
Unsupervised Extractive Text Summarization using

Frequency-based Sentence Clustering

Ali Hajjar1 and Joe Tekli1[0000-0003-3441-7974]

1School of Engineering, Lebanese American University (LAU)

36 Byblos, Lebanon

ali.hajjar@lau.edu, joe.tekli@lau.edu.lb

Abstract. Large texts are not always entirely meaningful: they might include

repetitions and useless details, and might not be easy to interpret by humans.

Automatic text summarization aims to simplify text by making it shorter and

(possibly) more informative. This paper describes a new solution for extractive text

summarization, designed to efficiently process flat (unstructured) text. It performs

unsupervised frequency-based document processing to identify the candidate

sentences having the highest potential to represent informative content in the

document. It introduces a dedicated feature vector representation for sentences to

evaluate the relative impact of different sentence terms. The sentence feature vectors

are run through a partitional k-means clustering process, to build the extractive

summary based on the cluster representatives. Experimental results highlight the

quality and efficiency of our approach.

Keywords: Automatic text summarization, extractive summaries, word space model,

feature representation, k-means clustering.

1. Introduction

The exponential increase of data published on the Web has reignited interest in automatic

text summarization, aiming to save data storage space and allow faster access to the most

informative data. In this study, we introduce a new solution for extractive summarization of

flat (unstructured) text, by integrating and adapting different existing techniques in a novel

way, aiming to provide a simple, flexible, and computationally efficient solution. While

most extractive solutions utilize term-based feature vectors with heuristic or linear

optimization solutions, our solution performs sentence feature vector extraction, followed

by sentence clustering using their feature vector similarity, and summary building based on

the cluster representatives. The user selects the input text document, and the size of the final

summary expressed in number of sentences. The input text is processed for term frequency

computation in order to produce a co-occurrence matrix describing the feature vector of

each sentence in the original text. The sentence feature vectors are utilized to compute pair-

wise sentence similarities, in order to perform partitional k-means clustering to group similar

sentences together, where the number of k clusters corresponds to the size of the summary

provided initially by the user. Different strategies are suggested to select the most

representative sentences from the clusters, to form the output summary. Experiments

highlight our solution’s quality and almost linear computation time.

The remainder of the paper is organized as follows. Section 2 reviews the related

works. Section 3 described our proposal. Section 4 describes our experimental evaluation,

before concluding in Section 5 with ongoing works and future directions.

2 Unsupervised Extractive Text Summarization using Frequency-based Sentence Clustering

2. Related Works

Automatic text summarization techniques can be grouped in two main categories:

abstractive and extractive. Abstractive summarization aims to generate summaries the way

humans perform summarization, by transforming the original text to generate a new text

summary. They usually follow a predefined schema describing a certain ordered pattern of

content organization [1, 2]. The schema can be expressed using knowledge-based or rule-

based representations. Knowledge-based approaches use of a machine-readable semantic

graph made of a set of concepts representing word senses, and a set of links representing

semantic relations (synonymy, hyponymy, etc., [3, 4]). A text document is represented as a

semantic sub-graph, and the process of summarization consists in generating a reduced

semantic sub-graph using some heuristic rules, in order to generate the reduced output

summary. Rule-based approaches describe text relationships using typed dependencies

between pairs of words. Rule-based information extraction and content selection heuristics

[5-7] are then used to generate new texts, based on training data consisting of sets of input

texts and expected (summarized) output texts. Text chunks from the original text are

matched against the rules, and sent to a generation module trained based on the training

data, in order to produce the output summary. Recent approaches have utilized deep learning

transformer based encoder-decoder architectures like BERT to produced trained

summarization models, e.g., [8-10]. Deep learning solutions have shown promising results

compared with their counterparts [8], albeit requiring training data and training time which

are not always available.

