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Abstract 
 

Digital photos and visual data have become increasingly available, especially on the Web considered as the largest image 

database to date. However, the value of multimedia content depends on how easy it is to search and manage. Thus, the need to 

efficiently index, store, and retrieve images is becoming evermore important, particularly on the Web where existing image 

search and retrieval techniques do not seem to keep pace. Most existing solutions return a large quantity of search results ranked 

by their relevance to the user query. This can be tedious and time consuming for the user, since the returned results usually 

contain multiple topics mixed together, and the user cannot be expected to have the time to scroll through the huge result list. 

A possible solution is to better organize the output information (prior or after query refinement), providing a means to facilitate 

the assimilation of the search results. In this context, image search result organization (ISRO) has been recently investigated as 

an effective and efficient solution to improve image retrieval quality on the Web. Most methods in this context exploit image 

clustering as a methodology capable of topic extraction and rendering semantically more meaningful results to the user. This 

survey paper provides a concise and comprehensive review of the methods related to cluster-based ISRO on the Web. It is made 

of four logical parts. First, we provide a glimpse on image information retrieval. Second, we briefly cover the background on 

ISRO. Third, we describe and categorize the various steps involved in cluster-based ISRO, ranging over: image representation, 

similarity computation, image clustering or grouping, and cluster-based search result visualization. Fourth, we briefly 

summarize and discuss ongoing research challenges and future directions, including: high-dimensional feature indexing, joint 

word-image modelling and implicit semantics,  describing images based on aesthetics, automatic similarity metric learning, 

combining ensemble clustering methods, performing adaptive clustering, allowing dynamic trade-off between clustering 

quality and efficiency, diversifying image search results, integrating user feedback, and adapting results to mobile devices. 

Keywords  Image Retrieval . Information Retrieval . Image Clustering . Search Result Organization. Spatial Arrangement 
 

1 Introduction 

With the exponential growth of multimedia visual data such as images and videos on the Web, the need for efficient techniques 

to search and retrieve visual information has become ever more important. Existing Web image search engines (e.g., Google 

Images1 and Bing Images2) and photo sharing sites (e.g., Flickr3 and Imgur4) return a large quantity of search results, ranked 

by their relevance to the user query (e.g., Fig. 1.a presents the results of query “Jaguar” submitted to Flickr). This can be tedious 

and time consuming, since the returned results usually contain multiple topics mixed together, and the user cannot be expected 

to have the time or patience to scroll through the huge result list. Things become even worse when one topic is overwhelming 

but is not what the user desires [30]. In addition, users could entirely miss their search goals due to the lack of adapted summa-

rization of the search results [4], leading to information or cognitive overload. Here, it is difficult to decide on the best results 

to present to the users since we do not know what they are really looking for. One possibility is to help the user reformulate the 

query by suggesting alternative or more precise search criteria. For instance, query disambiguation and relaxation techniques, 

e.g., [202, 203], can be used to help narrow down the search result diversity (e.g., suggesting more specific queries such as 

“Black Jaguar” or “Wild Jaguar”, among other alternatives/refinements suggested by Google and Bing for instance). Yet, such 

techniques do not entirely solve the problem since even the results of refined queries could be difficult to grasp (e.g., refined 

query “Black Jaguar” produces images of the black mammal as well as those of black cars).  
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a. Sample image search result to query “Jaguar” from Flickr 
 

 

 
 

b. Sample cluster-based ISRO reflecting the main topics of query “Jaguar” 
 

 

Fig. 1. Examples of clustered Web image search results, adapted from [108] 

 

Another solution is to better organize the output information (prior or after query refinement), providing a means to facil-

itate the assimilation of the search results by the user. Here, image search result organization (ISRO) has been recently inves-

tigated as an effective and efficient solution to improving image retrieval quality on the Web [169, 228]. Most methods in this 

context exploit image clustering (i.e., identifying groups of mutually similar images) as a methodology capable of topic extrac-

tion and rendering semantically more meaningful results to the user [42, 215]. The general assumptions are: i) mutually similar 

Web images (and documents) tend to be relevant to the same query [46], and ii) semantically similar images (i.e., images with 

similar underlying topics) tend to be grouped together in some feature space [42] (cf. Fig. 1.b). In other words, identifying the 

different topics (clusters) of image search results would help the users better understand and navigate the result set, to efficiently 

identify their search requests. 

Nevertheless, performing cluster-based ISRO on the Web faces various challenges, including: i) identifying the most prom-

inent features to assess image similarity (e.g., low-level descriptors, textual annotations, Web links, etc.), e.g., [30, 62], ii) 

combining multiple feature scores to effectively cluster images (e.g., producing a combined similarity measure, or using sepa-

rate measures to produce multiple clustering levels), e.g., [30, 169], iii) choosing the best clustering algorithm for the task at 

hand (e.g., hierarchical, partitioning, spectral, etc.), e.g., [140, 215], iv) identifying and organizing cluster representatives (i.e., 

cluster visualization and spatial arrangement), e.g., [42, 215], v) performing cluster labeling (i.e., generating textual descrip-

tions to concisely describe the main topic for each cluster), e.g., [140, 228], and vi) evaluating the quality of ISRO methods 

(i.e., benchmarking, e.g., [90, 91]), among others.  

In this paper, we provide a concise review of the methods related to cluster-based ISRO on the Web. The goal of this study 

is to briefly describe, compare, and categorize the different techniques and methods related to the problem, while illustrating 

some of the main research challenges and potential directions. To our knowledge, this is the first review study dedicated to 

cluster-based ISRO, which we hope will foster and guide further research on the subject. The remainder of the paper is orga-

nized as follows. Section 2 provides a glimpse on image retrieval. Section 4 briefly describes the background in ISRO. Section 

6 reviews and categorizes the literature on cluster-based ISRO techniques, followed by a description of experimental evaluation 

metrics and test data in Section 5. Sections 6 briefly covers ongoing research challenges and future directions, before concluding 

the paper in Section 7. 

2 A Glimpse on Image Retrieval (ImR) 

Many Web-based image retrieval (ImR) systems have been proposed in the literature (cf. survey studies in [47, 95, 114, 124]), 

and can be roughly categorized as: text-based, content-based, and hybrid methods. 

2.1 Text-based versus Content-based ImR 

In text-based systems, e.g., [30, 47, 62, 228], images are manually or automatically annotated by text descriptors, which are 

then used by classic database or text retrieval systems to perform image search [47]. The text-based paradigm has been adopted 

by most current Web search engines (e.g., Google and Bing) and photo sharing sites (e.g., Flickr and Imgur), due to its well 

proven scalability in handling the tremendous amounts of images published on the Web. Yet text-based ImR systems are usually 

characterized by poor result quality, since the search engines are guessing image visual contents using indirect textual clues 

[228], and are thus usually unable to confirm whether the retrieved images actually contain the desired concepts expressed in 
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the user queries [62]. In addition, text-based systems usually produce a large quantity of image search results presented in a 

scrolled list, including multiple underlying topics mixed together. Choosing the desired images from the list is usually tedious 

and cumbersome to the user, especially when the latter has an abstract or fuzzy search target [30, 228].  

In content-based ImR systems, e.g., [43, 124, 126, 188], images are indexed based on their visual content, e.g., color, 

texture, or shape descriptors, and are consequently processed via search engines specially devised to handle, compute, and 

compare low-level image feature descriptors (e.g., dominant color, color layout, color and edge histograms, etc.) [124, 126]. 

