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Abstract. Large texts are not always entirely meaningful: they might include 

repetitions and useless details, and might not be easy to interpret by humans. 

Automatic text summarization aims to simplify text by making it shorter and 

(possibly) more informative. This paper describes a new solution for extractive text 

summarization, designed to efficiently process flat (unstructured) text. It performs 

unsupervised frequency-based document processing to identify the candidate 

sentences having the highest potential to represent informative content in the 

document. It introduces a dedicated feature vector representation for sentences to 

evaluate the relative impact of different sentence terms. The sentence feature vectors 

are run through a partitional k-means clustering process, to build the extractive 

summary based on the cluster representatives. Experimental results highlight the 

quality and efficiency of our approach. 

Keywords: Automatic text summarization, extractive summaries, word space model, 

feature representation, k-means clustering. 

1.   Introduction 

The exponential increase of data published on the Web has reignited interest in automatic 

text summarization, aiming to save data storage space and allow faster access to the most 

informative data. In this study, we introduce a new solution for extractive summarization of 

flat (unstructured) text, by integrating and adapting different existing techniques in a novel 

way, aiming to provide a simple, flexible, and computationally efficient solution. While 

most extractive solutions utilize term-based feature vectors with heuristic or linear 

optimization solutions, our solution performs sentence feature vector extraction, followed 

by sentence clustering using their feature vector similarity, and summary building based on 

the cluster representatives. The user selects the input text document, and the size of the final 

summary expressed in number of sentences. The input text is processed for term frequency 

computation in order to produce a co-occurrence matrix describing the feature vector of 

each sentence in the original text. The sentence feature vectors are utilized to compute pair-

wise sentence similarities, in order to perform partitional k-means clustering to group similar 

sentences together, where the number of k clusters corresponds to the size of the summary 

provided initially by the user. Different strategies are suggested to select the most 

representative sentences from the clusters, to form the output summary. Experiments 

highlight our solution’s quality and almost linear computation time. 

The remainder of the paper is organized as follows. Section 2 reviews the related 

works. Section 3 described our proposal. Section 4 describes our experimental evaluation, 

before concluding in Section 5 with ongoing works and future directions. 
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2.  Related Works 

Automatic text summarization techniques can be grouped in two main categories: 

abstractive and extractive. Abstractive summarization aims to generate summaries the way 

humans perform summarization, by transforming the original text to generate a new text 

summary. They usually follow a predefined schema describing a certain ordered pattern of 

content organization [1, 2]. The schema can be expressed using knowledge-based or rule-

based representations. Knowledge-based approaches use of a machine-readable semantic 

graph made of a set of concepts representing word senses, and a set of links representing 

semantic relations (synonymy, hyponymy, etc., [3, 4]). A text document is represented as a 

semantic sub-graph, and the process of summarization consists in generating a reduced 

semantic sub-graph using some heuristic rules, in order to generate the reduced output 

summary. Rule-based approaches describe text relationships using typed dependencies 

between pairs of words. Rule-based information extraction and content selection heuristics 

[5-7] are then used to generate new texts, based on training data consisting of sets of input 

texts and expected (summarized) output texts. Text chunks from the original text are 

matched against the rules, and sent to a generation module trained based on the training 

data, in order to produce the output summary. Recent approaches have utilized deep learning 

transformer based encoder-decoder architectures like BERT to produced trained 

summarization models, e.g., [8-10]. Deep learning solutions have shown promising results 

compared with their counterparts [8], albeit requiring training data and training time which 

are not always available. 

Extractive summarization promotes a less complex process of identifying and 

extracting the most informative text tokens, without content re-writing or generation. Most 

techniques in this context use unsupervised term frequency computation, e.g., [11, 12], 

identifying and combining the sentences or paragraphs including the most frequent terms to 

form the summary. This is based on the assumption that the high frequency of specific words 

in a text may be a good indicator of its significance. As a result, text chunks or sentences 

are compared based on their most common terms. Heuristic or linear optimization solutions 

can be used to identify the most representative text chunks or sentences, to be combined 

into the output summary. The authors in [13] use an adapted quantum-inspired genetic 

algorithm, using a modified quantum measurement and a self-adaptive quantum rotation 

gate based on the quality and length of the summary. The authors in [14] use a swarm 

optimization solution, using word mover distance and normalized Google distance to 

evaluate text similarity. The authors in [15] use a projected gradient descent algorithm to 

perform summarization through convex optimization. In [16], the authors represent 

sentences as nodes in an undirected graph, where every distinct term is represented as a 

vertex, regardless of the number of term occurrences. The process extracts the most 

connected nodes in the graph, to form the output summary. Some approaches, e.g., [2, 17], 

perform feature vector transformation using singular value decomposition (SVD) or latent 

derelict analysis (LDA), to represent terms or sentences in a latent semantic space. Sentence 

selection is then conducted in the latent semantic space, before compiling the sentences in 

their original form to construct the output summary. 