Extractive summarization promotes a less complex process of identifying and

extracting the most informative text tokens, without content re-writing or generation. Most

techniques in this context use unsupervised term frequency computation, e.g., [11, 12],

identifying and combining the sentences or paragraphs including the most frequent terms to

form the summary. This is based on the assumption that the high frequency of specific words

in a text may be a good indicator of its significance. As a result, text chunks or sentences

are compared based on their most common terms. Heuristic or linear optimization solutions

can be used to identify the most representative text chunks or sentences, to be combined

into the output summary. The authors in [13] use an adapted quantum-inspired genetic

algorithm, using a modified quantum measurement and a self-adaptive quantum rotation

gate based on the quality and length of the summary. The authors in [14] use a swarm

optimization solution, using word mover distance and normalized Google distance to

evaluate text similarity. The authors in [15] use a projected gradient descent algorithm to

perform summarization through convex optimization. In [16], the authors represent

sentences as nodes in an undirected graph, where every distinct term is represented as a

vertex, regardless of the number of term occurrences. The process extracts the most

connected nodes in the graph, to form the output summary. Some approaches, e.g., [2, 17],

perform feature vector transformation using singular value decomposition (SVD) or latent

derelict analysis (LDA), to represent terms or sentences in a latent semantic space. Sentence

selection is then conducted in the latent semantic space, before compiling the sentences in

their original form to construct the output summary.

While most extractive solutions utilize term-based feature vectors combined with

heuristic or linear optimization solutions, we introduce a new sentence-based feature vector

representation combined with a partitional clustering algorithm, aiming to improve

summarization efficiency and quality.

Unsupervised Extractive Text Summarization using Frequency-based Sentence Clustering 3

3. Proposal

Our solution consists of four main components (cf. Fig. 1): i) linguistic pre-processing, ii)

sentence feature vector representation, iii) sentence clustering, and iv) summary building.

Fig. 1. Simplified activity diagram describing our approach

3.1. Linguistic Pre-Processing

A sequence of preprocessing tasks is first executed before the documents can be processed

for sentence feature extraction, clustering, and summarization. First, this component

converts all words to their lowercase form, performs tokenization to distinguish separate

terms, and removes stop-words from the obtained term sequences. Second, it performs

stemming or lemmatization, following the user’s preference: i) stemming converts all the

words to their original syntactic forms (stems) using syntactic stemming rules1; ii)

lemmatization transforming words into their original lexical forms using a lexical

reference2. Third, it performs sentence extraction based on text punctuations, where each

sentence is represented as a sequence of stemmed/lemmatized terms.

3.2. Sentence Feature Vector Representation

Different from most existing approaches which rely on term frequencies in processing text

documents (cf. Section 2), we introduce a sentence-based feature vector representation to

capture the syntactic similarities between sentences. We adopt sentences as our base

extractive summarization unit, and aim to identify the most informative sentences to put in

the output summary. The pseudocode for our sentence feature representation component is

shown in Fig. 2. It accepts as input: a text document to be summarized, and produces as

output: the set of sentence feature vectors for all sentences in the document. For each

sentence si in the document, the algorithm builds a square matrix Mi designed to store the

co-occurrence scores of all terms in si (cf. Fig. 2, lines 1-5). Each line k in Mi represents the

context vector of term tk, denoted as the centroid of line k. Each column  represents a term

t

 in the context of centroid tk. The term co-occurrence weight of t


 in the context of tk is

computed according to the relative distance of t

 from tk:

1 We use the Porter Stemmer in our approach since it is one the most effective in the literature.
2 We use the WordNet lexical dictionary [3] to perform lemmatization, due to its common usage in the literature.

4 Unsupervised Extractive Text Summarization using Frequency-based Sentence Clustering

if

 if

else





 
  
  
  

k

k - 1

- k - 1
1-

m - k

 (< k)

w (= k) 0

(1)

where m is the number of terms in the sentence, and k represent the occurrence indices of

terms t

 and tk in the sequence of term tokens representing sentence si (cf. linguistic

preprocessing in Section 3.1). Once weights in the co-occurrence matrix are computed (lines

6-10), the algorithm aggregates the weights of identical terms occurring multiple times in

the sentence (lines 11-15). It then creates a reduced feature vector including only the distinct

terms as vector dimensions (lines 16-18), and aggregates the weights from all centroid

context vectors (i.e., from all lines in the co-occurrence matrix) to from the output sentence

feature vector (lines 19-21).

