humidity 94 g/m3 H1 dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 4 2 7 Z1 {H1_Z1} S1

Humidity 103 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 5 2 7 Z5 {H2_Z5, H3_Z5} S1

Humidity 104 g/m3 H2 H3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:06:00 Cartesian 7 2 7 Z5 {H2_Z5, H3_Z5} S1

b. Temperature data collection

Measurement m Value v
Value

Pattern

Code

Time stamp 𝒕 Location stamp l Zone

Pattern

Code

Combined

Pattern Code
Source s

format value format
value

x y z

Temperature 16 C {T1} dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian 2 5 3 Z2 {T1_Z2} S1

Temperature 19.5 C {T1,T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:02:00 Cartesian 5 6 3 Z4 {T1_Z4, T2_Z4} S1

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:03:00 Cartesian 8 6 3 Z4 {T2_Z4} S1

Temperature 21 C {T2} dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 8 6 3 Z4 {T2_Z4} S1

Note that domain experts might have different needs for redundancy removal. For instance, a database could require a specific

amount of data from each device per day (thus affecting the deduplication ratio). An expert could have different requirements

based on available resources (e.g., high deduplication ratio if resources are low). Similarly, devices and services consuming data

might have specifications for the redundancy removal process. In order to consider these needs (cf. challenge 3), experts can

provide their requirements in the form of simple consumer requests that the module translates into redundancy removal rules:

Definition 4 – Consumer Request: We define a consumer request as a 3-tuple:

req = c_id ; s_id ; P (7)

where c_Id is the consumer (expert or device) identifier, s is the data source (device) identifier, and P is a set of consumer

preferences for the sensory data produced by the data source. Consumer preferences can be expressed as a 4-tuple:

P = targeta ; freq ; type ; frep (8)

where targetm is the data measurement targeted by the request (e.g. humidity, temperature), freq is the data consumption frequency

(expressed in units of time, e.g., per second, every 30 seconds, every hour), type is the deduplication type (expressed in terms of

required deduplication ratio or percentage, or allowed memory size, CPU consumption, or energy consumption levels during

deduplication), and frep is the data item representative selection function (including mean, median, minimum, maximum, as well as

earliest value and latest value based on the data item’s time stamp) 

Table 10. Output of redundancy removal using the auto-removal median function applied on the redundant data collections from Table 9

a. Humidity data collection

Measurement m Value v
Time stamp 𝒕 Location stamp l

Source 𝒔
format value format

value

x y z

Humidity 92 g/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:00:00 Cartesian 1 2 3 S1

Humidity 103 g/m3 dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 5 2 7 S1

b. Temperature data collection

Measurement m Value v
Time stamp 𝒕 Location stamp l

Source 𝒔
format value format

value

x y z

Temperature 16 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:01:00 Cartesian 2 5 3 S1

Temperature 21 C dd/MM/yyyy hh:mm:ss 10/02/2019 10:05:00 Cartesian 8 6 3 S1

Duplicate Non-Duplicate

Duplicates

Duplicates

Duplicates

Figure 8.a shows a sample consumer request where the expert requires a specific deduplication ratio from a given device.

Figure 8.b shows the deduplicated data based on the consumer request, considering the running example data from Table 9.

Measurement m Value 𝒗

Time stamp 𝒕 Location stamp l
Source

𝒔 format value format
value

x y z

Humidity 93 g/m3
dd/MM/yyyy

hh:mm:ss
10/02/2019

10:01:00
Cartesian 2.5 2 5 S1

Humidity 103.5 g/m3
dd/MM/yyyy

hh:mm:ss
10/02/2019

10:05:30
Cartesian 6 2 7 S1

a. Sample consumer request b. Redundancy-free data based on the consumer request

Figure 8. Sample consumer request, and the resulting redundancy removal based on the running example data from Table 9

5. FREDD Sink-Level Deduplication

As mentioned in the motivation of our study, deduplication in connected environments should/can be evaluated on different levels

of the network, namely: at the edge level (described in Section 4) and at the sink level, and needs to be adapted for static and

mobile edge devices with different configurations of hard-separated or soft-separated zones and coverage areas. In this section, we

describe the different sink-level deduplication use cases and explain how FREDD handles every case.

5.1. Use Cases

Generally, an edge device (made of one or multiple sensors) can cover an observation if it occurs within its coverage area (i.e.,

sensing range), where every event that takes place in this area can be detected by the device. The coverage area of an edge device

is usually defined by the device manufacturer following its sensor(s) specifications. As for sink devices, their coverage areas are

usually defined by experts based on the sinks’ connectivity in the environment. A sink device’s coverage area can be defined as

one or multiple non-overlapping zones, following the network designer’s needs (cf. Figure 9). In addition, sink-level zones can be

hard-separated or soft-separated. With hard-separated zones, a sensor’s coverage area lies in one single zone from which it can

collect data (e.g., camera sensors separated by walls, cf. Figure 9.a). With soft-separated zones, a sensor’s coverage area spans

more than one zone allowing the sensor to collect data from multiple zones simultaneously (e.g., camera sensors separated by glass

doors, cf. Figure 9.b).

a. Hard-zone separations b. Soft-zone separations

Figure 9. Examples of sink node coverage areas, with multiple zones including hard and soft separations

As a result, we consider and discuss four different sink-level deduplication use cases summarized in Table 11: i) zone-based

with hard separations, ii) zone-and-coverage based with hard separations, iii) zone-based with soft separations, and iv) zone-and-

coverage based with soft separations.

Table 11. Sink-level deduplication uses cases

 Considers
Sink Zones

Considers Sensor
Coverage Areas

Hard Separations
between Zones

Soft Separations
between zones

Case 1    

Case 2    

Case 3    

Case 4    

Note that in this study, we focus on deduplication within individual sink zones, where each sink comprises an independent

system and there is no deduplication or coordination required between the sinks. Yet, we can extend our scenario to consider inter-

sink collaborations for handling redundancies that occur in overlapping sink zones. This would add a new layer of deduplication

handling within the connected network environment, which we plan to investigate in a dedicated future study.

5.1.1. Case 1: Zone-based with Hard Zone Separations

In this case, we assume: i) the sink node coverage zones are hard-separated, and ii) data from multiple sensors are considered for

deduplication if the two sensors are located in the same zone (cf. Figure 9.a where data from sensors S1-and-S2 are considered for

deduplication, likewise for data from sensors S3-and-S4). While it seems simple and straightforward, yet this use case neglects the

issue of edge device (sensor) coverage area. In other words, this use case might not be entirely practical, since sensors might be

located in the same zone but their coverage areas do not overlap (e.g., the case of sensors S3-and-S4). For example, two cameras

might be located next to each other in the same room, but each camera covers its own corner in the room. In such situations, sensor

will be producing separate data feeds which are not combined and deduplicated at the sink node, since they describe different

things. This can be handled in the following use case #2.

5.1.2. Case 2: Zone-and-Coverage based with Hard Zone Separations

In this case, we assume: i) the sink node coverage zones are hard-separated; and ii) data from multiple sensors are considered for

deduplication if (1) the sensors collect data from the same zone (i.e., their coverage areas are included in the same zone), and (2)

the sensors’ coverage areas are largely overlapping (e.g., sensors S1-and-S2 in Figure 9.a. For instance, the data feeds of two

cameras located in the same room and covering largely overlapping areas of the room will be considered for deduplication at the

sink node. Yet, if the cameras’ coverage areas do not largely overlap, their data feeds will be processed separately and will not be

considered for deduplication at the sink (cf. sensors S3-and-S4 in Figure 9.a). Deciding whether two coverage areas largely overlap

or not is done by evaluating the spatial topological relations between the areas (e.g., equal, overlap, and, disjoint, cf. Section 5.2).