While most extractive solutions utilize term-based feature vectors combined with 

heuristic or linear optimization solutions, we introduce a new sentence-based feature vector 

representation combined with a partitional clustering algorithm, aiming to improve 

summarization efficiency and quality.     
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3.  Proposal 

Our solution consists of four main components (cf. Fig. 1): i) linguistic pre-processing, ii) 

sentence feature vector representation, iii) sentence clustering, and iv) summary building. 
 

 

 
 

 

Fig. 1. Simplified activity diagram describing our approach 

 
3.1. Linguistic Pre-Processing 
 

A sequence of preprocessing tasks is first executed before the documents can be processed 

for sentence feature extraction, clustering, and summarization. First, this component 

converts all words to their lowercase form, performs tokenization to distinguish separate 

terms, and removes stop-words from the obtained term sequences. Second, it performs 

stemming or lemmatization, following the user’s preference: i) stemming converts all the 

words to their original syntactic forms (stems) using syntactic stemming rules1; ii) 

lemmatization transforming words into their original lexical forms using a lexical 

reference2. Third, it performs sentence extraction based on text punctuations, where each 

sentence is represented as a sequence of stemmed/lemmatized terms. 
 

3.2. Sentence Feature Vector Representation 
 

Different from most existing approaches which rely on term frequencies in processing text 

documents (cf. Section 2), we introduce a sentence-based feature vector representation to 

capture the syntactic similarities between sentences. We adopt sentences as our base 

extractive summarization unit, and aim to identify the most informative sentences to put in 

the output summary. The pseudocode for our sentence feature representation component is 

shown in Fig. 2. It accepts as input: a text document to be summarized, and produces as 

output: the set of sentence feature vectors for all sentences in the document. For each 

sentence si in the document, the algorithm builds a square matrix Mi designed to store the 

co-occurrence scores of all terms in si (cf. Fig. 2, lines 1-5). Each line k in Mi represents the 

context vector of term tk, denoted as the centroid of line k. Each column  represents a term 

t

 in the context of centroid tk. The term co-occurrence weight of t


 in the context of tk is 

computed according to the relative distance of t

 from tk: 

                                                 
1   We use the Porter Stemmer in our approach since it is one the most effective in the literature. 
2  We use the WordNet lexical dictionary [3] to perform lemmatization, due to its common usage in the literature. 
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where m is the number of terms in the sentence, and k represent the occurrence indices of 

terms t

 and tk in the sequence of term tokens representing sentence si (cf. linguistic 

preprocessing in Section 3.1). Once weights in the co-occurrence matrix are computed (lines 

6-10), the algorithm aggregates the weights of identical terms occurring multiple times in 

the sentence (lines 11-15). It then creates a reduced feature vector including only the distinct 

terms as vector dimensions (lines 16-18), and aggregates the weights from all centroid 

context vectors (i.e., from all lines in the co-occurrence matrix) to from the output sentence 

feature vector (lines 19-21). 
 

 

Algorithm Sentence_Feature_Vector_Representation 
Input:  D           // Text document 
Output: VS         // Set of sentence feature vectors 
 

Begin 
 

S = {s1, s2, …, sm}      // set of sentences in D, each represented as a sequence of term tokens 

Vs =                        // set of sentence feature vectors in D 
For each sentence si in S 
 

Ti = {t1, t2, …, tm}                                                                       // set of terms in si 
      

Initialize co-occurrence matrix Mi of dimensions m2                // term co-occurrence matrix  
 

For each line k in M 
Consider term tk as sentence centroid 

For each column  in Mi                                                     // weight of t in context of tk 

  
 

k
Compute w following formula (1)  

  =
k

0
k k k

1 k m
Compute (t ) = [w , ..., w , ..., w ]context                  // context vector of centroid tk 

 

Initialize reduced co-occurrence matrix Mi* of dimension n2    // n is number of distinct terms in S 

For each line  in Mi* 

 
 

 
j t   occurrence of t

j i
Compute aggregate weight w (w ,M )

 

For each column k in Mi* 

 
 

 
j k t   occurrence of t

jk i
Compute aggregate weight w (w ,M )