Algorithm Sentence_Feature_Vector_Representation
Input: D // Text document
Output: VS // Set of sentence feature vectors

Begin

S = {s1, s2, …, sm} // set of sentences in D, each represented as a sequence of term tokens

Vs =  // set of sentence feature vectors in D
For each sentence si in S

Ti = {t1, t2, …, tm} // set of terms in si

Initialize co-occurrence matrix Mi of dimensions m2 // term co-occurrence matrix

For each line k in M
Consider term tk as sentence centroid

For each column  in Mi // weight of t in context of tk

k
Compute w following formula (1)

 =
k

0
k k k

1 k m
Compute (t) = [w , ..., w , ..., w]context // context vector of centroid tk

Initialize reduced co-occurrence matrix Mi* of dimension n2 // n is number of distinct terms in S

For each line  in Mi*

 

 
j t occurrence of t

j i
Compute aggregate weight w (w ,M)

For each column k in Mi*

 

 
j k t occurrence of t

jk i
Compute aggregate weight w (w ,M)

Initialize sentence feature vector Vi of dimension n
For each column k in Vi

*

 


j k t (t)

k

k ji
Compute aggregate weight (t M) w, =

context

agg

Normalize weights in Vi // divide by sum of aggregate weights

Add Vi to VS // other normalizations can be used
Return Vs

End

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Fig. 2. Pseudocode of the sentence feature vector representation component

Consider the following sentence, extracted from one of our test documents (cf. Section

5): A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally

Unsupervised Extractive Text Summarization using Frequency-based Sentence Clustering 5

or partially obscuring Earth's view of the Sun. The tokenized representation of the sentence

(following linguistic pre-processing, cf. Section 3.1) is:

Term indices 1 2 3 4 5 6 7 8 9 10

 solar eclipse occurrence Moon passage Earth Sun obscurity Earth Sun

where the number of terms m=10. Consider the first term solar as centroid, i.e., k=1:

Term indices 1 2 3 4 5 6 7 8 9 10

 solar eclipse occurrence Moon passage Earth Sun obscurity Earth Sun

Context weights 0 9/9 8/9 7/9 6/9 5/9 4/9 3/9 2/9 1/9

The weight of context term eclipse having = 2 (> k) is = =
- k - 1 2 - 1- 1

1- 1- 1
m - k 10 - 1

. It is the

highest weight in this context vector since it represents the closest term to the centroid. The

weights decrease gradually as the terms occur farther away form the centroid, reaching

minimum weight 
1

9

 for the last term Sun.

Consider the forth term Moon as centroid, i.e., k=4:

Term indices 1 2 3 4 5 6 7 8 9 10

 solar eclipse occurrence Moon passage Earth Sun obscurity Earth Sun

Context weights 1/3 2/3 3/3 0 6/6 5/6 4/6 3/6 2/6 1/6

Here, the weight of term eclipse having  = 2 (< k) is
 

2 2

k - 1 4 - 1 3

. The weight of term

passage having  = 5 (> k) is
= =

- k - 1 5 - 4 - 1
1- 1- 1

m - k 10 - 4

. The weights decrease gradually as the

terms occur farther away from the centroid, reaching minimum weight = 1

3

 for the last term

to the left, solar, and minimum weight = 1

6

 for the last term to the right, Sun. The complete

co-occurrence matrix for all centroids is shown in Table 1. Table 2.a shows the reduced co-

occurrence where term repetitions (highlighted in color in Table 1) have been aggregated.

Table 2.b shows the output sentence feature vector, normalized w.r.t.1 the sum of the

aggregate scores (other normalization functions can be used, following user preferences).

The latter highlights the weight of every term in the sentence, considering its relative potion

w.r.t. all other terms as well as its number of repetitions in the sentence.

3.3. Sentence Clustering

Once the sentence feature vectors are computed, we utilize k-means partitional clustering to

group similar sentences together, where the sentence clusters serve as seeds for extractive

summarization. We adopt k-means as one of the most prominent and efficient algorithms,

allowing the user to choose and control the size of the summary, where the number of

1 With respect to

centroid

>k =k

>k <k

centroid

=k

6 Unsupervised Extractive Text Summarization using Frequency-based Sentence Clustering

clusters k represent the number of sentences in the output summary. Yet, other clustering

algorithms can be used (e.g., k-medians, k-medoids, and constrained partitional clustering

where the number of output clusters is chosen by the user [18]).