5.1.3. Case 3: Zone-based with Soft Zone Separations

In this case, we assume: i) the sink node coverage zones are soft-separated; and ii) data from multiple sensors are considered for

deduplication if the sensors collect data from the same zone, i.e., if their coverage areas are included in or largely overlap with the

same zone (e.g., sensors S5-and-S6 and sensors S7-and-S8 in Figure 9.b). Deciding on coverage area-zone inclusion7 and

overlapping is done by evaluating the spatial topological relations between the areas and the zones (similarly to area-area

topological relations, cf. Section 5.2).

5.1.4. Case 4: Zone-and-Coverage based with Soft Zone Separations

In this case, we assume: i) the sink node coverage zones are soft-separated; and ii) data from multiple sensors are considered for

deduplication if (1) the sensors collect data from the same zone (their coverage areas are entirely included in or largely overlap

with the same zone), and (2) the sensors’ coverage areas are largely overlapping, e.g., sensors S5-and-S6 in Figure 9.b). For

instance, the data feeds from two temperature sensors collecting data from the same room such that their coverage areas do not

overlap (e.g., sensors S7-and-S8 in Figure 9.b) will not be considered for deduplication at the sink node.

5.2. Sink-Level Deduplication Process

Figure 10. FREDD’s sink-level deduplication process

The overall process of sink-level deduplication using FREDD is depicted in Figure 10. We start by performing zone-based edge

device clustering to group together edge devices (sensors) bellowing to the same zone. These are the sensors located within the

same hard-separated zones (following cases 1-and-2), or the sensors which coverage areas are included in or largely overlap with

the soft-separated zones (following cases 3-and-4). Deciding whether an edge device coverage area and a sink device (soft-

separated) zone overlap or not is achieved by evaluating the spatial topological relations between them (e.g., equal, overlap, and,

disjoint), which comes down to evaluating their geometric similarity in a referential (e.g., Euclidian) geometric space, formally

(Abebe M. et al. 2020, Taddesse F.G. et al. 2009):

7 Note that inclusion is an asymmetric equality relation which is evaluates based on an asymmetric similarity measure (i.e., area-zone inclusion is evaluated using

| (,) |
()

| |
ASum

Intersection area zone
Sim area, zone

area
=

, where the relation occurs if SimAsym(area, zone)  ThreshInclude e.g., (Abebe M. et al. 2020, Taddesse F.G. et al. 2009).

| (,) |
()

(| |,| |)

Intersection area zone
Sim area, zone

min area zone
= (9.1) | (,) |

()
(| |,| |)

1 2
1 2

1 2

Intersection area area
Sim area , zone

min area area
=

(9.2)

 The amount of overlapping between an area and a zone is controlled by the expert through a dedicated similarity threshold

(cf. Figure 11.a, e.g., Sim(area, zone)  ThreshOverlap means the sensor coverage area largely overlaps with the sink zone).

a. Using a symmetric similarity measure (cf. Formulas 9.1 & 9.2) b. Using an asymmetric similarity measure (cf. Formula 10)

Figure 11. Basic spatial topological relationships following (Abebe M. et al. 2020, Taddesse F.G. et al. 2009)

Similarly, the inclusion relation between and area and a zone is evaluated using an asymmetric version of the geometric

similarity measure, more formally (Abebe M. et al. 2020, Ehrig M. and Sure Y. 2004):

| (,) |
()

| |
Asym

Intersection area zone
Sim area, zone

area
= (10)

where the inclusion relation occurs if SimAsym(area, zone)  ThreshInclude (cf. Figure 11.b).

Consequently, in cases 2-and-4 where edge device coverage areas are taken into account, we perform area-based edge device

sub-clustering, by evaluating edge device (sensor) coverage area similarity (cf. Formula 9.2) and grouping together edge devices

having largely overlapping coverage areas. The amount of overlapping between two areas to be considered eligible for sink-level

deduplication – is controlled by the expert through a dedicated similarity threshold (cf. Figure 11.a, e.g., Sim(area1, area2) 

ThreshOverlap then coverage areas largely overlap and their edge devices are eligible for sink-level deduplication).

After all edge devices (sensors) have been clustered and sub-clustered following their target use cases, data from the final

clusters are run separately through the FREDD framework to perform the deduplication process.

6. Complexity Analysis

The overall time complexity of our FREDD approach simplifies to: O(N  E2) where N designates the number of data items

considered per edge device, and E the number of edge devices considered per sink node. Complexity is evaluated as the sum of

the complexities of the main modules of FREDD, considered both edge-level and sink-level processing:

- For edge-level (and sink-level only) deduplication: the complexities of FREDD’s modules are linear w.r.t. the number of

data items being processed at the edge (or at the sink), and simplify in the worst case scenario to O(N) + … + O(N), which

comes down to an overall O(N).

- For edge-and-sink level deduplication: we facture-in: i) the number of edge devices E per sink node, where the system

requires worst case O(((E(E-1))/2), and simplifies to O(E2) considering all edge nodes are present in the same sink zone and

need to be compared together pair-wise to identify their coverage area intersections, ii) the number of sink nodes S (i.e.,

number of zones) in the environment, where the system requires worst case O(ES) to compare every edge node with every

sink zone to identify their area-zone intersections. As a result, FREDD’s overall complexity when performing edge-and-sink

level deduplication comes down to O(N  (E2 + ES)) which simplifies to O(N  E2) since E is generally much larger than S.

7. Experimental Evaluation

We have implemented our FREDD framework as a web-based application, using methods from the jFuzzyLogic open source library

(Cingolani P. and Alcalá-Fdez J. 2013, Cingolani P. and Alcala-Fdez J. 2012) in implementing our fuzzy logic agent, to allow easy

manipulation for domain experts in operating and evaluating the system8. We have empirically tested the different components of

our system using multiple sets of experiments which we categorize in two main groups: i) quality evaluation: comparing

deduplication accuracy, data reduction ratio, size of transmitted data, and size of stored data in order to evaluate deduplication

quality, and ii) performance evaluation: comparing the time performance of the different components of the system, in order to

evaluate its time complexity. We first start by describing our test data and experimental metrics, before we present our empirical

results. The system implementation, experimental datasets, and test results are available online9.

8 On the server-side, we adopt a three-layer architecture consisting of: i) a Web API layer that allows client-side applications to communicate with the server to request data,

services and to define all the domain expert parameters such as the deduplication threshold, the value and zone lookup tables, the different fuzzy parameters, etc.; ii) a

Business Logic layer where FREDD’s main decision making processes are implemented based on the different parameters the expert provided; and iii) a Data Access layer

where data storage and retrieval take place. Every layer is internally designed in a modular way to allow for separate testing and evaluation of every module.
9 http://sigappfr.acm.org/Projects/FREDD/

ThreshOverlap ThreshEqual 0 1

Disjoint Overlap Equal

Sim = ThreshOverlap ThreshInclude 0 1

Disjoint Overlap Include

SimAym =

7.1. Experimental Test Data

We build three datasets for edge device, mobile device, and sink device measurements collected from the Intel Lab Berkeley

dataset (Bodik P. et al. 2019) obtained from 54 Micra2Dot sensors depicted in the Figure 12. Sensors provide weather data

including temperature, humidity, light, (and voltage at the time of the sensor reading), as well as the list of Cartesian coordinates

for each of the 54 sensors, and the time when each data measurement is collected. We consider humidity and temperature

measurements in our experimental evaluation and describe our datasets below:

- Dataset 1: Static edged device dataset – It consists of 20k humidity and temperature data measurements collected from

sensor S1 on 28/2/2004.