 

Initialize sentence feature vector Vi of dimension n 
For each column k in Vi   

*

 


j k t   (t )

k

k ji
Compute aggregate weight (t  M ) w, =

context

agg
 

Normalize weights in Vi                                                          // divide by sum of aggregate weights       

Add Vi to VS                                                                             // other normalizations can be used          
Return Vs 
                                                                                         

End 
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Fig. 2. Pseudocode of the sentence feature vector representation component 
 

Consider the following sentence, extracted from one of our test documents (cf. Section 

5): A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally 
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or partially obscuring Earth's view of the Sun. The tokenized representation of the sentence 

(following linguistic pre-processing, cf. Section 3.1) is: 

 
Term indices 1 2 3 4 5 6 7 8 9 10 

 solar eclipse occurrence Moon passage Earth Sun obscurity Earth Sun 

 

where the number of terms m=10. Consider the first term solar as centroid, i.e., k=1: 
 

Term indices 1 2 3 4 5 6 7 8 9 10 

 solar eclipse occurrence Moon passage Earth Sun obscurity Earth Sun 

Context weights 0 9/9 8/9 7/9 6/9 5/9 4/9 3/9 2/9 1/9 

 
 

The weight of context term eclipse having = 2 (> k) is = = 
- k - 1 2 - 1- 1

1- 1- 1
m - k 10 - 1

. It is the 

highest weight in this context vector since it represents the closest term to the centroid. The 

weights decrease gradually as the terms occur farther away form the centroid, reaching 

minimum weight 
1

9

 for the last term Sun.  

Consider the forth term Moon as centroid, i.e., k=4: 

 
Term indices 1 2 3 4 5 6 7 8 9 10 

 solar eclipse occurrence Moon passage Earth Sun obscurity Earth Sun 

Context weights 1/3 2/3 3/3 0 6/6 5/6 4/6 3/6 2/6 1/6 

 

 
 

Here, the weight of term eclipse having  = 2 (< k) is 
 

2 2

k - 1 4 - 1 3

. The weight of term 

passage having  = 5 (> k) is 
= = 

- k - 1 5 - 4 - 1
1- 1- 1

m - k 10 - 4

. The weights decrease gradually as the 

terms occur farther away from the centroid, reaching minimum weight = 1

3

 for the last term 

to the left, solar, and minimum weight = 1

6

 for the last term to the right, Sun. The complete 

co-occurrence matrix for all centroids is shown in Table 1. Table 2.a shows the reduced co-

occurrence where term repetitions (highlighted in color in Table 1) have been aggregated. 

Table 2.b shows the output sentence feature vector, normalized w.r.t.1 the sum of the 

aggregate scores (other normalization functions can be used, following user preferences). 

The latter highlights the weight of every term in the sentence, considering its relative potion 

w.r.t. all other terms as well as its number of repetitions in the sentence. 

 

3.3. Sentence Clustering 
 

Once the sentence feature vectors are computed, we utilize k-means partitional clustering to 

group similar sentences together, where the sentence clusters serve as seeds for extractive 

summarization. We adopt k-means as one of the most prominent and efficient algorithms, 

allowing the user to choose and control the size of the summary, where the number of 

                                                 
1 With respect to 

centroid 

>k =k 

>k <k 

centroid 

=k 
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clusters k represent the number of sentences in the output summary. Yet, other clustering 

algorithms can be used (e.g., k-medians, k-medoids, and constrained partitional clustering 

where the number of output clusters is chosen by the user [18]). 
 

Table 1. Sample square co-occurrence matrix 
  

 Centroid 

terms 

Context terms 

  solar eclipse occurrence Moon passage Earth Sun obscurity Earth Sun 

Context 

vectors 

of all  

centroid  

terms 

solar 0 9/9 8/9 7/9 6/9 5/9 4/9 3/9 2/9 1/9 

eclipse 1/1 0 8/8 7/8 6/8 5/8 4/8 3/8 2/8 1/8 

occurrence 1/2 2/2 0 7/7 6/7 5/7 4/7 3/7 2/7 1/7 

Moon 1/3 2/3 3/3 0 6/6 5/6 4/6 3/6 2/6 1/6 

passage 1/4 2/4 3/4 4/4 0 5/5 4/5 3/5 2/5 1/5 

Earth 1/5 2/5 3/5 4/5 5/5 0 4/4 3/4 2/4 1/4 

Sun 1/6 2/6 3/6 4/6 5/6 6/6 0 3/3 2/3 1/3 

obscurity 1/7 2/7 3/7 4/7 5/7 6/7 7/7 0 2/2 1/2 

Earth 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 0 1/1 

Sun 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 9/9 0 

 