Table 1. Sample square co-occurrence matrix

 Centroid

terms

Context terms

 solar eclipse occurrence Moon passage Earth Sun obscurity Earth Sun

Context

vectors

of all

centroid

terms

solar 0 9/9 8/9 7/9 6/9 5/9 4/9 3/9 2/9 1/9

eclipse 1/1 0 8/8 7/8 6/8 5/8 4/8 3/8 2/8 1/8

occurrence 1/2 2/2 0 7/7 6/7 5/7 4/7 3/7 2/7 1/7

Moon 1/3 2/3 3/3 0 6/6 5/6 4/6 3/6 2/6 1/6

passage 1/4 2/4 3/4 4/4 0 5/5 4/5 3/5 2/5 1/5

Earth 1/5 2/5 3/5 4/5 5/5 0 4/4 3/4 2/4 1/4

Sun 1/6 2/6 3/6 4/6 5/6 6/6 0 3/3 2/3 1/3

obscurity 1/7 2/7 3/7 4/7 5/7 6/7 7/7 0 2/2 1/2

Earth 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 0 1/1

Sun 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 9/9 0

Table 2. Reduced co-occurrence matrix, and resulting sentence feature vector

a. Reduced co-occurrence matrix

 Centroid

terms

Aggregate context terms Aggregate

weights

 solar eclipse occurrence Moon passage Earth Sun obscurity

Reduced

context

vectors

solar 0 9/9 8/9 7/9 6/9 5/9+2/9 4/9+1/9 3/9 9/9+…+3/9

eclipse 1/1 0 8/8 7/8 6/8 5/8+2/8 4/8+1/8 3/8 1/1+…+3/8

occurrence 1/2 2/2 0 7/7 6/7 5/7+2/7 4/7+1/7 3/7 …

Moon 1/3 2/3 3/3 0 6/6 5/6+2/6 4/6+1/6 3/6 …

passage 1/4 2/4 3/4 4/4 0 5/5+2/5 4/5+1/5 3/5 …

Earth 1/5+1/8 2/5+2/8 3/5+3/8 4/5+4/8 5/5+5/8 0+6/8 4/4+7/8 3/4+8/8 …

Sun 1/6+1/9 2/6+2/9 3/6+3/9 4/6+4/9 5/6+5/9 6/6+6/9 0+7/9 3/3+8/9 …

obscurity 1/7 2/7 3/7 4/7 5/7 6/7+2/2 7/7+1/2 0 1/7+…+0

b. Sentence feature vector

 solar eclipse occurrence Moon passage Earth Sun obscurity

Normalized weights 0.104 0.109 0.109 0.109 0.106 0.184 0.169 0.109

In brief, k-means [19, 20] attempts to divide data objects (e.g., sentences in our case)

into non-overlapping subsets, i.e., the clusters, such that each sentence is in exactly one

cluster, by maximizing intra-cluster similarity and minimizing inter-cluster similarity. It

first chooses (randomly, or heuristically) k sentences as initial centroids, and computes one

cluster around each centroid by associating sentences to the clusters sharing minimum

distances with their centroids. The centroids are re-computed recursively, and the clusters

are adjusted around them, until reaching convergence where the cluster centroids stabilize.

We utilize the cosine measure to compute sentence feature vector similarity, yet other

similarity measures can be used (e.g., Jaccard, Dice, Euclidian, e.g., [18, 21]).

3.4. Summary Building

Our extractive summary building process consists in choosing the best representative

sentence from each sentence cluster, and combining them together to form the output

summary. Here, we consider multiple approaches (other approaches can be added according

to the user’s needs): i) Longest Sentence (LS) – from each cluster, the system extracts the

sentence with the maximum number of terms (based on the assumption that the longest

sentence is likely the most elaborate/descriptive of the cluster), ii) Shortest Sentence (SS) –

from each cluster, the system extracts the sentence with the minimum number of terms

(based on the assumption that the user is interested in the most concise information from the

cluster), and iii) Most Similar Sentence (MSS) – from each cluster, the system evaluates the

/ 

Unsupervised Extractive Text Summarization using Frequency-based Sentence Clustering 7

pairwise sentence similarities and chooses the sentence with the highest average similarity

with all others (based on the assumption the sentence which shares the maximum amount

of similarity would best reflect their information content). Once the representative sentences

are identified, the system combines them to form the output summary, by placing them one

after the other according to their relative order in the original text, to preserve logical content

ordering.

The time complexity of our solution comes down to the complexity of the sentence

clustering algorithm, requiring O(Nk|s|) where N is the size of the input text document in

number of sentences, k is the number of clusters (i.e., the size of the output summary in

number of sentences), and |s| is the maximum size of a sentence in number of terms. It

simplifies to O(N|s|) since k << N.