- Dataset 2: Mobile edge device dataset - We assume a mobile device M1 and construct its dataset from the static

Micra2Dot sensors as follows: i) humidity and temperature data for M1 is collected from nine sensors: S1-to-S4 and S6-

to-S10 between 28/2/2004 and 29/2/2004, ii) data collected from all these sensors is first ordered chronologically by date

and time, and then filtered to simulate the following path of the mobile sensor (S1  S2  …  S9  S10  S9 

S8… S1), iii) mobile sensor M1 collects from each location a random number of data measurements10, resulting in a

dataset of 3,416 entries. The resulting dataset simulates the behavior of a mobile sensor where the location of each data

measurement is that of the source static sensor collecting it in the Micra2Dot schematic.

- Dataset 3: Sink device dataset – We assume a sink device Sink1 and construct its dataset from the static Micra2Dot

sensors as follows: i) humidity and temperature data for Sink1 is collected from the following nine sensors (used

previously to create Dataset 2): S1-to-S4 and S6-to-S10 between 28/2/2004 and 29/2/2004, ii) data is ordered

chronologically by date and time producing a dataset of 31,135 data entries. The resulting dataset simulates the behavior

of a sink device collecting data from 9 different edge devices, where the location of each data measurement is that of the

source static sensor collecting it in the Micra2Dot schematic.

Figure 12. Schematic of the Intel Lab Berkeley Micra2Dot sensors

7.2. Evaluation Metrics

We utilize four evaluation metrics to evaluate FREDD’s deduplication effectiveness. At the edge device, we utilize i) deduplication

accuracy, and ii) data reduction percentage; and at the sink device, we add two more metrics: iii) size of transmitted data, and iv)

size of stored data. We describe the four metrics below.

Deduplication accuracy is defined as a time series similarity between the original data and the deduplicated data, after

modifications have been applied on the deduplicated data set in order to reconstruct a set that has the same dimension (length) of

the original one (Ismael W. et al. 2019). More formally, given TSo = [(t1,vo_1), (t2, vo_2), …, (tn, vo_n)] as the time series

representation of the original data where n is the length of the data, and TSd = [(t1, vd_1); (t2, vd_2), …, (tm, vd_m)] as the time series

representation of the deduplicated data where m is the length of the deduplicated data such that m < n and TSd  TSo, we generate

TSr = [(t1, vr_1), (t2, vr_2), …, (tn, vr_n)] as the reconstructed time series from the deduplicated data where the missing (deduplicated)

values are padded to reach the same dimensionality of the initial data. For instance, given TSo = [(t0, 16C), (t1, 19.5 C), (t2, 21C),

(t3, 21C)] and TSd = [(t0, 16 C), (t3, 21 C)], then TSr =[(t0, 16C), (t1, 21C), (t2, 21 C), (t3, 21 C)] where the missing values

10 We use a random integer between 1 and 5, where a small integer will increase the chance of changing zone pattern codes between two consecutive data

measurements, emphasizing the idea of mobility.

at t1 and t2 have been padded by the deduplicated value at t0. Consequently, deduplication accuracy is measured as the Jaccard

similarity coefficient between the original time series and the reconstructed (same dimensionality) time series as follows:

_ _

1

_ _

1

(,)

 [0, 1]

(,)

n

o i r i

i

n

o i r i

i

min v v

acc

max v v









=

(11)

A good deduplication solution would produce a higher similarity between the original data and the reconstructed data, resulting in

higher deduplication accuracy.

Data reduction ratio represents the amount of data that has been eliminated as a result of applying the deduplication process.

More formally, it is defined as the ratio of the difference between the original data and the duplicated data:

| | | |
 [0, 1]

| |

o d

o

TS TS
redu

TS

 
 

 
= 1-

(12)

where |TSo| represents the size of the original data, |TSd | the size of the deduplicated data, and | | | |

| |

o d

o

TS TS

TS

 the data saving ratio.

A good deduplication solution would produce a lower data saving ratio (i.e., smaller difference between original and deduplicated

data size), resulting in a higher data reduction ratio.

Size of transmitted data (|datatrans|) represents the size of the data transmitted from the edge devices to the sink device. A good

deduplication solution would reduce both the size of data transmitted over the network in order to gain in network bandwidth.

Size of stored data (|datastored|) represents the size of the data stored at the sink device11. A good deduplication solution would

reduce the size of the data stored at the sink in order to gain in processing efficiency, speed, and throughput at the sink level.

7.3. Quality Evaluation

We conduct multiple sets of experiments to evaluate FREDD’s deduplication effectiveness considering various parameters and

use case scenarios, evaluating: i) data range overlap size, ii) fuzzy deduplication threshold, iii) sink zone granularity, iv) number

of edge devices connected to the sink, and v) sensor coverage area size. We also conduct a vi) baseline comparison evaluating

FREDD’s deduplication quality compared with its most recent alternatives. We describe the experiments and their results in the

below sub-sections.

7.3.1. Data Range Overlap Size evaluation

In this experiment, we evaluate the behavior of FREDD’s fuzzy redundancy detection process when varying the size of the data

overlap between boundary value ranges. This allows the domain expert to easily update the fuzzy membership functions according

to the size of the boundary overlapping, and thus allows more flexibility in fine-tuning the solutions’ behavior following the

expert’s needs (cf. challenge 3 from our motivation scenario). We consider four different pattern code fuzzy membership functions

as shown in Figure 13: i) rectangular functions with no overlapping boundaries amounting to 0% fuzzy computation, ii) trapezoidal

functions with small overlapping boundaries amounting to 30% fuzzy computation. iii) trapezoidal functions with large

overlapping boundaries amounting to 50% fuzzy computation, and iv) triangular functions with completely overlapping boundaries

amounting to 100% fuzzy computation. Deduplication accuracy and data reduction ratio results, applied on static edge data from

dataset 1, are shown in Figure 14. Results show that: i) deduplication accuracy (acc) increases and ii) reduction ratio (redu)

decreases when the overlap size between boundary ranges increases. On the one hand, an increase in boundary overlapping leads

to more fuzzy duplicate candidates being evaluated and detected by the system. This leads to higher acc since the deduplicated

values resulting from the fuzzy process will be closer to the original data values within the overlapping boundaries (compared with

performing a crisp decision making where the deduplicated values are restricted to the crisp boundaries, which are naturally farther

away from the original data values within those boundaries). On the other hand, an increase in fuzzy processing leads to a lower

redu since larger fuzzy ranges allow more candidate data to be considered for redundancy check. This leads to an increase in the

amount of data considered for processing and persisting after the deduplication process (in contrast, a larger amount of data that is

directly deduplicated following the crisp approach produces a leaner deduplication result, albeit with less accuracy compared with

the original data).

11 We follow the typical sensor network setup where edge devices do not perform any long-term data storage.

a. Rectangular with 0% overlap b. Trapezoidal with 30% overlap

c. Trapezoidal with 50% overlap d. Triangular with 100% overlap

Figure 13. Different humidity pattern code fuzzy membership functions with different boundary range overlapping sizes

a. Deduplication accuracy (acc) b. Data reduction ratio (redu)

Figure 14. Acc and redu results when varying the overlapping size of boundary data ranges

7.3.2. Fuzzy Deduplication Threshold evaluation

In this experiment, we vary the fuzzy deduplication threshold, allowing the fuzzy redundancy detection process to decide on the

deduplication status of candidate data items, and evaluate FREDD’s behavior accordingly. We perform this experiment at both

edge node and sink node levels (cf. challenge 1 from our motivation scenario), and consider the impact of device mobility on the

deduplication process (cf. challenge 2). This allows the domain expert to choose a suitable deduplication threshold in order to

achieve the desired accuracy and deduplication ratio following the expert’s needs (cf. challenge 3). Figures 15 and 16 show the

results of deduplication quality metrics when applied on static edge data from dataset 1 (Figure 15.a), and on mobile edge data

from dataset 2 (Figure 15.b), by varying the deduplication threshold. For both cases, when the threshold increases: i) acc increases

while ii) redu decreases. This is due to the fact that a higher deduplication threshold means less candidate pairs are considered for

duplication. We notice a similar behavior in Figure 16, which shows the results of deduplication quality metrics considering sink

device data from dataset 3. Here, we highlight the following observations:

- While acc increases and redu decrease when increasing the threshold for the different deduplication methods, we note that

the redu is relatively higher when deduplicating at both the edge-and-sink level, compared with edge-only and sink-only

deduplications.