Yet, as these descriptors are low-level, they seem effective only in matching images which are almost identical in content [62]. 

In other words, they seem useful locally, i.e., when applied on a subset of similar images (retrieved a priori through some other 

means, e.g., using textual or user-provided evidences), but fail when matching relatively disparate images [43, 141]. In addition, 

low-level features are usually unable to effectively capture the high-level semantic meaning present in images [124], which is 

known as the semantic gap problem [126, 188]: the discrepancy between the descriptive power of low-level image features and 

the richness of user semantics. 

2.2 Hybrid ImR Methods 

Various hybrid methods have been developed, integrating both text-based and content-based image processing capabilities. 

Most methods in this category, e.g., [30, 67, 82, 113, 228], target Web images where both low-level and text-based image clues 

are available, including: i) the Web links of image files (e.g., URLs) which have a clear hierarchical structure with useful 

information such as the image Web category [124], as well as ii) Web documents in which images are imbedded (e.g., HTML) 

including textual metadata, e.g., image title, webpage title, ALT-tag, etc. [30]. Yet, several studies have shown that such 

metadata can only annotate images to a certain extent (e.g., the image title is usually abbreviated and might be meaningless, 

the ALT-tag might be missing), and do not utterly solve the semantic gap problem [30, 62].    

Moving on from traditional low-level image features (e.g., color, shape, and texture features), various studies have inves-

tigated high-level semantics [47, 124], i.e., deriving semantic descriptions generated automatically based on low-level features. 

This can be done using different techniques, namely: i) using dedicated ontologies to relate low-level features with high-level 

concepts (e.g., color ontologies where colors are defined using color names – red, blue, etc. – linked with numerical represen-

tations [137, 166, 192]), ii) using machine learning tools to associate low-level and high-level features using trained classifiers 

based on sample data provided by experts (e.g., categorizing textures into pre-defined classes – sea, clouds, forest, etc. – based 

on training numerical spaces [51, 99, 109]), and iii) generating semantic templates to support high-level semantic image re-

trieval based on low-level features (e.g., retrieval of named events, or of pictures with emotional significance such as “find 

pictures of a joyful crowd”, e.g., [40, 189, 246]). The main premise with this family of hybrid techniques is to try to simulate 

the visual concept space in terms of lexical concepts as perceived by humans, which remains an inherently complicated task 

and an ongoing challenge in ImR [47, 59, 124].  

2.3 Techniques to Improve ImR Quality 

In the past few years, various techniques have been investigated to improve the effectiveness and quality of ImR systems, 

ranging over: i) query formulation and refinement, ii) image and object classification, iii) user feedback, and (iv) search result 

organization (Fig. 2). 

Assistance in query formulation: providing suggestions to the users considering their interests and behaviors, in order to 

perform query refinement and disambiguation [38, 158, 232]. Search requests could be i) narrowed (e.g., query “Mickey 

Mouse” could be transformed to “Mickey Mouse and Pluto”), ii) expanded (e.g., “Mickey Mouse”  “Disney world”), or 

simply iii) modified, identifying related queries (e.g., “Mickey Mouse”  “Donald Duck”) to better reflect the user’s search 

purpose [38]. 

Image and object classification: organizing large image collections and digital libraries into predefined categories and 

providing means for automatic image classification, has been proven central for effective image indexing, browsing, and re-

trieval [19, 39]. Image classification allows automatic image annotation (i.e., associating predefined labels with images, and 

performing object detection and recognition) which is central to effective text-based ImR [71, 252]. It attempts to mirror human 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

perception in learning the visual appearance of image contents (i.e., identifying meaningful objects), in order to facilitate con-

tent-based search [124]. 

User feedback: allowing the user to interact with the retrieval system by providing information which is relevant to the 

query [45, 173, 238]. Based on the user’s judgments, the system dynamically updates its similarity evaluation model and result 

sorting functions to give a better approximation of the user’s search request. In other words, it brings the user into the retrieval 

loop to dynamically adapt retrieval results [238]. 

Most of the above methods exploit supervised learning techniques (e.g. deep neural networks and non-parametric classi-

fiers) [217] which usually require extensive training (large amounts of image training samples and a substantial manual effort) 

prior to executing the search task [124]. Hence, while efficient on relatively small and static image databases, the latter methods 

present a serious scalability problem and seem unfit to handle large scale image collections and retrieval tasks on the Web [62, 

124].     
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Outline of ImR and enhancement techniques 

 

Image search result organization: unlike the above ImR enhancement techniques based on supervised learning (and in-

volving extensive training), approaches to image search result organization have been gaining importance as simple and effi-

cient solutions to improving ImR quality on the Web, e.g., [30, 169, 228]. They usually rely on similarity-based clustering, an 

unsupervised learning paradigm [92] aiming to discover how image search results are organized based solely on the data itself, 

without any training samples or manual effort [77], thus promoting fast and scalable image retrieval on the Web [67]. We focus 

on this category of ImR enhancement techniques in this paper, and further describe them in the following sections. 

3 Background on Image Search Result Organization (ISRO) 

Transparent to the underlying ImR system, image search result organization (ISRO) is a search post-processing phase that is 

introduced to the ImR pipeline to amend: i) search accuracy, by re-arranging results to highlight the images which are most 

relevant to the user [191, 251], ii) result diversity, providing a global and diverse view of the result set in order to consider the 

ambiguous nature of image queries [215, 249], iii) result visualization, by grouping together mutually similar images to be 

presented in a user-friendly manner (e.g., 2-dimentional grid of thumbnails), in comparison with the traditional (1-dimentional) 

ranked list paradigm [30, 140], and iv) search speed, by making users faster in locating a given image or a group of images 

matching their requirements [168, 169].  

While image clustering is arguably the most prominent technique that is used to perform ISRO on the Web [228], other 

methods have been proposed in the literature. These can be roughly organized in two categories: i) result re-ranking, and ii) 

similarity-based spatial arrangement. 
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3.1 Result Re-ranking 
 

Result re-ranking consists in re-organizing the image search results, based on certain visual or semantic criteria, to improve 

their presentation [191]. The main idea is to re-position images reflecting diverse and more relevant visual contents or textual 

descriptions in the top raking positions of the result list, in order to provide the user with a better coverage of the search result. 

Most approaches to image result re-ranking, e.g., [116, 191, 251], analyze the probability distributions of the original image 

result set in order to identifying salient image characteristics and re-rank images accordingly. In [144], the authors consider 

manual user refinements in discarding noisy search results and highlighting more relevant images. In [159], the authors consider 

a pre-defined contrastive class of diversified images, to eliminate near duplicate images from the search result and guide the 

re-ranking process. A few methods in [171, 199] perform re-ranking through image search result clustering, by i) grouping 

images in similar clusters, ii) selecting the most representative images from every cluster, and iii) producing a new ranked list 

by ordering the selected images based on their original ranking and cluster properties. However, while re-ranking methods 

seem effective in diversifying the search result space [215, 216], their main problem lies in adopting the same ranked list 

retrieval paradigm used in classic ImR systems (cf. Section 2.1), which is not always user-friendly and has been shown to be 

tedious and cumbersome in image search [228]. The problem is particularly aggravated on the Web with the potentially huge 

size of returned image search results [30]. In other words, users still have to sequentially scan the images – one after the other 

– to find their request, even after the re-ranking phase [121]. 