4. Experimental Evaluation

4.1. Prototype Implementation

We have implemented our topical organization solution using the Python programming

language, to test and evaluate its performance. We perform the data serialization using

Python’s PDFToText library. We remove the stop-words and punctuations using Python’s

NLTK library. Later we convert the remaining text to lower-case and we stem each word

using the NLTK Porter Stemmer. We utilize the WordNet API to perform lemmatization.

4.2. Experimental Metrics

We make use of the compression ratio (CR) metric [22] to evaluate the compactness of the

produced summaries, compared with the size of the initial text document:

 [0,1]
Length of Symmary

CR
Length of Full Text

  (2)

We also make use of the precision (PR) and recall (R) metrics [18, 23] to evaluate the quality

of the system produced summaries w.r.t. their human generated counterparts. High precision

denotes that sentences are actually in the right summary. High recall means that very few

sentences are not in the summary where they should have been. High precision and recall,

and thus high F-value indicates excellent summarization quality.

4.3. Experimental Data

We collected 18 news articles from the renounced online newspapers, consisting of an

average 42 sentences and 855 terms per article1. We grouped the articles according to the

desired (output) summary size, and requested the assistance of three human testers

(graduates students) to generate the corresponding summaries. The testers were provided

each an excel sheet that includes a header describing briefly the research and the experiment,

and a body that includes an array containing as columns: i) reference number of source texts

(articles), ii) summary size in number of sentences (e.g. k=2, k=4, ..., k=20), and iii) a link

to the source articles. The testers completed the summarization tasks together, and compiled

the summaries into the reference dataset in our experiments.

1 Available online: https://bit.ly/3FiaMLu

8 Unsupervised Extractive Text Summarization using Frequency-based Sentence Clustering

4.4. Experimental Results

Fig. 3 shows the precision, recall, and f-value results obtained for our experimental dataset,

considering the size of the input text, the size of the produced summary, the compression

ratio, and each of the three representative options (longest sentence - LS, shortest sentence

- SS, and most similar sentence - MSS).

\

a. Text size b. Summary size c. Compression ratio

Fig. 3. Precision, recall, and f-value results obtained for our experimental dataset

On the one hand, results in Fig 3 show that the quality levels of our summarization

solution, considering all three precision, recall, and f-value metrics, remain more or less

steady w.r.t. the varying size of the input text documents, the varying size of the output

summaries, and the varying compression ratio. This shows that our solution produces

consistent results regardless of text size, summary size, and compression ratio. On the other

hand, results show that summarization quality is affected by the cluster representative

selection approach, where the longest sentence (LS) method consistently produces the best

quality levels (with average f-value = 0.51), followed by the most similar sentence (MSS)

method (with average f-value = 0.33) , whereas the shortest sentence (SS) method usually

ranks last (with average f-value = 0.14). Following our discussions with human testers, they

usually consider the longest sentences to be the most informative and thus favor their

presence in extractive summaries. Results also show that testers sometimes select sentences

that are most related (i.e., similar) to others in the text. Nonetheless, testers very rarely

allocate the shortest sentences in the summary, since they consider short sentences to be the

least informative in the text.

0.0

0.2

0.4

0.6

0.8

10 24 29 31 36 39 41 49 88

P
re

ci
si

o
n

Test size (# of sentences)

MSS SS LS

0.0

0.2

0.4

0.6

0.8

4 5 8 8 9 9 10 11 17

Summary size (# of sentences)

MSS SS LS

0.0

0.2

0.4

0.6

0.8

50% 68% 72% 76% 78% 81%

Compression ratio (%)

MSS SS LS

0.0

0.2

0.4

0.6

0.8

Precision

Avg.

LS

MSS

SS

0.0

0.2

0.4

0.6

0.8

10 24 29 31 36 39 41 49 88

R
ec

a
ll

Text size (# of sentences)

MSS SS LS

0.0

0.2

0.4

0.6

0.8

4 5 8 8 9 9 10 11 17

Summary size (# of sentences)

MSS SS LS

0.0

0.2

0.4

0.6

0.8

50% 68% 72% 76% 78% 81%

Compression ratio (%)

MSS SS LS

0.0

0.2

0.4

0.6

0.8

Recall

Avg.