- The size of data transmitted to the sink (|datatrans|) and the size of data stored at the sink (|datastored|) are both increased with

the increase in deduplication threshold. This is mainly due to the decrease in redu, resulting in more data being sent and

processed at the sink node.
- |dataTrans| levels are equal when deduplicating at edge-only and at edge-and-sink, and is less than the |dataTrans| level when

deduplicating at sink-only, since data in the latter case are sent directly from the edge to the sink without edge-level

deduplication.

0

0.2

0.4

0.6

0.8

1

20 25 30 35 40 45 50

Fu
zz

y
M

e
m

b
e

rs
h

ip

Humidity

C1 C2 C3 C4 C5 C6

C7 C8 C9 C10 C11

0

0.2

0.4

0.6

0.8

1

20 25 30 35 40 45 50

Fu
zz

y
M

e
m

b
e

rs
h

ip

Humidity

C1 C2 C3 C4 C5 C6

C7 C8 C9 C10 C11

0

0.2

0.4

0.6

0.8

1

20 25 30 35 40 45 50

Fu
zz

y
M

e
m

b
e

rs
h

ip

Humidity

C1 C2 C3 C4 C5 C6

C7 C8 C9 C10 C11

0

0.2

0.4

0.6

0.8

1

20 25 30 35 40 45 50

Fu
zz

y
M

e
m

b
e

rs
h

ip

Humidity

C1 C2 C3 C4 C5 C6

C7 C8 C9 C10 C11

0

0

0

1

1

1

Triangular
(100% fuzziness)

Trapezoidal
(50% fuzziness)

Trapezoidal
(30% fuzziness)

Rectangular (0%
fuzziness)

A
cc

0

0.2

0.4

0.6

0.8

1

Triangular (100%
fuzziness)

Trapezoidal
(50% fuzziness)

Trapezoidal
(30% fuzziness)

Rectangular (0%
fuzziness)

R
ed

u

- |dataStored| is smallest in case of deduplication at edge-and-sink, compared with edge-only and sink-only, since deduplication

is performed at two levels.

Note that fine-tuning and optimizing the evaluation metric values can be handled automatically as a multi-objective

optimization problem. This can be solved using a number of known techniques that apply linear programming and machine learning

to identify the best weights for a given problem class, e.g., (Zou F. et al. 2021, Gal A. et al. 2016, Hopfield J. J. 1989). We do not

further discuss evaluation metric optimization here since it is out of the scope of this paper, and we report it to a dedicated future

study.

a. Resuls with static device data from dataset 1 b. Resuls with mobile device data from dataset 2

Figure 15. Acc and redu results with varying fuzzy deduplication thresholds

 a. Deduplication accuracy (acc)

b. Data reduction ratio (redu)

c. Size of data transmitted to the sink (|dataTrans|) d. Size of data stored at the sink (|dataTrans|)

Figure 16. Deduplication quality metrics obtained with varying fuzzy deduplication thresholds

7.3.3. Sink Zone Granularity evaluation

In this experiment, we evaluate the impact of sink zone granularity on the deduplication process. Consider the sample zone

granularity configurations shown in Figure 17. We first consider the area shown in Figure 17.a as one single zone including 9

sensor devices, and then gradually divide it into smaller non-overlapping zones: 2, 3, 5, and 9 zones respectively (Figures 17.b-to-

f). We perform this experiment considering deduplication at the edge and sink levels (cf. challenge 1 of our motivation scenario),

and deduplication with static and mobile devices (cf. challenge 2). It also highlights the domain expert’s ability to divide the

connected environment into different sink zone granularities in order to achieve the desired behavior based on the expert and

application needs (cf. challenge 3).

0

0.2

0.4

0.6

0.8

1

0.7 0.73 0.75 0.8 0.85 0.9 0.94

R
at

io

Deduplication threshold

Acc Redu

0

0.2

0.4

0.6

0.8

1

0.7 0.73 0.75 0.8 0.85 0.9 0.94

R
at

io

Deduplucation threshold

Acc Redu

0

0.2

0.4

0.6

0.8

0.7 0.75 0.8 0.85 0.9 0.95

A
cc

Deduplication threshold

Edge-only Sink-only Edge-and-sink

0

0.2

0.4

0.6

0.8

0.7 0.75 0.8 0.85 0.9 0.95

R
e

d
u

Deduplication threshold

Edge-only Sink-only Edge-and-sink

0

0.4

0.8

1.2

1.6

0.7 0.75 0.8 0.85 0.9 0.95

|D
a
ta

Tr
a
n
s|

Deduplication threshold

Edge-only Sink-only Edge-and-sink

0

0.4

0.8

1.2

1.6

0.7 0.75 0.8 0.85 0.9 0.95

|D
a
ta

St
o
re
d
|

Deduplication threshold

Edge-only Sink-only Edge-and-sink

a. One single sink zone b. Two sink zones c. Three sink zones

 e. Five sink zones f. Nine (individual device) sink zones

Figure 17. Sample sink zone granularities using an extract of our reference Micra2Dot dataset (cf. Figure 12)

Figures 18 and 19 show the results of deduplication quality metrics when applied on static edge data from dataset 1 (Figure 18),

and on mobile edge data from dataset 2 (Figure 19), by varying the number of zones in a sink coverage area. We highlight the

following observations:

- In the case of static devices (where nodes are not changing zones over time), results show that an increase in zone

granularity does not have any impact on the deduplication results (deduplication metrics remain unaffected)

- In the case of mobile device (where nodes are changing zones over time), results show that an increase in zone granularity

allows to i) increase acc and ii) decrease redu. Increasing the number of zones within a certain area means there is a higher

chance that mobile devices will exit one zone and enter another, hence data from the device becomes less likely to be

considered for deduplication.

We notice a similar behavior in Figure 19 which shows the results of deduplication quality metrics considering sink device

data from dataset 3. Here, we highlight the following observations:

- Considering deduplication at edge-only: results show that an increase in zone granularity does not have any impact on the

deduplication metrics, since all edge devices in dataset 3 are static devices, and no additional deduplication is performed

at the sink level.

- Considering deduplication at sink-only and at edge-and-sink: an increase in zone granularity produces: i) an increase in

acc and ii) a decrease in redu. This is because a higher number of zones means less sensors will be collecting data from

the same zone in a certain time span. Similarly, |datatrans| from the edges to the sink and |datastored| at the sink will increase

since less data are being deduplicated at the edge level.