3.2 Spatial Arrangement 
 

Various studies, e.g. [11, 121, 145, 169], have investigated similarity-based spatial arrangement to render the image search 

result as a set of thumbnails in a similarity-based spatial distribution, such that similar images are positioned closer together. 

This is based on the premise that (unlike textual documents) the content of an image can be understood at a glance due to its 

visual nature. The main idea with this family of methods consists in representing inter-object dissimilarities as distances in a 

high dimensional space, and then approximimg them in a low dimensional (commonly 2D) output configuration. This is 

achieved using well known dimension reduction techniques such as principal component analysis (PCA), latent semantic anal-

ysis (LSA), and multi-dimensional scaling (MDS) [157, 186, 201]. In other words, the similarity matrix between all pairs of 

images is transformed into a (2-dimensional) configuration of points, where thumbnails of the corresponding images are placed 

to produce the arrangement. This is done in a way where similar images have their thumbnails placed nearby, such that image 

dissimilarities are reflected by inter-thumbnail distances (cf. Fig. 3).  

 
 

 
 

 

Fig. 3. Example of similarity-based arrangement of image search results for query “Jaguar” from Fig. 1 

 

While similarity-based spatial arrangement seems more user-friendly and efficient in navigating the image search result in 

comparison with ranked lists, it underlines two main limitations: i) placing similar images next to each other can sometimes 

cause them to appear to merge, making them less distinctive and ‘eye catching’, where it becomes easier for the user to miss 

an image all together [169], and ii) thumbnail overlapping is another issue, which makes parts of the images invisible, causing 

information loss and making it harder for the users to identify their search requests [121]. Overlapping could be resolved by 

relaxing the similarity distances in order to guarantee the separation of image boundaries. Nonetheless, this is achieved to the 

expense of accuracy by relaxing/distorting the image similarity/distance relationships [121]. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

Hence, a technique is required for organizing images based on their mutual similarities (to render more meaningful search 

results [215]), while simultaneously avoiding both information loss and similarity relationship loss (in comparison with simi-

larity-based spatial arrangement [121]). Both of the above mentioned limitations are addressed with cluster-based ISRO, which 

we describe in detail in the remainder of this paper. 

4 Cluster-based ISRO 

Cluster analysis is the organization of a collection of entities (e.g., images) into clusters based on their mutual similarities, such 

that entities in the same cluster are more similar to each other compared with entities in different clusters [92]. Data clustering 

has been investigated in a wide spectrum of active research areas, ranging over databases, data-mining, and information re-

trieval, e.g., [1, 2, 146]. It has been used in two ways: i) standalone, as a separate data processing task, and ii) as a pre-processing 

step embedded within another data processing task – like data search and retrieval – to improve its performance. In the context 

of information retrieval, clustering has not been well received as a standalone search paradigm, for two main reasons [73, 93]: 

i) because it might be too slow for large corpora (clustering the whole document collection for every query can be extremely 

time-consuming), and ii) because it is not effective in identifying specific search requests (it rather identifies broader search 

topics). Nonetheless, the task of clustering search results has recently gained importance in information retrieval as a post-

processing phase to traditional ranked list search, e.g., [52, 61, 127, 175], where clustering is used for organizing and rendering 

meaningful search results (cf. Section 4.3.2). The same applies to the domain of ImR where clustering is mainly used for organ-

izing and visualizing more meaningful image search results (cf. Section 4.3.3).  

In the following sub-sections, we describe the various steps and categorize the different techniques involved in cluster-

based ISRO, ranging over: i) image representation, ii) similarity computation, iii) image clustering or grouping, and iv) cluster-

based search result visualization. 

4.1 Image Representation 
 

Unlike classic image retrieval from a fixed database where each image is treated as an independent entity [47], image retrieval 

on the Web deals with integrated image objects, each contained within its host webpage which could underline a great deal of 

relevant information about the image itself. In general, the content of Web images is more or less related to the content of their 

host pages [129]. For instance, a photo of a Jaguar animal is more likely to be found in a page talking about wild animals in 

the Americas, whereas a photo of a Jaguar car is likely to appear in a page about luxury European cars. Therefore, Web images 

could be described not only by their own visual features and textual annotations, but also by their related Web information, 

which could be exploited to allow more effective indexing, retrieval, and clustering [79]. 

In short, a Web image can be described in four dimensions: i) visual feature based, ii) textual feature based, iii) link graph 

based, and iv) region-level based representations.  

4.1.1  Low-level Visual Features 

Visual feature representation is the basis for content-based ImR. A typical content-based ImR system views each image as a 

collection of low-level visual features, and evaluates the relevance between images w.r.t.1 their feature similarity [124]. Visual 

features can be grouped in three main categories: i) color, ii) texture, and iii) shape. 

Color descriptors are used to represent the colors present in an image. Different color spaces exist in the literature such 

as CIE XYZ which attempts to produce a color model based on human eye color perception. Other color spaces include CIE 

RGB and CIELAB [47, 124]. Various color descriptors have also been proposed including color moments, color histogram, 

color correlogram, color coherence vector, etc. [123, 132, 192]. The MPEG-7 multimedia metadata description standard has 

integrated additional descriptors such as dominant color, scalable color, and color layout [133]. The use of color features usually 

depends on the nature of the images at hand. For instance, for images which do not have an overall homogeneous color, the 

average or dominant color descriptors might not be very useful. On the other hand, domain knowledge such as color variance 

and color distribution over all images can be exploited to dynamically assign weights to image pixels [86], allowing to better 

compute color features. Color descriptors are most commonly used since they are relatively easy to process (compared with 
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texture and shape features) and produce good enough results [47]. Texture descriptors are intended to capture the granularity 

and repetitive patterns of surfaces within in an image. They usually consist of spectral features, such as Gabor filtering [134] 

and wavelet transform [226], as well as statistical features such as the Wold features [118] and Tamura descriptors [198] (which 

are employed in MPEG-7). However, texture features are not as commonly used as their color counterparts, since they are more 

easily affected by image distortions and noise [124], and have been proven less effective on images where textures are not very 

structured and homogeneous (e.g., pictures of natural scenery) [112]. In [243], the authors propose a combined descriptor called 

Color Texture Moments (CTM), to integrate both color and texture characteristics in a compact form (using color moments and 

a Fourier transform based texture representation). Experimental results in [243] underline CTM’s good performance w.r.t. its 

classic texture counterparts. Shape descriptors allow detecting different shapes and small salient objects in an image, and have 

been shown to be useful in many applications (especially when dealing with images of synthetic and man-made objects [124]). 

Shape descriptors include aspect ratio, circularity, Fourier descriptors, consecutive boundary segments, etc. [136]. MPEG-7 

has adopted three main descriptors: 3-D shape descriptor derived from 3-D meshes of shape surface, region-based descriptor 

derived from Zernik moments, and the contour-based descriptor derived from the curvature scale space [133]. However, com-

pared with color and texture, shape features are not so well defined and are not as commonly used [124], and remain relatively 

marginalized in many ImR systems, e.g., [86, 137, 184, 192].  