Table 2. Reduced co-occurrence matrix, and resulting sentence feature vector 
 

a. Reduced co-occurrence matrix 
 

 Centroid 

terms 

Aggregate context terms  Aggregate 

weights 

  solar eclipse occurrence Moon passage Earth Sun obscurity   

Reduced 

context  

vectors 

solar 0 9/9 8/9 7/9 6/9 5/9+2/9 4/9+1/9 3/9  9/9+…+3/9 

eclipse 1/1 0 8/8 7/8 6/8 5/8+2/8 4/8+1/8 3/8  1/1+…+3/8 

occurrence 1/2 2/2 0 7/7 6/7 5/7+2/7 4/7+1/7 3/7  … 

Moon 1/3 2/3 3/3 0 6/6 5/6+2/6 4/6+1/6 3/6  … 

passage 1/4 2/4 3/4 4/4 0 5/5+2/5 4/5+1/5 3/5  … 

Earth 1/5+1/8 2/5+2/8 3/5+3/8 4/5+4/8 5/5+5/8 0+6/8 4/4+7/8 3/4+8/8  … 

Sun 1/6+1/9 2/6+2/9 3/6+3/9 4/6+4/9 5/6+5/9 6/6+6/9 0+7/9 3/3+8/9  … 

obscurity 1/7 2/7 3/7 4/7 5/7 6/7+2/2 7/7+1/2 0  1/7+…+0 
 

b. Sentence feature vector 
 

 solar eclipse occurrence Moon passage Earth Sun obscurity 

Normalized weights 0.104 0.109 0.109 0.109 0.106 0.184 0.169 0.109 

 

In brief, k-means [19, 20] attempts to divide data objects (e.g., sentences in our case) 

into non-overlapping subsets, i.e., the clusters, such that each sentence is in exactly one 

cluster, by maximizing intra-cluster similarity and minimizing inter-cluster similarity. It 

first chooses (randomly, or heuristically) k sentences as initial centroids, and computes one 

cluster around each centroid by associating sentences to the clusters sharing minimum 

distances with their centroids. The centroids are re-computed recursively, and the clusters 

are adjusted around them, until reaching convergence where the cluster centroids stabilize. 

We utilize the cosine measure to compute sentence feature vector similarity, yet other 

similarity measures can be used (e.g., Jaccard, Dice, Euclidian, e.g., [18, 21]). 
 

3.4. Summary Building 
 

Our extractive summary building process consists in choosing the best representative 

sentence from each sentence cluster, and combining them together to form the output 

summary. Here, we consider multiple approaches (other approaches can be added according 

to the user’s needs): i) Longest Sentence (LS) – from each cluster, the system extracts the 

sentence with the maximum number of terms (based on the assumption that the longest 

sentence is likely the most elaborate/descriptive of the cluster), ii) Shortest Sentence (SS) – 

from each cluster, the system extracts the sentence with the minimum number of terms 

(based on the assumption that the user is interested in the most concise information from the 

cluster), and iii) Most Similar Sentence (MSS) – from each cluster, the system evaluates the 

/  
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pairwise sentence similarities and chooses the sentence with the highest average similarity 

with all others (based on the assumption the sentence which shares the maximum amount 

of similarity would best reflect their information content). Once the representative sentences 

are identified, the system combines them to form the output summary, by placing them one 

after the other according to their relative order in the original text, to preserve logical content 

ordering. 

The time complexity of our solution comes down to the complexity of the sentence 

clustering algorithm, requiring O(Nk|s|) where N is the size of the input text document in 

number of sentences, k is the number of clusters (i.e., the size of the output summary in 

number of sentences), and |s| is the maximum size of a sentence in number of terms. It 

simplifies to O(N|s|) since k << N. 

4.  Experimental Evaluation 

4.1. Prototype Implementation 
 

We have implemented our topical organization solution using the Python programming 

language, to test and evaluate its performance. We perform the data serialization using 

Python’s PDFToText library. We remove the stop-words and punctuations using Python’s 

NLTK library. Later we convert the remaining text to lower-case and we stem each word 

using the NLTK Porter Stemmer. We utilize the WordNet API to perform lemmatization.  
 