- In case only one sensor is collecting data in each zone (considering 9 different zones in our empirical use case), all three

deduplications (edge-only, sink-only, and edge-and-sink) will produce the same results since edge devices are not

clustered together at the sink-level.

a. Resuls with static device data from dataset 1 b. Resuls with mobile device data from dataset 2

Figure 18. Acc and redu results with varying zone granularities considering static edge nodes

0.5

0.52

0.54

0.56

0.58

0.6

1 2 3 5 9

R
at

io

of zones

Acc Redu

0.1

0.3

0.5

0.7

0.9

1 2 3 5 9

R
at

io

of zones

Acc Redu

a. Deduplication accuracy (acc) b. Data reduction ratio (redu)

c. Size of data transmitted to the sink (|dataTrans|) d. Size of data stored at the sink (|dataStored|)

Figure 19. Deduplication quality metrics obtained with varying zone granularities considering mobile edge nodes

7.3.4. Number of Edge Devices connected to Sink Nodes

In this experiment, we evaluate the impact of changing the number of edge devices connected to the sink node. We consider a 1-

zone (1-sink) granularity scenario, and we vary the number of edge devices in the zone from 1-to-9. We perform this experiment

considering deduplication at the edge-and-sink level considering a varying number of edge devices per sink node based on the

domain expert and application needs (cf. challenge 3). Figure 20 shows deduplication quality metrics applied on sink node data

from dataset 3 while varying the number of devices dataset 3 is collected from. Results in Figure 20.a show a decrease in acc and

a slight increase redu at the sink node, when the number of edge devices is increased per sink node. This is because more data

from more sensors is processed at the sink node, where sensors are more dispersed in the zone and might produce different

measurements which are not always suitable for deduplication. In addition, results in Figure 20.b show drastic increases in both

|datatrans| and |datastored| when the number of edge devices increases per sink node, highlighting the fact that more data is being

transmitted to and stored at the sink.

a. Deduplication accuracy (acc) and data reduction ratio (redu) b. Size of data transmitted (|dataTrans|) and stored (|dataStored|) at the sink

Figure 20. Deduplication quality metrics applied on sink node data (dataset 3), when varying the number of devices per sink zone

7.3.5. Sensor Coverage Area Size evaluation

In this experiment, we evaluate the impact of varying the radius of sensor coverage areas on the deduplication process (cf. challenge

3). We consider in Figure 21 multiple configurations of sink coverage areas divided into three zones including both hard and soft

separations following our use case scenarios (cf. Section 5.1). For every use case, we vary the sensor coverage area radius from 1

(i.e., data is only collected at the exact location of the sensor) to whole sink zone (i.e., data is collected from the whole sink zone

where the sensor device is located). Deduplication is performed at the edge-and-sink level.

0

0.15

0.3

0.45

0.6

1 2 3 5 9

A
cc

of zones

Edge-only Sink-only Edge-and-sink

0

0.05

0.1

0.15

0.2

1 2 3 5 9

R
ed

u

of zones

Edge-only Sink-only Edge-and-sink

1

1.1

1.2

1.3

1.4

1 2 3 5 9

|D
at

a T
ra

n
s|

of zones

Edge-only Sink-only Edge-and-sink

0

0.4

0.8

1.2

1.6

1 2 3 5 9

|D
at

a S
to

re
d
|

of zones

Edge-only Sink-only Edge-and-sink

0

0.3

0.6

0.9

1.2

1 2 3 4 5 6 7 8 9

R
at

io

of edge devices connected to the sink

Acc Redu

0

0.4

0.8

1.2

1.6

1 2 3 4 5 6 7 8 9

Si
ze

 o
f

d
at

a
(M

B
)

of edge devices connected to the sink

|DataTrans| |DataStored|

a. Illustrations of hard separations between zones with coverage area radius = 1, 4, and 6 respectively

b. Illustrations of soft separations between zones use with coverage area radius = 1, 4, and 6 respectively

Figure 21. Sample sink zone use cases with sensor coverage area radius variations using an extract of the Micra2Dot dataset

Figure 22 shows deduplication quality metrics when applied on sink node data from dataset 3. Here, we highlight the following

observations:

- In case 1 – zone-based with hard separations (Figure 22.a): acc, redu, and |datastored| are not affected by the size of the

sensor’s coverage area, since the deduplication process is only affected by the location of the sensor, and not its coverage

area. Note that |datatrans| in unaffected in all cases since the present use case variations do not target the data transmitted

from edge to sink: deduplication at the edge level is not affected by a sensor’s coverage area.

- In case 2 – zone-and-coverage based with hard separations (Figure 22.a) and in case 4 – zone-and-coverage based with

soft separations (cf. Figure 22.b), results show that an increase in the coverage area size leads to i) a decrease in acc, ii) an

increase redu, and iii) a decrease in |datastored|, since more sensors are being considered for deduplication (clustered together)

due to their coverage area overlaps. However, we notice that acc and redu for case 2 stop decreasing/increasing and stabilize

after reaching the limit of the zone area, since the zone separations in this case are hard (i.e., the number of sensors that

could be clustered together will reach its limit).

a. Deduplication accuracy (acc) b. Data reduction ratio (redu)

c. Size of data transmitted to the sink (|dataTrans|) d. Size of data stored at the sink (|dataStored|)

Figure 22. Deduplication quality metrics applied on sink node data (dataset 3), when varying sensor coverage area radius with

multiple hard/soft separation use cases

0

0.2

0.4

0.6

1 2 4 6 8

A
cc

Coverage area radius

Use case 1 Use case 2 Use case 3 Use case 4

0

0.04

0.08

0.12

0.16

0.2

1 2 4 6 8

R
ed

u

Coverage area radius

Use case 1 Use case 2 Use case 3 Use case 4

0

0.25

0.5

0.75

1

1 2 4 6 8

|D
at

a T
ra

n
s|

Coverage area radius

Use case 1 Use case 2 Use case 3 Use case 4

0

0.25

0.5

0.75

1

1 2 4 6 8

|D
at

a S
to

re
d
|

Coverage area radius

Use case 1 Use case 2 Use case 3 Use case 4

- In case 3 – zone-based with soft separations (Figure 22.b), redu increases with the increase in coverage area size since

separations between zones are soft, since more sensors in this case will belong to more than one zone at the same time.

- For use cases 2 and 4 (zone-and-coverage), redu levels are smaller than those for cases 1 and 3 (zone-based only). This is

because cases 2 and 4 consider the similarities between sensor coverage areas belonging to the same zones, allowing to

detect redundant measurements between similar sensors, thus affecting the deduplication process accordingly.

- For a coverage area radius =1, acc and redu accuracy for both cases 1 and 2 are the same. This is because the coverage area

size is too small, and hence, each sensor will belong to one zone whether the separations are hard or soft. |dataStored| increases

with redu since deduplication is performed on the edge-and-sink level.

7.3.6. Baseline Comparison with Existing Approaches

In order to further evaluate our solution, we conducted a comparative study to assess its effectiveness with respect to recent

alternatives in the literature. On the one hand, our solution i) handles redundancies at both edge device and sink device levels of

the network (cf. challenge 1 of our motivation scenario), ii) handles static and mobile devices, taking into account zone separations

(hard/soft) and coverage area variations (challenge 2), and iii) allows adapting the deduplication process behavior following the

expert’s needs (challenge 3). Most of the latter challenges are overlooked by existing solutions, except for device mobility which

is handled in (Mansour E. et al. 2020) (cf. comparative Table 12). On the other hand, our solution performs fuzzy processing,

allowing for improved deduplication quality compared with the crisp deduplication processes employed in existing solutions.

Table 12. Comparing FREDD with alternative solutions

Challenge 1 Challenge 2 Challenge 3

Edge-level

deduplication

Sink-level

deduplication
Device mobility

Zone separations

(hard/soft)

Sensor coverage

area size

Domain expert

control

SVM (Patil P. and

Kulkarni U. 2013)
     

CWCA (Ullah A. et al.

2019)
     

REDA (Khriji S. et al.