4.1.2  High-level Text-based Features 
 

While low-level visual features have been proven efficient in content-based ImR [124], it is argued that the meaning (i.e., the 

semantics) of an image remains rarely self-evident [47]. Images which visual features are highly similar to the query image 

may be very different from the query in terms of user interpretation and intended meaning. That is because human observers 

do not typically perceive an image in terms of pixel distributions, color patches, or surface features, but rather tend to evaluate 

images at a higher semantic level, using lexical concepts (e.g., words or expressions) describing salient visual concepts in the 

image [22, 42]. Hence, a dedicated set of descriptors have been utilized to describe Web images, often referred to as: high-level 

features [47, 114], designating the textual content of the image. Textual descriptors include tags: which describe who and how 

many people are found in a given picture, place: label (name) of place where an image was taken, which can be utilized to 

allow geo-address comparison (using a geo-referenced ontology assigning geographic coordinates with place names [208]), 

caption: title of the image which is usually the most descriptive user-provided textual feature, providing a direct clue to the 

meaning and context of the image, comments: allowing a much larger variety of textual descriptions compared with the pre-

vious features, and they are especially useful when captions have not been provided by the user (publisher), and more recently 

hash-tags in social media image posts: adding descriptions provided by the user’s online social community. The textual de-

scriptors are then processed for feature representation, including word, phrase, sentence, and document level representations. 

These range over lexical form (origin of the term), semantic meaning (concept in a reference dictionary), part-of-speech tags 

(grammar category of the term), n-gram (word associations), syntactic structure (parse tree), and statistical features (e.g., con-

textual and co-occurrence term frequencies) [60, 190]. The features are subsequently represented as (one or multiple) high-

level feature vector(s), where vector weights are computed using legacy term scoring techniques developed in information 

retrieval1. While high-level features attempt to describe the semantics of the image (e.g., who, where, what, etc.) [124], none-

theless, their semantic descriptiveness depends on the quality of the surrounding text portraying the meaning of the image.  

Few methods have been recently suggested to generate/semi-automatically enrich the textual descriptions of Web images, 

using techniques such as probabilistic user-based image tagging (using the tagging logs from the histories of similar users to 

infer new tags, e.g., [153, 174]), and semi-supervised image annotation based on visual and Web contents (training different 

machine learning algorithms to annotate new images based on a training image set with predefined labels, e.g., [130, 131]). 

While promising, yet the latter techniques require training data and training time, which are not always available. 

 

 

 

 

1  The standard TF-IDF (Term Frequency – Inverse Document Frequency) approach (or one of its variants) from the vector space model [176] is usually used, 
describing the number of times a term appears in a high-level feature (TF) compared with the number of times it appears in all entries of the feature (IDF). 
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4.1.3  Link Graph-based Features 

Another kind of information available with Web images is link structure. While textual and visual features reflect the semantics 

of a single image, link structure reflects the semantic relationships between images [28, 104]. Previous work in Web search has 

demonstrated that link structure analysis is very effective in identifying relevant webpages [28]. It is based on the premise that 

a link from page p to page q is considered as an endorsement of q by p, and as some form of positive judgment by p of q’s 

content. Hence, sophisticated algorithms such as PageRank [28] and HITS [104] have been developed to analyze link structures 

in order to rank webpages (and are utilized in current search engines such as Google [193] and Yahoo [242]). In short, a 

document is considered more relevant if it links many “good” pages, and many “good” pages link it. Similar ideas have been 

applied to Web image retrieval [30, 79, 110], where images are evaluated considering their containing webpages. As a result, 

an image graph is constructed based on the fact that every image is contained in at least one page, such that the jump from 

image i to image j starts from the page containing image i, and ends at the page containing image j. Once the image graph is 

constructed, image vector representations can be obtained using spectral graph theory [44, 110], by extracting information 

contained in the eigenvectors and eigenvalues of the image graph matrix, similarly to traditional Web search approaches, e.g., 

[28, 48, 80]. However, a single webpage generally contains multiple images, usually describing different semantic topics [32], 

where images contained in different semantic blocks are likely related to different topics in different pages [79]. As a result, 

performing effective image link analysis might require decomposing a webpage into finer information units, e.g., page regions 

or blocks, to correctly analyze the connections between their images.  

4.1.4  Region Level based Features 

The authors in [32] argue that most webpages contain multiple semantic meanings, with each semantic region (block) linking 

to different regions in different pages. Hence, they introduce the notion of block-level link analysis to partition each page into 

different semantic regions and extract link information accordingly. The same approach is consequently extended toward image 

link analysis on the Web [30, 79]. The main assumptions are: i) images contained in the same region are likely to be related to 

the same topic, and ii) images contained in pages that are co-cited by a certain region are likely related to the same topic. First, 

a VIsion based Page Segmentation algorithm (VIPS) [31] is used to extract the semantic structure of a webpage based on its 

visual representation. It exploits the DOM [233] structure of the HTML document and its page layout features to construct the 

corresponding semantic tree [183], where each node represents a distinct semantic region (block) in the webpage. As a result, 

page-to-region PR, region-to-page RP, and region-to-image RI affinity matrices are generated to respectively reflect region 

containment in pages, region links to pages, and image containment in regions. An image graph is subsequently constructed by 

multiplying the affinity matrices in order to combine the link and containment relations between pages, regions, and images. 

Here, image graph construction is based on the fact that every image is contained in at least one region, such that the jump from 

image i to image j starts from the page containing the region encompassing image i, and ends at the page containing the region 

encompassing image j (in contrast with the page-based link analysis [28, 110] where only atomic pages are considered in the 

image Web graph construction process). Once the image graph is constructed, image vector representations can be obtained 

using spectral graph theory [44], similarly to classic page-based link analysis and traditional Web search approaches, e.g., [28, 

48, 80]. Despite its usefulness in describing image semantics, a major problem with region-based analysis is identifying se-

mantically meaningful regions. This requires performing automatic segmentation of webpages into regions or blocks describing 

distinctive semantic topics [31], which is not a trivial task and depends on the quality of the page segmentation techniques used 

[19, 94]. In other words, region-based image graphs and corresponding vector representations become useful only when the 

extracted regions can properly isolate webpage semantic contents. 

4.2 Image Similarity Computation 

After extracting the image features, the next step is to perform feature similarity computation, which is needed to conduct more 

sophisticated tasks including image clustering and similarity-based retrieval. Image feature similarity can be evaluated sepa-

rately for every feature representing a different aspect of the image (e.g., visual, textual, linkage), following a feature-specific 

vector representation (e.g., scalar, histogram, matrix), and using an adapted similarity evaluation method (e.g., Jaccard coeffi-

cient, cosine similarity, Minkowski distance, InfoSimba measure). Table 1 presents some of the most common similarity 

measures used to compare image feature vectors. 
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Table 1. Common similarity measures between vectors [68, 119, 214] 
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where Q and D are the image feature vectors being compared, and M is the total num-

ber of dimensions in the common feature space 
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b. Dice coefficient 
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c. Cosine measure 
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where q  ( d ) is the average of the values of vector Q (respectively D) 
 

d. Pearson correlation coefficient (PCC) 
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e. Minkowski distance measure (generalizing Euclidian distance when p=2). 
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where p represents the most representative vector dimensions, and Sim(D, Q)  [0, 1] 

can be any similarity measure comparing dimensions nr and ns  
 

f. InfoSimba measure 
 

 