4.2. Experimental Metrics 
 

We make use of the compression ratio (CR) metric [22] to evaluate the compactness of the 

produced summaries, compared with the size of the initial text document: 
 

 [0,1]
Length of  Symmary

CR
Length of  Full Text

   (2) 

 

We also make use of the precision (PR) and recall (R) metrics [18, 23] to evaluate the quality 

of the system produced summaries w.r.t. their human generated counterparts. High precision 

denotes that sentences are actually in the right summary. High recall means that very few 

sentences are not in the summary where they should have been. High precision and recall, 

and thus high F-value indicates excellent summarization quality. 
 

4.3. Experimental Data 
 

We collected 18 news articles from the renounced online newspapers, consisting of an 

average 42 sentences and 855 terms per article1. We grouped the articles according to the 

desired (output) summary size, and requested the assistance of three human testers 

(graduates students) to generate the corresponding summaries. The testers were provided 

each an excel sheet that includes a header describing briefly the research and the experiment, 

and a body that includes an array containing as columns: i) reference number of source texts 

(articles), ii) summary size in number of sentences (e.g. k=2, k=4, ..., k=20), and iii) a link 

to the source articles. The testers completed the summarization tasks together, and compiled 

the summaries into the reference dataset in our experiments. 

                                                 
1    Available online: https://bit.ly/3FiaMLu 
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4.4. Experimental Results 
 

Fig. 3 shows the precision, recall, and f-value results obtained for our experimental dataset, 

considering the size of the input text, the size of the produced summary, the compression 

ratio, and each of the three representative options (longest sentence - LS, shortest sentence 

- SS, and most similar sentence - MSS). 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
\ 

 

 
 

 

 

a. Text size b. Summary size c. Compression ratio  
 

Fig. 3. Precision, recall, and f-value results obtained for our experimental dataset 

 
On the one hand, results in Fig 3 show that the quality levels of our summarization 

solution, considering all three precision, recall, and f-value metrics, remain more or less 

steady w.r.t. the varying size of the input text documents, the varying size of the output 

summaries, and the varying compression ratio. This shows that our solution produces 

consistent results regardless of text size, summary size, and compression ratio. On the other 

hand, results show that summarization quality is affected by the cluster representative 

selection approach, where the longest sentence (LS) method consistently produces the best 

quality levels (with average f-value = 0.51), followed by the most similar sentence (MSS) 

method (with average f-value = 0.33) , whereas the shortest sentence (SS) method usually 

ranks last (with average f-value = 0.14). Following our discussions with human testers, they 

usually consider the longest sentences to be the most informative and thus favor their 

presence in extractive summaries. Results also show that testers sometimes select sentences 

that are most related (i.e., similar) to others in the text. Nonetheless, testers very rarely 

allocate the shortest sentences in the summary, since they consider short sentences to be the 

least informative in the text.  
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a. Precision b. Recall c. F-value 

 

 
 

Fig. 4. Comparative evaluation 
 

We compare our approach with an online extractive summarization solution by Morgen 

et al. [24, 25]. Fig. 4 shows the best results produced by our approach, i.e., considering the 

longest sentence (LS) method. Results show that our approach produces summaries which 

are more accurate, highlighting a higher average precision level = 0.51 (compared with 0.32 

for Morgen et al.). Both solutions produce comparable recall levels, with a slight 

improvement in favor of our solution. Average f-value results highlight the quality of our 

approach, producing average 0.51 (compared with 0.34 for Morgen et al.). 

Time performance results in Fig. 5 highlight the polynomial (almost linear) complexity 

of our approach, which comes down to the sentence clustering algorithm. 
 

 

 

 

 
a. Size of summary (k) = 8 sentences b. Size of summary (k) = 20 

 

Fig. 5. Time performance 

5. Conclusion 

This paper introduces a new solution for extractive text summarization, designed to process 

flat text documents. While most existing extractive solutions utilize term-based feature 

vectors combined with heuristic or linear optimization solutions, our solution performs 

sentence feature vector extraction, followed by sentence clustering using their feature vector 

similarity, and summary building based on the cluster representatives. Experimental results 

highlight our solution’s quality and almost linear time complexity. 

We are currently extending our experiments to consider a larger test dataset and to 

compare with multiple existing solutions. We are also investigating the selection process in 

the k-means algorithm and how to better consider the algorithm’s convergence threshold in 

fine-tuning the summarization result, e.g., [19, 26]. Generating multiple representatives for 

each cluster and performing associative rule mining to select representatives [11] are also 

ongoing directions. We also plan to investigate encoder-decoder architectures, e.g., [27, 28], 

which have recently produced promising results. 
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