LS

MSS

SS

0.0

0.2

0.4

0.6

0.8

10 24 29 31 36 39 41 49 88

F
-v

a
lu

e

Text size (# of stentences)

MSS SS LS

0.0

0.2

0.4

0.6

0.8

4 5 8 8 9 9 10 11 17

Summary size (# of sentences)

MSS SS LS

0.0

0.2

0.4

0.6

0.8

50% 68% 72% 76% 78% 81%

Compression ratio (%)

MSS SS LS

0.0

0.2

0.4

0.6

0.8

F-value

Avg.

LS

MSS

SS

Unsupervised Extractive Text Summarization using Frequency-based Sentence Clustering 9

a. Precision b. Recall c. F-value

Fig. 4. Comparative evaluation

We compare our approach with an online extractive summarization solution by Morgen

et al. [24, 25]. Fig. 4 shows the best results produced by our approach, i.e., considering the

longest sentence (LS) method. Results show that our approach produces summaries which

are more accurate, highlighting a higher average precision level = 0.51 (compared with 0.32

for Morgen et al.). Both solutions produce comparable recall levels, with a slight

improvement in favor of our solution. Average f-value results highlight the quality of our

approach, producing average 0.51 (compared with 0.34 for Morgen et al.).

Time performance results in Fig. 5 highlight the polynomial (almost linear) complexity

of our approach, which comes down to the sentence clustering algorithm.

a. Size of summary (k) = 8 sentences b. Size of summary (k) = 20

Fig. 5. Time performance

5. Conclusion

This paper introduces a new solution for extractive text summarization, designed to process

flat text documents. While most existing extractive solutions utilize term-based feature

vectors combined with heuristic or linear optimization solutions, our solution performs

sentence feature vector extraction, followed by sentence clustering using their feature vector

similarity, and summary building based on the cluster representatives. Experimental results

highlight our solution’s quality and almost linear time complexity.

We are currently extending our experiments to consider a larger test dataset and to

compare with multiple existing solutions. We are also investigating the selection process in

the k-means algorithm and how to better consider the algorithm’s convergence threshold in

fine-tuning the summarization result, e.g., [19, 26]. Generating multiple representatives for

each cluster and performing associative rule mining to select representatives [11] are also

ongoing directions. We also plan to investigate encoder-decoder architectures, e.g., [27, 28],

which have recently produced promising results.

0.0

0.2

0.4

0.6

0.8

50% 68% 72% 76% 78% 81%

P
re

ci
si

o
n

Compression ratio (%)

Our Solution
Mogren et al.

0.0

0.2

0.4

0.6

0.8

50% 68% 72% 76% 78% 81%

R
ec

a
ll

Compression ratio (%)

Our Solution
Morgen et al.

0.0

0.2

0.4

0.6

0.8

50% 68% 72% 76% 78% 81%

F
-v

al
u
e

Compression ratio (%)

Our Solution
Mogren et al.

0.0

0.2

0.4

0.6

0.8

F-value

Our Solution
Morgen et al.

0

0.5

1

1.5

2

2.5

3

3.5

20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
s)

Text size (# of sentences)

Linguistic Pre-Processing Sentence clustering

LS representative SS representative

MSS representative

0

0.5

1

1.5

2

2.5

3

3.5

20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
s)

Text size (# of sentences)

Linguistic Pre-Processing Sentence clustering

LS representative SS representative

MSS representative

10 Unsupervised Extractive Text Summarization using Frequency-based Sentence Clustering

References

[1] Khan A. and Salim N., A Review On Abstractive Summarization Methods. Journal of Theoretical and

Applied Information Technology, 2014. Vol. 59 No.1.

[2] Tanaka H., et al., Syntax-driven Sentence Revision for Broadcast News Summarization. In Workshop

on Language Generation and Summarization, 2009. pp. 39-47.

[3] Miller G. & Fellbaum C., WordNet Then and Now. Lang. Resources & Eval., 2007. 41(2): 209-214.

[4] Taddesse F.G., et al., Relating RSS News/Items. 9th International Conference on Web Engineering

(ICWE'09), LNCS, 2009. pp. 44-452, doi: 10.1007/978-3-642-02818-2_36.

[5] Genest P. and Lapalme G., Fully Abstractive Approach to Guided Summarization. Annual Meeting of

the Association for Computational Linguistics (ACL), 2012. pp. 354-358.