Nonetheless, it is often desired to combine several features simultaneously, in order to benefit from their collective de-

scription of the image, which is not a trivial task. Various techniques have been devised to aggregate multiple feature similarities 

into a single result. They can be organized in various categories such as means, triangular norms, and conorms, among others 

[20, 202, 206]. In the context of image similarity, most aggregation methods focus on linear combination functions which might 

not sufficiently explore the inter-dependencies between individual feature similarities [55, 56]. Here, we distinguish between 

linear fixed, linear adaptive, and non-linear methods [6] as shown in Table 2. Linear fixed methods are most commonly used 

and include maximum/minimum (selecting the largest/smallest similarity of any feature), weighted sum (considering relative 

weights highlighting the importance of each feature similarity, cf. Table 2.a), and average (a special case of weighted sum 

where all feature weights are identical). Linear adapted methods aim to make the feature weight values more adaptable, where 

the weights are determined through a learning process. Here, the aggregation function comes down to an optimization problem 

where the weights are chosen to maximize overall image similarity. This can be solved using a number of known techniques 

that apply linear programming or machine learning in order to identify the best weights for a given problem class, e.g., [12, 13, 

85]. Yet, one major limitation of the latter techniques is the time complexity and training time required to compute the weights. 

In an attempt to solve this problem while allowing dynamic feature weighting, the authors in [214] suggest computing the 

variance of all image similarity features in the set of retrieved image results, to be used as a weighting and normalization factor 

in computing aggregate similarity (cf. Table 2.b). In other words, when the variance of a certain feature is small, the images in 
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the result set would resemble each other in terms of that feature, which make it an importance feature for those images [214]. 

This brings image similarities according to different features to a similar range, while assigning larger weights to features that 

are better at evaluating similarity.  

Nonetheless, the authors in [6] have criticized both linear fixed and adaptive methods for using linear combination func-

tions and not sufficiently exploring the interdependencies between individual features. In an attempt to address this problem, 

they suggest using a non-linear combination method (cf. Table 2.c), restricted to the second order since the feature similarity 

values range between 0 and 1. The first term of the function presents the aggregated similarity (computed as a weighted sum) 

without considering the interdependencies between individual feature similarities, while the second term presents feature in-

terdependencies (computed as the sum of the pair-wise feature similarity multiplications). The two terms are either added or 

subtracted depending on the linear similarity value: i) the two terms are added when achieving higher pair-wise similarities 

between their individual features, indicating that the images are more likely to be similar, and ii) the terms are subtracted in the 

case of low pair-wise feature similarity where images are not likely to be similar [6]. In other words, the nonlinear aggregation 

function acts like a contrast filter, amplifying the feature similarities having a higher impact of overall image similarity, while 

minimizing the other features.   

 
Table 2. Common similarity aggregation measures [6, 68] 
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where ∇f 
2 is the variance according to the f-th feature over all image vectors in the result set. 

 

b. Linear adaptive: dynamic feature weighting function 
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c. Non-linear aggregation function 
 

 

Note that identifying the most prominent features to assess image similarity, and choosing the most suitable aggregation 

function are ongoing challenges in ImR, and depend on user preferences and on the desired properties of the similarity-based 

application, namely image clustering. 

4.3 Image Clustering 

Clustering techniques are often utilized to partition entire datasets of images into homogenous clusters grouping similar images 

together, and therefore are not necessarily suitable for browsing image search results. To perform image search result clustering 

(ISRC), three main issues need to be considered [29]: i) the algorithm should take as input document snippets (e.g., image 

feature vectors) instead of the whole documents (e.g., raw images), since the processing of whole images is time consuming, 

ii) the clustering algorithm should be fast enough for online calculation, since it will run right after initial query execution, and 

iii) the generated clusters should have representative descriptions (visual or textual) for quick browsing by the user. In the 

remainder of this section, we first provide a quick overview of legacy data clustering algorithms in Section 4.3.1. We then 

briefly describe generic search result clustering approaches in Section 4.3.2. We finally describe and categorize ISRC solutions 

in Section 4.3.3. 
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4.3.1  Legacy Data Clustering 

Data clustering algorithms can be organized in three main categories: i) partitional, ii) hierarchical, and iii) other methods. 
 

Partitional clustering algorithms attempt to divide data objects (e.g., images) into non-overlapping subsets, i.e., the clus-

ters, such that each data object is in exactly one cluster, by maximizing intra-cluster similarity and minimizing inter-cluster 

similarity. K-means [125] is one of the most popular algorithms in this category and attempts to recursively minimize the 

distance between objects in a cluster and a special object designated as the center of the cluster (computed as the average 

between all objects in the cluster). The clusters are re-computed and adjusted recursively until reaching convergence (where 

the cluster centers remain unchanged). Similar algorithms such as k-medians, k-medoids, and BSAS (Basic Sequential Algo-

rithmic Scheme) have also been suggested in the literature [27, 155, 220]. On the one hand, partitional algorithms are usually: 

i) intuitive, ii) easy to implement, and iii) relatively efficient (e.g., k-means is of average O(n × k × i) time where n is the 

number of objects, k is the number of clusters, and i is number of iterations). On the other hand, i) they usually require the user 

to specify the number of clusters k which is not always known in advance (especially in search result organization), ii) results 

depend on the initial positions of the cluster centers which are mostly chosen randomly, iii) they are not suitable for identifying 

clusters of different sizes and densities, and iv) are usually unable to handle noise and outliers. A few algorithms such as x-

means [156], affinity propagation [64], and YAK [224] have attempted to counter some of the above limitations, by i) sweeping 

the search space to compute appropriate statistical functions (e.g., Bayesian information criterion [15]) or energy-based func-

tions (e.g., Bethe free-energy approximation [163]), ii) using the latter results to identify the required number of clusters and 

their centroids, and then iii) running a traditional partitional process to produce the clusters. Yet, their usage remains limited in 

the literature. 
 

Hierarchical clustering algorithms generate a set of nested clusters organized in a hierarchy, called dendrogram, where 

the root node of the dendrogram represents the whole dataset and each leaf node represents an individual data object. The 

cluster hierarchy is produced based on the similarity between individual data objects/clusters. Here, we distinguish between 

two types of hierarchical clustering solutions: agglomerative and divisive. Agglomerative clustering starts with each object 

forming its own cluster, and then finds the best pair to merge into a new cluster, recursively repeating this process until all 

clusters are fused together. Divisive clustering starts with all the data objects forming a single cluster. It then considers the best 

way to divide the cluster into two, and recursively repeats the same process on both sides until all clusters are split into indi-

vidual objects. A stopping rule is used to evaluate the quality and properties of the clusters (e.g., their number, sizes, shapes, 

inter and intra-cluster similarities, etc., [23, 139, 177]) in order to stop the hierarchical process and determine the best set of 

output clusters from the dendrogram. On the one hand, hierarchical clustering algorithms: i) usually produce better results 

compared with their partitional counterparts, ii) do not require the users to specify the number of clusters in advance, and iii) 

produce a dendrogram structure which describes the clustering process and maps nicely to human intuition. On the other hand: 

i) they are usually more computationally complex than their partitional counterparts (requiring at least O(n2 ×log(n)) time where 

n is number of data objects being clustered), and ii) they tend to break down large clusters into smaller (more homogeneous) 

ones which might not be always favorable from the user/application’s side.  
 