2018)
     

DRMF (Mansour E. et

al. 2020)
     

FREDD

(our solution)
     

We experimentally compare our method's effectiveness with two of its most recent alternatives: i.e., REDA (Khriji S. et al.

2018) and DRMF (Mansour E. et al. 2020). To test REDA, we consider the crisp humidity ranges shown in Figure 13.a. To test

FREDD, we consider the fuzzy humidity ranges in Figure 13.b where 11 pattern codes are defined, and we set the deduplication

threshold to 0.8. We also consider two variations of DRMF: i) the first one with a deviation threshold equal to one quarter of the

width of the crisp range  = 3/4 (which we refer to as DRMF_1), and ii) the second one with a deviation threshold equal to one

eighth of the width of the crisp range  = 3/8 (which we refer to as DRMF_2).

Figure 23 shows the acc and redu results obtained from each of the four algorithms when varying the number of data

measurements of dataset1. Results show that FREDD consistently achieves the best acc results across all data variations compared

with both REDA and DRMF1/2. This is specifically due to FREDD’s fuzzy processing capability, allowing to detect approximate

redundancies and process them for deduplication, compared with the crisp decision-making processes performed by both REDA

and DRMF.

a. Deduplication accuracy (acc)

b. Data reduction ratio (redu)

Figure 23. Comparison of the deduplication quality metrics between RED, DRMF1/2 and FREDD, when varying the number of data

measurements of dataset1

To further explain the results in Figure 23, we conduct a second experiment where we compare the decision-making behavior

of each algorithm applied on different pairs of humidity data measurement; the first data item is fixed at a certain value, while the

0

0.15

0.3

0.45

0.6

1000 2000 3000 5000 8000 10000 12000 15000 17000 20000

A
cc

Size of data (# of items)

DRMF_1 DRMF_2 REDA FREDD

0

0.25

0.5

0.75

1

1000 2000 3000 5000 8000 10000 12000 15000 17000 20000

R
ed

u

Size of data (# of items)

DRMF_1 DRMF_2 REDA FREDD

second item is varied within a controlled range. Figure 24 shows the percentage of deduplication produced by each algorithm for

a first humidity value of 39.5 g/m3, and the second value with a variation range of  2.5 g/m3.

Figure 24. Percentage of deduplicates when fixing the first humidity data to 39.5 g/m3 and varying the second between [37, 42] g/m3

Considering REDA’s results, all values that lie between [38, 41] g/m3 are considered automatic duplicates (i.e., 100%

duplicates) and are assigned the same pattern code. With DRMF1, considering a delta =2/3 and given a cluster centroid of 39.5

g/m3, all values that lie between [38, 41] g/m3 are considered duplicates, and a new cluster centroid is computed outside those

boundaries Such a behavior decreases acc since a good number of pairs are considered automatic duplicates, producing 100%

duplicates in Figure 24. A similar behavior is also noticed for DRMF2. In contrast, each pattern code range in FREDD is divided

into: i) a crisp range where pairs are automatically considered duplicates (i.e., from [39, 40] g/m3), and ii) a fuzzy range (i.e.,

between [37, 39] g/m3 and [40, 42] g/m3) where boundaries from different other ranges overlap. In the fuzzy range, the

deduplication decision is made based on a fuzzy inference system and a set of fuzzy rules, allowing the percentage of duplicates

to vary accordingly (e.g., for a second value of 38 g/m3, the percentage of duplicates is 70%). By deciding on an appropriate

deduplication threshold (e.g., 0.8), only pairs that result in a deduplication percentage bigger than 80% will be considered

duplicates. Implementing such behavior makes the deduplication decision more accurate and intelligent. Less duplicate pairs are

considered automatic duplicates and the accuracy of the deduplication process increases accordingly (as shown in Figure 24).

a. Edge-level processing time when varying the number of data items b. Edge-level processing time on different hardware devices,

considering 50% data item overlap

c. Edge-and-sink level processing time when varying the number

of edge devices per sink note

d. Edge-and-sink level processing time when varying the number of

sink nodes, considering a fixed # of 10 edge devices per sink

Figure 25. FREDD’s time performance consider edge-level and edge-and-sink level deduplication processes with varying parameters

0

0.2

0.4

0.6

0.8

1

37 37.5 38 38.5 38.8 38.9 39 39.5 40 40.1 40.2 40.5 41 41.5 42

%
 o

f
d

u
p

lic
at

es

Second humidity data item (for a first item of 39 g/m3)

DRMF_1 DRMF_2 REDA FREDD

0

2

4

6

8

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
u

n
n

ig
n

 t
im

e
(s

)

size of data (# of items)

50% overlap 20% overlap 100% overlap

0

20

40

60

80

100

100 200 300 400 500 600 700 800 900 1000

R
u

n
n

ig
n

 t
im

e
(s

)

size of data (# of items)

PC RaspberryPi Arduino Pic

0

20

40

60

80

10 20 30 40 50 60 70 80 90 100

R
u

n
n

ig
n

 t
im

e
(s

)

of edge devices

100 data per edge 200 data per edge
500 data per edge 1000 data per edge

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

R
u

n
n

ig
n

 t
im

e
(s

)

of sink devices

100 data per edge 200 data per edge
500 data per edge 1000 data per edge

7.4. Performance Evaluation

In addition to testing the quality of our approach in identifying redundant data items and performing deduplication, we also evaluate

its efficiency in terms of execution time. Tests were carried out on a PC with an Intel I7 system with 2.9 GHz CPU/16GB RAM. Edge-

level computations were also carried out on Arduino Uno, PIC32MX and Raspberry PI devices, with 16 MHz/2KB RAM, 50 MHz/32KB

RAM and 1.5GHz/4GB RAM respectively. Results in Figure 25.a and b highlight the linear complexity of FREDD’s edge-based

deduplication process when varying the number of data items per edge node, reflecting O(N) time complexity. Results in Figure

25.b reflect the linear computation overhead added by less performing hardware edge devises like PIC32MX and Arduino Uno,

compared with the more powerful Raspberry PI. Results in Figure 25.c highlight the polynomial complexity of FREDD’s edge-and-

sink deduplication process when varying the number of edge devices per sink node, reflecting O(E2) time. Figure 25.d highlights

FREDD’s its linear complexity when varying the number of sink nodes, reflecting O(ES) time.

Figure 26. FREDD’s time performance compared with its recent alternatives, considering a fixed data size of 1000 items per edge, and a fixed

number of 10 edge devices per sink node

We have also compared FREDD’s time complexity with its recent alternatives, REDA, DRMF_1 and DRMF_2, using

different configurations when varying the number of data items per edge node. Figure 26 shows representative running time results

considering a fix data size per edge device =1000 items and a fixed number of edges per sink node = 10. Results show that REDA

is the most efficient approach due to its fast and crisp pattern code assignment approach. FREDD requires more processing time

than REDA due to its fuzzy computation process. DRMF is seemingly the most time consuming approach due to its data clustering

process which is utilized to perform data aggregation. This means that our approach is able to produce improved deduplication

quality while increasing execution time compared with the crisp REDA approach, and outperforming the execution time of DRMF.

8. Conclusion

In this study, we introduce FREDD: a new approach for Fuzzy Redundancy Elimination for Data Deduplication in a connected

environment. FREDD uses simple natural language rules to represent domain knowledge and expert preferences regarding data

duplication boundaries. It then applies pattern codes and fuzzy reasoning to detect duplicates on the general network infrastructure

including both the edge level and the sink level of the network. Moreover, it is adapted for multiple scenarios, considering both

static and mobile devices, with different configurations of hard-separated and soft-separated zones, and different sensor coverage

areas. Experiments on a real-world dataset highlight FREDD’s potential and improvement compared with existing solutions.