[6] Lau R., et al., Toward a Fuzzy Domain Ontology Extraction Method for Adaptive e-Learning. IEEE

Transactions on Knowledge & Data Engineering, 2009. 21(6): 800-813.

[7] Özates S., et al., Sentence Similarity based on Dependency Tree Kernels for Multi-document

Summarization. Inter. Conf. on Language Resources & Eval. (LREC), 2016.

[8] Shehab A.S. and Rafea A., Performance Study on Extractive Text Summarization Using BERT

Models. Information journal, 2022. 13(2): 67 (2022).

[9] Cao S. and Yang Y., DP-BERT: Dynamic Programming BERT for Text Summarization. Inter. Conf.

on Comput. Intel., Comm., & Business Analytics (CICBA), 2021. (2) 2021: 285-296.

[10] Aaditya M., et al., Layer Freezing for Regulating Fine-tuning in BERT for Extractive Text

Summarization. Pacific Asia Conference on Information Systems (PACIS), 2021. 182.

[11] Haraty R. and Nasrallah R., Indexing Arabic Texts using Association Rule Data Mining. Library Hi

Tech, 2019. 37(1): 101-117.

[12] Mansour N., et al., An Auto-Indexing Method for Arabic Text. Information Processing and

Management journal, 2008. 44(4): 1538-1545.

[13] Mojrian M. and Mirroshandel S., A Novel Extractive Multi-document Text Summarization System

using Quantum-inspired Genetic Algorithm. Expert Syst. Appl., 2012. 171: 114555 (2021).

[14] Srivastava A. et al., Extractive Multi-document Text Summarization using Dolphin Swarm

Optimization Approach Multim. Tools Appl., 2021. 80(7): 11273-11290.

[15] Popescu M., et al., A Highly Scalable Method for Extractive Text Summarization Using Convex

Optimization. Symmetry, 2021. 13(10): 1824.

[16] Kruengkrai C. and Jaruskulchai C., Generic Text Summarization Using Local and Global Properties

of Sentences. Web Intelligence, 2003. pp. 201-206.

[17] Rani R. and Lobiyal D., An Extractive Text Summarization Approach using Tagged-LDA based Topic

Modeling. Multim. Tools Appl., 2021. 80(3): 3275-3305 (2021).

[18] Tekli J., An Overview of Cluster-based Image Search Result Organization: Background, Techniques,

and Ongoing Challenges. Knowl. Inf. Syst., 2022. 64(3): 589-642.

[19] Haraty R., et al., An Enhanced k-Means Clustering Algorithm for Pattern Discovery in Healthcare

Data. Intelligent J. on Distributed Sensor Net., 2015. 11:615740:1-615740:11.

[20] Lloyd S., Least Squares quantization in PCM. IEEE Trans. Info. Theory, 1982. 28(2):129-137.

[21] Haraty R. and Hamdoun M., Iterative Querying in Web-based Database Applications. ACM

Symposium on Applied Computing (SAC), 2002. pp. 458-462.

[22] Mridha M., et al., A Survey of Automatic Text Summarization: Progress, Process and Challenges.

IEEE Access 2021. 9: 156043-156070 (2021).

[23] Tekli J. et al.., Structural Similarity Evaluation between XML Documents and DTDs. Inter. Conf. on

Web Information Systems Engineering (WISE), 2007. pp. 196-211.

[24] Mogren O., et al., Extractive Summarization by Aggregating Multiple Similarities. Recent Advances

in Natural Language Processing (RANLP), 2015. pp. 451-457.

[25] Kågebäck M., et al., Extractive Summarization using Continuous Vector Space Models. Workshop on

Continuous Vector Space Models and their Compositionality (CVSC), 2014. pp. 31-39.

[26] Tekli J., et al., (k, l)-Clustering for Transactional Data Streams Anonymization. Information Security

Practice and Experience, 2018. pp. 544-556.

[27] Maziad H., et al., Preprocessing Techniques for End-To-End Trainable RNN-Based Conversational

System. Inter. Conference on Web Engineering (ICWE), 2021. pp. 255-270.

[28] Chakar J., et al., Depthwise Separable Convolutions and Variational Dropout within the context of

YOLOv3. Inter. Symposium on Visual Computing (ISVC), 2020. pp. 107-120.