Other clustering approaches include incremental, density-based, spectral, and fuzzy clustering algorithms. Incremental 

clustering considers a stream of data objects (e.g., images) where each data object is processed one at a time and objects are 

assigned sequentially (as they arrive) to existing clusters. The first object is placed in its own cluster. Then, the next object is 

compared with the existing cluster and the algorithm decides if the new object should be placed in the same cluster or if a new 

cluster should be created around it. The process continues in the same manner until all objects have been clustered [36, 74, 

254]. While intuitive and seemingly more efficient than partitional algorithms, incremental clustering methods usually produce 

lower quality results since they depend on the order following which the objects are being processed and clustered [36]. Den-

sity-based clustering groups objects that are closely packed together with many nearby neighbors, and marks as outliers objects 

that lie alone, resulting in clusters that form high-density regions separated by low-density ones. Objects with high-density 

neighborhoods are identified as core objects, given user chosen neighborhood size and density threshold parameters. Then, 

objects closely associated with the latter are included in their clusters, while remaining objects are dismissed as low-density 

noise [35, 181]. While density-based methods can effectively handle noise and outliers given a careful tuning of neighborhood 

and density parameters, yet they tend to disregard low-density regions all together and thus might disregard relevant data 
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partitions which occur in low-density regions [34, 107]. Spectral approaches use the spectrum (eigenvalues) of the dataset’s 

pair-wise similarity matrix in order to perform dimension reduction, before running the clustering process (partitional, hierar-

chical, or other) in the reduced dimensional space. Various approaches such as principal component analysis (PCA) and latent 

semantic analysis (LSA) can be used to perform dimension reduction [78] [117, 122]. While the reduced feature space is 

possibly more descriptive than the original object representation, yet it consists of algebraic dimensions (implicit concepts) 

which are not readable by human users, producing results which might not meet the user’s needs [201, 241]. 

Note that most previously mentioned clustering techniques produce hard clusters, where every object is assigned to one 

single cluster only, such that all clusters are separate and do not intersect. In contrast to the latter paradigm, fuzzy (or soft) 

clustering allows to associate an object with more than one cluster, producing soft clusters where each object (e.g., image) has 

a variable degree of membership in each of the output clusters. Notable fuzzy clustering algorithms are fuzzy c-means: a soft 

adaptation of the k-means partitional algorithm, and FLAME: a more recent density-based fuzzy clustering solution [65].  

4.3.2  Search Result Clustering 

Search result clustering, also referred to as ephemeral clustering, is the task of discovering clusters from a set of web search 

results retrieved for a given query, in order to improve the organization and presentation of the query search results e.g., [46, 

81, 111, 248]. Search result clustering approaches are designed to deal with small datasets to perform efficient online query 

post-processing. The search result clusters are presented to the user following query execution, and are then disregarded with 

the query and do not provide information for future results. A few search engines such as Yippy1, Carrot2, and iBoogie3 support 

search result clustering through a dynamic generation of query result clustering structures. Most existing approaches in this 

context follow the same overall process consisting of four main phases: i) search result fetching, ii) result parsing, iii) feature 

representation, and iv) result clustering. The first phase consists in acquiring the results obtained from a certain Web search 

engine. The results mainly consist of webpage titles and query-dependent snippets. The latter are assumed to be informative 

enough to perform result clustering (since they are specifically returned by the search engine to facilitate the user’s relevance 

judgment when manually processing the search results). The second phase consists in parsing the titles and snippets, perform-

ing: tokenization, stop-word removal, and stemming (or lemmatization through a semantic knowledge base). The third phase 

converts the parsed results into feature representations, which are then utilized to perform result clustering in the fourth and 

final phase. In this context, most search result clustering approaches are distinguished based on: i) the choice or combination 

of feature representations, and ii) in the underlying clustering algorithms that they adopt. 

In [247], the authors introduce the suffix tree clustering algorithm, an adaptation of hierarchical clustering which considers 

the n-grams of any given length to be inserted into a string-based representation of the textual data, while allowing differing 

strings to be clustered incrementally in linear order. While the approach in [247] requires linear time complexity, it tends to 

produce a large number of clusters which can be detrimental to search result organization [52]. In [37], the authors extend the 

approach in [247] by introducing a criterion to measure the concordance of objects contained in two candidate clusters. The 

latter is applied on the result of the clustering process, as an optimization phase to decide whether to merge (or not) the candidate 

clusters based on their mutual information and the average information content of their constituent objects. Results in [37] 

show improved clustering quality (producing a lesser number of clusters) compared with [247]. In [150], the authors extract 

frequent phrases from the input text based on suffix-arrays. Then, they apply a spectral clustering approach, performing term-

document matrix factorization to discover latent structures of implicit concepts, before matching the textual features with the 

extracted concepts and grouping them into relevant clusters. In [52], the authors introduce a hierarchical divisive clustering 

solution, recursively splitting a set of Web snippets based on a variant of the k-means algorithm, combined with a dedicated 

similarity measure for comparing Web snippets. The approach includes a cluster-labeling step, producing a small set of repre-

sentative terms describing the produced clusters. In [179], the authors propose to augment the syntactic text representation of 

documents with a collaborative knowledge-based representation in the form of semantic graphs using a Wikipedia-based an-

notator [221]. The produced semantic graph representations are then processed through an adapted spectral clustering process, 

performing term-graph factorization before grouping the transformed graph representations into relevant clusters. Results in 

[142] show that the method in [52] produced improved results compared with its counterparts in the literature, and it was 

adapted in [142] to perform ISRC.  

 

1 http://www.yippy.com       2 http://carrot2.org         3 http://www.iboogie.com 
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4.3.3  Image Search Result Clustering (ISRC) 

A number of approaches have been recently developed to perform ISRC (cf. Table 3). They accept as input the search results 

produced by a typical Web or image search engine, and then produce as output a clustered organization of the image search 

results. They can be organized in two main categories: i) single-step and ii) multi-step result processing.  

4.3.3.1 Single-step Approaches 

Single-step approaches perform a single clustering process on the image search results, applied on one category of image 

features, namely visual-only features. Methods in this category usually utilize: i) partitional or ii) spectral clustering techniques. 
 

Partitional approaches: the authors in [231] consider as input the images returned by an image search engine (e.g., Google 

images). They perform region-based image analysis to extract visual codewords (i.e., region-based visual feature representa-

tions), and rank the extracted visual codewords based on a regression model learned from human labelled training data. Con-

sequently, they utilize an adaptation of k-means partitional clustering to group images sharing similar visual codewords to-

gether. In [119], the authors develop a color-based ISRC approach using a combination of color histogram and color distribution 

entropy descriptors introduced in [194]. The algorithm starts by selecting an image from the search results as a cluster seed. It 

measures the similarity between the selected image and every other image, and adds the compared images to the seed image’s 

cluster if their similarities are above a certain threshold, forming new clusters around the images which similarities are below 

the threshold. The process is repeated until all images are clustered. In [224], the authors describe a text-based approach intro-

ducing the YAK algorithm (i.e., Yet Another K-means), designed to overcome k-means’ need to specify the number of clusters. 