We are currently investigating the use of parametric learners (Wen X. 2021, Abboud R. and Tekli J. 2019) and meta-heuristic

algorithms (Nguyen T. 2021, Azar D. et al. 2016) allowing to (semi) automatically configure the pattern codes’ interval ranges

and the corresponding fuzzy rules based on expert defined, data related, or application related features. In the near future, we plan

to extend this work to cover data redundancies at the base station level of the network, where data is aggregated from multiple sink

nodes. In this context, different cases need to be considered including sink node mobility, sink node coverage area overlapping,

and inter-sink collaboration. We also aim to detect composite redundancies (Jebbaoui H. et al. 2015) that are generated by data

fusion from multiple sensors, where deduplication would be handled at the edge, sink, and base station levels of the network. These

entail special challenges depending on the structure, connectivity, dynamics, and overall properties of the connected environment.

In the long run, we plan to investigate data recovery (Haraty R. and El Sai M. 2017, Haraty R. et al. 2016) in connected

environments, including damage assessment and recovery from deduplicated data.

0

1

2

3

4

5

6

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
u

n
n

in
g

tm
e

(s
)

Size of data (# of items)

REDA FREDD DRMF_1 DRMF_2

Declarations

Conflicts of interest/Competing interests

Not Applicable.

Compliance with Ethical Standards

 Disclosure of potential conflicts of interest

1. Conflict of Interest: The authors declare that they have no conflict of interest.

 Research involving human participants and/or animals

1. Statement of human rights: Ethical approval: For this type of study formal consent is not required.

2. Statement on the Welfare of Animals: Ethical approval: This article does not contain any studies with animals performed

by any of the authors.

 Informed consent: Additional informed consent was obtained from all individual participants for whom identifying

information is included in this article.

Availability of Data

The experimental data and results are available at the following link: http://sigappfr.acm.org/Projects/FREDD/. Additional

information can be acquired the authors on reasonable request.

Availability of Code

An executable version of the prototype are available at the following link: http://sigappfr.acm.org/Projects/FREDD/.

References

Abboud R. and Tekli J. (2019). Integration of Non-Parametric Fuzzy Classification with an Evolutionary-Developmental Framework to

perform Music Sentiment-based Analysis and Composition. Springer Soft Computing 24(13): 9875-9925

Abebe M., Tekli J., Getahun F., Chbeir R. and Tekli G. (2020). Generic Metadata Representation Framework for Social-based Event

Detection, Description, and Linkage. Knowledge Based Systems 188.

Attigeri G., Karunakar A. and Maddodi S. (2010). Data Deduplication Techniques and Analysis. , International Conference on Emerging

Trends in Engineering & Technology pp. 664-668.

Azar D., Fayad K. and Daoud C. (2016). A Combined Ant Colony Optimization and Simulated Annealing Algorithm to Assess Stability

and Fault-Proneness of Classes Based on Internal Software Quality Attributes. International Journal of Artificial Intelligence (ISSN

0974-0635) 14:2.

Bhalerao A. and Pawar A. (2017). A Survey on Data Deduplication for Efficiently Utilizing Cloud Storage for Big Data Backups.

International Conference on Trends in Electronics and Informatics (ICEI) pp. 933-938.

Bodik P., Hong W., Guestrin C., Madden S., Paskin M. and Thibaux R. (2019). Intel Lab Data. Available online:

http://db.csail.mit.edu/labdata/labdata.html (accessed on January 2022).

Bouchon-Meunier B., Mesiar R., Marsala C. and Rifqi M. (2003). Compositional Rule of Inference as an Analogical Scheme. Fuzzy Sets

and Systems 138(1): 53-65.

Chowdhury S. and Benslimane A. (2018). Relocating Redundant Sensors in Randomly Deployed Wireless Sensor Networks. IEEE Global

Communications Conference (GLOBECOM) pp. 1-6.

Christen P. (2012). A Survey of Indexing Techniques for Scalable Record Linkage and Deduplication. IEEE Transactions on Knowledge

and Data Engineering 24(9): 1537-1555.

Cingolani P. and Alcala-Fdez J. (2012). jFuzzyLogic: a Robust and Flexible Fuzzy-Logic Inference System Language Implementation. In

IEEE International Conference on Fuzzy Systems pp. 1-8.

Cingolani P. and Alcalá-Fdez J. (2013). jFuzzyLogic: a Java Library to Design Fuzzy Logic Controllers According to the Standard for

Fuzzy Control Programming. Int. J. Comput. Intell. Syst. 6(1): 61–75.

Ehrig M. and Sure Y. (2004). Ontology Mapping - an Integrated Approach. Proceedings of the European Semantic Web Conference

(ESWC) pp. 76-91. Heraklion, Greece.

Gal A., Roitman H. and Sagi T. (2016). From Diversity-based Prediction to Better Ontology & Schema Matching. Inter. WWW

Conference pp. 1145-1155.

Haraty R. and El Sai M. (2017). Information Warfare: a Lightweight Matrix-based Approach for Database Recovery. Knowlegde and

Information Systems 50(1): 287-313 (2017).

Haraty R., Zbib M. and Masud M. (2016). Data Damage Assessment and Recovery Algorithm from Malicious Attacks in Healthcare Data

Sharing Systems. Peer Peer Netwwork Applications 9(5): 812-823 (2016).

Hopfield J. J. (1989). The Effectiveness of Neural Computing. IFIP World Computer Congress (WCC'89) 402-409.

IoT Analytics (2021). State of IoT 2021. https://iot-analytics.com/number-connected-iot-devices/ (accessed January 2022).

http://db.csail.mit.edu/labdata/labdata.html

Ismael W., Gao M., Al-Shargabi A. and Zahary A. (2019). An In-Networking Double-Layered Data Reduction for Internet of Things

(IoT). Sensors 19(4): 795.

Jebbaoui H., Mourad A., Otrok H. and Haraty R. (2015). Semantics-based Approach for Detecting Flaws, Conflicts and Redundancies in

XACML Policies. Computers & Electrical Engineering journal 44: 91-103 (2015).

Kaur R., Chana I. and Bhattacharya J. (2018). Data Deduplication Techniques for Efficient Cloud Storage Management: a Systematic

Review. Journal of Supercomputing 74(5): 2035-2085.

Khriji S., Raventos G. V., Kammoun I. and Kanoun O. (2018). Redundancy Elimination for Data Aggregation in Wireless Sensor

Networks. International Multi-Conference on Systems, Signals & Devices (SSD'18) 2018: 28-33.

Li D., Cai Z., Deng L. and Yao X. (2019). IoT Complex Communication Architecture for Smart Cities based on Soft Computing Models.

Soft Computing 23(8): 2799-2812.

Li S. et al. (2019). EF-Dedup: Enabling Collaborative Data Deduplication at the Network Edge. IEEE 39th International Conference on

Distributed Computing Systems (ICDCS) pp. 986–996.

Liansheng T. and Wu M. (2015). Data Reduction in Wireless Sensor Networks: A Hierarchical LMS Prediction Approach. IEEE Sensors

Journal 16.6 (2015): 1708-1715.

Lytras M., Al-Halabi W., Zhang J., Masud M. and Haraty R. (2015). Enabling Technologies and Business Infrastructures for Next

Generation Social Media: Big Data, Cloud Computing, Internet of Things and Virtual Reality. The Journal of Universal Computer

Science 21(11): 1379-1384.

Malhotra J. and Bakal J. (2015). A Survey and Comparative Study of Data Deduplication Techniques. International Conference on

Pervasive Computing (ICPC) pp. 1-5.