YAK decides on the number of clusters computationally, using image similarity and cluster merge thresholds which are defined 

statistically based on the image search results. After identifying the first centroid randomly, images whose similarities with the 

centroid are above the threshold are associated with its cluster, and others with similarities below the threshold form the cen-

troids of new clusters. The process is repeated iteratively until all images in the search result have been processed. The resulting 

clusters are then considered for merging according to a merge threshold, to produce the final clusters.  

Aiming to improve the diversity of image search results, the authors in [214] introduce three lightweight partitional clus-

tering algorithms, called folding, maxmin, and reciprocal election. They consider multiple visual features, combined through 

dynamic weighting (cf. Table 2.b) to capture the visually discriminative aspects of the retrieved images. The folding algorithm 

first selects a set of cluster representative images from the ranked list of image search results, and forms clusters around the 

representative images by associating each image with its most similar representative (i.e., using the nearest neighbor rule). The 

first image from the ranked result list is chosen as the first representative. Then, the remaining image representatives are chosen 

from the ranked list to be dissimilar enough from the already selected one(s), following a dynamically computed distance 

threshold (a fuzzy version of the folding algorithm is described in [4], where images are associated general membership degrees 

w.r.t. every representative, such that an image is assigned to the representative with the maximum membership degree). The 

maxmin algorithm differs from folding in its cluster representative selection process. It disregards result ranking in the search 

list and chooses the first representative at random. Then, it selects the remaining representatives as the ones having the largest 

distances (i.e., minimum similarities) from the already selected one(s). Reciprocal selection interleaves the processes of repre-

sentative selection and cluster formation. All images cast votes for each other, in the form of reciprocal ranks computed based 

on visual feature similarity, such that the votes an image receives determine its chances of being elected as representative. 

When the image with the highest votes is elected to become the first representative, the cluster around it is directly formed by 

inserting those images that have it in the top of their voting lists. Images in the formed cluster are excluded from the result list, 

and the process is repeated until every image is selected as representative or is assigned to a cluster. Empirical results show that 

reciprocal election outperforms its counterparts by improving result organization and diversity, which is attributed to its stability 

(i.e., minimizing the variation of cluster results) [4]. 
 

Spectral approaches: In [63], the authors develop a spectral analysis approach for learning image categories from web 

search images. They introduce a variation of probabilistic latent semantic analysis (PLSA) [84] applied on a region-based 

spatial representation of the image search results retrieved from Google Images. The latter are combined with the image textual 

labels returned by the search engine to perform label-image matrix factorization and implicit concept extraction, before asso-

ciating the extracted concepts with the corresponding label categories. Another spectral approach in introduced in [42] which 

starts by querying images based on their visual feature similarity with the user query, and then comparing all the retrieved 
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images among each other to produce an image search result affinity matrix. The normalized cut spectral clustering algorithm 

[186] is run on the graph representation of the affinity matrix to identify the image result clusters. A similar spectral approach 

is described in [68] where the authors utilize kernel principal component analysis (PCA) clustering [180] applied on the image 

search results returned by Google Images, to group together images sharing similar visual features. Given user-provided con-

straints (e.g., number of returned results, and dimension size of the kernel matrix), the kernel learning algorithm is run incre-

mentally to update and better approximate the latent image representations, which are then partitioned into multiple visual 

categories according to the computed kernel matrix. 
 

Discussion: To sum up, single-step clustering methods perform a single clustering process on the image search results, 

using adaptations of partitional or spectral clustering algorithms. Most methods rely solely on the images’ visual features and 

are usually unable to capture their semantic meaning. Most partitional approaches do not describe how the number of clusters 

is computed, or randomly select the initial seed images to build the clusters (except for folding and reciprocal election algo-

rithms in [194] where representative images are chosen based on their rankings in the result list). Also, most spectral approaches 

do not discuss how to pick the number of implicit concepts (i.e., latent dimensions), or how to identify the most informative 

ones to perform the clustering task [142]. Note that the latter limitations are usually shared with generic partitional and spectral 

algorithms (cf. Section 4.3.1). 

4.3.3.2 Multi-step Approaches 

Multi-step approaches run multiple clustering or supervised learning processes on the image search result, where every process 

is usually applied on a different image feature representation, aiming to leverage the descriptiveness of multiple image features 

in improving search result organization. Methods in this category mainly utilize i) partitional, ii) hierarchical, or iii) spectral 

clustering techniques. 
 

Partitional approaches: In [228], the authors develop a two-step text-based processing approach combining clustering 

with supervised regression analysis. After running the user’s original query through a Web search engine, the retrieved search 

results – consisting of the page titles and their metadata – are concatenated to form a ranked list of textual strings. The strings 

are then processed using a textual analysis approach based on the salient phrase ranking paradigm [250], producing clusters of 

similar text phrases using suffix tree clustering [247]. The latter are fed into a supervised regression model learned from human-

labeled training data in order to produce a list of candidate cluster labels consisting of individual phrases. The cluster labels are 

then run through an image search engine (e.g., Google Images), to produce labelled image clusters. A similar approach is 

described in [258], where the authors integrate visual and textual features using two regression models (i.e., linear multi-vari-

able regression and non-linear support vector regression) as a first step, and then run the affinity propagation algorithm [64] on 

the combined feature representations – as a second step to produce the image clusters. In [82], the authors introduce a two-step 

pre-processing approach for image annotation based on image search results. They consider visual features, image tags, and 

photo-taking metadata in evaluating image similarity. A k-nearest neighbor method is first run on every image in the search 

result to identify the tags in its neighborhood. The images are then clustered using the maxmin partitional algorithm [214] (cf. 

Section 4.3.3), and the resulting clusters are processed to filter-out noisy image tags. The resulting image tags are finally rec-

ommended as input to the search result clustering process. 
 

Hierarchical approaches: In [256], the authors introduce a three-step agglomerative hierarchical clustering approach 

considering image metadata (URL of the containing webpage and image anchor text), textual context (surrounding text in the 

containing webpage), and semantics (matching concepts from the Wikipedia knowledge base). The approach starts by pre-

processing the image metadata and textual context, and performs semantic disambiguation [201] to match key terms and phrases 

with the Wikipedia knowledge base [33]. Then, agglomerative clustering is run in three consecutive steps. The first step clusters 

the input images based on the concepts extracted from their metadata. The second step accepts as input the clusters produced 

in the first step and merges them based on the concepts extracted from the images’ textual contexts. The third step accepts as 

input the clusters produced in the second step and expands the context of each cluster in order to merge the ones sharing the 

most similar contexts. The top concepts in each cluster are then used to represent cluster semantics. A similar hierarchical 

approach is described in [83] where the authors consider labels added using social tagging, photo taking metadata, and low-
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level image features. Constrained agglomerative clustering with must-link constraints is utilized to process the different fea-

tures. In [4], the authors introduce the folding tree hierarchical algorithm (inspired by the folding algorithm from [214], cf. 

Section 4.3.3). It starts from the individual images which represent leaf nodes, and merges the most similar ones based on their 

visual features, to form the first level clusters represented as inner tree nodes. Tree traversal is then performed level-by-level 

from the leaves to the root. In the next levels, the cluster of each subtree is checked before merging with other clusters or 

images, and the process continues until it reaches the root of the tree. The main clustering step is followed by three consecutive 

ones: i) fine-tuning highly dispersed clusters by identifying the farthest images in every cluster and verifying whether they 

should be assigned to a different one based on image/cluster similarity, ii) merging of small clusters following a certain prede-

fined population average size, and iii) eliminating small clusters that cannot be merged given their dissimilarity from all other 

clusters. 