Mansour E., Shahzad F., Tekli J. and Chbeir R. (2020). Data Redundancy Management in Connected Environments. International

Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems (MSWiM-Q2SWinet) pp. 75-80.

Mortadha H. and Jihad A. (2015). Using Fuzzy Logic Technique to Eliminate the Duplicates in Large Database. Journal of University of

Human Development 1(423) :423-426.

Murtadha H. and Sami S. (2016). Using Q-Gram and Fuzzy Logic Algorithms for Eliminating Data Warehouse Duplications. International

Arab Conference on Information Technology (ACIT'2016) 8 p.

Nguyen T. (2021). A Novel Metaheuristic Method based on Artificial Ecosystem-based Optimization for Optimization of Network

Reconfiguration to Reduce Power Loss. Soft Computing 25(23): 14729-14740.

Nižetić S. et al. (2020). Internet of Things (IoT): Opportunities, Issues and Challenges towards a Smart and Sustainable Future. Journal

of Cleaner Production 274: 122877.

Papageorgiou A., Cheng B. and Kovacs E. (2015). Real-Time Data Reduction at the Network Edge of Internet-of-Things Systems.

Conference on Network and Service Management (CNSM) pp. 284-291.

Patil P. and Kulkarni U. (2013). SVM-based Data Redundancy Elimination for Data Aggregation in Wireless Sensor Networks. Inter.

IEEE Conference on Advances in Computing, Communications and Informatics (ICACCI) pp. 1309–1316.

Paulo J. and Pereira J. (2014). A Survey and Classification of Storage Deduplication Systems. ACM Computing Surveys 47(1): 11:1-

11:30.

Qutub B., Kia M. and Niki P. (2012). Data Reduction in Low Powered Wireless Sensor Networks. Wireless Sensor Networks- Technology

and Applications 10.5772/50178.

Ross T. J. (2016). Fuzzy Logic with Engineering Applications. Wiley; 4th edition 580 p.

Salloum G. and Tekli J. (2021). Automated and Personalized Nutrition Health Assessment, Recommendation, and Progress Evaluation

using Fuzzy Reasoning. International Journal of Human-Computer Studies (IJHCS) Volume 151, 102610.

Santini S. and Romer K. (2006). An Adaptive Strategy for Quality-based Data Reduction in Wireless Sensor Networks. 3rd international

Conference on Networked Sensing Systems (INSS'06) 14407470.

Shahri H. and Barforush A. (2004). Data Mining for Removing Fuzzy Duplicates using Fuzzy Inference. IEEE Annual Meeting of the

Fuzzy Information (NAFIPS) 10.1109/NAFIPS.2004.1336319.

Taddesse F.G., Tekli J., Chbeir R., Viviani M. and Yétongnon K. (2009). Relating RSS News/Items. Proceedings of the 9th International

Conference on Web Engineering (ICWE'09), LNCS pp. 44-452, San Sebastian, Spain.

Ullah A. et al. (2019). Secure Healthcare Data Aggregation and Deduplication Scheme for FoG-Orineted IoT. IEEE International

Conference on Smart Internet of Things (SmartIoT) pp. 314–319.

Vlachos I. K. and Sergiadis G. D. (2007). Intuitionistic Fuzzy Information - Applications to Pattern Recognition. Pattern Recognition

Letters 28(2): 197-206.

VoucherCloud (2018). The Uses of, and Science Behind, Big Data. https://www.vouchercloud.com/resources/everyday-big-data

(accessed Jamuary 2022).

Wen X. (2021). Using Deep Learning Approach and IoT Architecture to Build the intelligent Music Recommendation System. Soft

Computing 25(4): 3087-3096.

Zadeh L. A. (1984). Making Computers Think Like People. IEEE. Spectrum 8:26-32.

Zou F., Yen G., Tang L. and Wang C. (2021). A Reinforcement Learning Approach for Dynamic Multi-objective Optimization.

Information Sciences 546: 815-834.

http://www.vouchercloud.com/resources/everyday-big-data

Appendix

1. Fuzzification: Given case 1’s input data: Temp_DataItem1 = 19.5 C, and Temp_DataItem2 = 21 C, we compute the

corresponding fuzzy membership values following the temperature fuzzy functions in Figure 6.b (reported below):

- For Temp_DataItem1:

FT1 (19.5) = 0.25, fT2 (19.5) = 0.75, and fT3 (19.5) = 0

- For Temp_DataItem2:

FT1 (21) = 0, fT2 (21) = 1, and fT3 (21) = 0

2. Condition-Action rules: Based on the input membership values, the following condition-action rules are invoked:

 - Rule 4: T1(Temp_DataItem1) ∧ T1(Temp_DataItem2) ⇒ Duplicate(DedupStatus)

- Rule 5: T2(Temp_DataItem1) ∧ T2(Temp_DataItem2) ⇒ Duplicate(DedupStatus)

3. Inference: Applying Mamdani’s inference mechanism:

Rule 4:

Executing the AND fuzzy operator:

𝑚𝑖𝑛(𝑓(19.5)T1
Temp_DataItem1

, 𝑓(21)T1
Temp_DataItem2

) = 𝑚𝑖𝑛(0.25, 0) = 0

Executing the implication fuzzy operator:

𝑓𝑅𝑢𝑙𝑒4 = 𝑚𝑖𝑛 (0, 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒(𝐷𝑒𝑑𝑢𝑝𝑆𝑡𝑎𝑡𝑢𝑠))

Rule 5:

Executing the AND fuzzy operator:

𝑚𝑖𝑛(𝑓(19.5)T2
Temp_DataItem1

, 𝑓(21)T2
Temp_DataItem2

) = 𝑚𝑖𝑛(0.75, 1) = 0.75

Executing the implication fuzzy operator:

𝑓𝑅𝑢𝑙𝑒5 = 𝑚𝑖𝑛 (0.75, 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒(𝐷𝑒𝑑𝑢𝑝𝑆𝑡𝑎𝑡𝑢𝑠))

4. Aggregation By applying the maximization aggregation

function, Fagg = Fmax = max(fRule4, fRule5), the agent produces

the fuzzy coverage areas subsumed by the inference

membership functions (represented in transparent grey

color in the below graph).

5. Defuzzification: The center of gravity defuzzification

function is applied on the fuzzy coverage area to compute

the corresponding center of gravity point (represented as

a red dot in the aggregation graph), and then identify the

corresponding deduplication status (on the x axis) as the

agent’s output = 78.2%.

6. Result: Depending on the user or system deduplication threshold, a decision is made whether the two data items are duplicates

or not. Given dedupthreshold = 75% in our running example, and since the output of the defuzzification step is 78.2%  dedupthreshold,

the agent’s final output becomes: dedupStatus = duplicates

Figure 27. Fuzzy redundancy detection process for the temperature sample case considered in our running example (cf. Table 8).

0

0.2

0.4

0.6

0.8

1

15 16 17 18 19 20 21 22 23 24 25 26 27 28Fu
zz

y
M

em
b

er
sh

ip

Temperature

T1 T2 T3

0

0.2

0.4

0.6

0.8

1

15 16 17 18 19 20 21 22 23 24 25 26 27 28Fu
zz

y
M

em
b

er
sh

ip

Temperature

T1 T2 T3

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Fu
zz

y
M

em
b

er
sh

ip

DeduplicationStatus

Duplicate

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Fu
zz

y
M

em
b

er
sh

ip

DeduplicationStatus

Duplicate

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Fu
zz

y
M

e
m

b
er

sh
ip

DeduplicationStatus

Duplicate

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Fu
zz

y
M

em
b

er
sh

ip

DeduplicationStatus

Duplicate

fRule5

fRule4

Fagg

Fagg