 
Table 3. Comparing image search result clustering solutions 

 

Processing Clustering Approach Features Characteristics 
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Wang X. et al. [231] Visual 
- Ranks visual codewords based on trained regression model  

- Uses adaptation of k-means 

Liu G. and Lee B. [119] Visual 
- Uses color features from [194] 

- Introduces iterative similarity-based clustering algorithm 

Van Leuken R. et al. [214] Visual 

- Introduces three algorithms: folding, maxmin, and reciprocal election 

- Uses dynamic weighting to combine multiple features  

- Reciprocal analysis outperforms its counterparts 

Alamdar F. and Key-

vanpour M. [4] 
Visual 

- Introduces fuzzy folding algorithm (a fuzzified version of the folding algorithm 

from [214]) 

Wang H. et al. [224] Textual 
- Introduces the YAK algorithm (upgrade of k-means) 

- Determines the number of clusters statistically 

S
p
ec

tr
al

 Chen Y. et al. [42] Visual - Produces image search result affinity matrix and graph  

- Runs normalized cut spectral clustering [186] on the matrix graph 

Gao Y. et al. [68] 
Visual - Uses kernel PCA clustering [180] 

- Considers user-provided constraints (e.g., number of returned results, and dimen-

sion size of the kernel matrix) 

Fergus R. et al. [63] Textual - Uses PLSA variation [84] for image-label matrix factorization 

- Associates implicit concepts with label categories 

M
u
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 Wang S. et al [228] Textual 

- Uses a two-step process: i) performs suffix tree clustering [247], ii) performs super-

vised regression analysis on the clusters to produce cluster labels 

- Performs textual analysis using salient phrase ranking [250] 

Zhuang Y. et al [258] 
Visual & 

Textual 

- Uses a two-step process: i) runs two regression models to process visual and textual 

features, ii) runs affinity propagation algorithm [64] on combined feature repre-

sentation to produce image clusters 

Hirota M. et al [82] 
Visual & 

Textual 

- Uses a two-step process: i) runs a k-nearest neighbor method to identify tags in the 

Web image neighborhood and enrich their textual features, ii) runs maxmin partitio-

nal clustering [214] on the resulting Web images 

H
ie

ra
rc

h
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al
 

Zhao K. et al. [256] Textual 

- Uses a three-step agglomerative clustering process: i) clustering input images based 

on concepts extracted from their metadata, ii) merging clusters produced in the first 

step based on concepts extracted from the images’ textual contexts, and iii) expan-

ding the contexts of clusters from the second step using the Wikipedia knowledge 

base [33] to represent their semantics 

Hirota M. et al. [83] 
Visual & 

Textual 

- Uses a three-step process: runs constrained agglomerative clustering with must-link 

constraints to process different features in consecutive steps: i) social tags, ii) 

photo-taking conditions, and iii) visual features. 

Alamdar F. and Key-

vanpour M. [4] 

Visual - Introduces folding tree hierarchical clustering algorithm 

- Uses a four-step process: i) runs folding tree clustering, ii) fine-tunes dispersed 

clusters by identifying the farthest images in every cluster and verifying whether 

they should be assigned to a different one based on image/cluster similarity, iii) 

merges small clusters following a predefined population size, and iii) eliminates 

small clusters that cannot be merged given their dissimilarity from all others 

S
p

ec
tr

al
 Gupta G. and Ghosh J. 

[75] 

Visual & 

Textual 

- Uses a two-step process: i) clusters key-phrases using k-lines spectral clustering 

[24], ii) runs Bergman bubble clustering [17] on images from the first step clusters 

and groups them based on their visual features 

Cai D. et al. [29] 
Visual, Tex-

tual, & Link 

- Uses a two-step process: i) applies spectral clustering on the combined text and link 

image affinity matrix, ii) runs a second spectral clustering step on each cluster pro-

duced in the first step using the images’ visual features  

 

Spectral approaches: In [53], the authors consider a two-step clustering method using textual features in the first step, 

and then visual features in the second step. First, the approach extracts query key-phrases and clusters them using the k-lines 

spectral clustering algorithm [24]. The authors consider that query key-phrases capture the semantic topics of the image search 
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results. Second, images in the resulting clusters which correspond to each key-phrase, are themselves clustered using the Berg-

man bubble clustering algorithm [17, 75] applied on the images’ visual features to improve their visual organization. Another 

two-step clustering method is introduced in [29], considering text and link-based features in the first step, and then visual 

features in the second step. The system starts by extracting the text and link information describing every image in its containing 

webpage. The resulting textual feature vectors are used to compute a pair-wise image affinity matrix, consisting of the cosine 

similarity values between all pairs of image vectors. Another pair-wise image affinity matrix is computed based on the number 

of shared links between the images. The scores of the two affinity matrices are then linearly aggregated, and the generalized 

Eigenvalue problem is solved on the combined matrix, followed by a spectral clustering process applied on the reduced dimen-

sional matrix. A second spectral clustering step is then run on each cluster produced in the first step, this time using the images’ 

visual features to produce visually coherent search result clusters.  
 

Discussion: While early ISRC solutions mainly perform single-step image search result processing, more recent solutions 

mostly perform multi-step processing. Most multi-step methods make use of text features to run a first clustering of the result 

images, where the main meanings and facets of the user queries are discovered. Then, the clustering is improved by introducing 

visual or weblink features in subsequent clustering steps, to improve the visual organization and diversification of result images 

and facilitate user browsing. Note that partitional and spectral methods usually suffer from the same limitations mentioned with 

single-step methods (cf. Section 4.3.3.1) while hierarchical methods are usually more computationally expensive compared 

with their counterparts (similarly to generic clustering solutions in Section 4.3.1). The main characteristics of single-step and 

multi-step ISRC solutions are summarized in Table 3. 

While promising results have been produced in the literature, yet most existing (single-step and multi-step) ISRC solutions 

share several common challenges. Most methods are developed separately and do not compare their results against each other. 

They suggest different ways of presenting the resulting clusters (using cluster representatives, hierarchical structures, or spatial 

arrangements) which makes it difficult to draw clear conclusions on the quality of the proposed solutions. Also, there is a lack 

of common evaluation datasets and metrics, which limits the reproducibility and comparison of the evaluation results. Another 

key challenge is the interplay between relevance and diversity: focusing on producing relevant results may produce many near 

duplicate images, while adding diversification may result in losing relevant result images [90, 91]. We further discuss these 

challenges along with other future directions in the following sections. 

4.4 Cluster-based Search Result Visualization 

Organizing image search results into clusters becomes more useful for image browsing and retrieval if the clusters can be 

visualized properly. As a result, different visualization techniques have been proposed in the literature. We organize them in 

three main categories: i) cluster representatives, i) hierarchical arrangement, and ii) spatial arrangement. 

4.4.1 Cluster Representatives 

Once generated by the clustering algorithm, clusters of images can be abstracted and represented as a bunch of: i) representative 

images, or iii) representative labels. 
 

Representative Images: Clusters can be described visually as a set of representative images describing the visual proper-

ties and diversity of their containing clusters. Here, we distinguish between three main approaches: i) image subset, ii) image 

selection, and ii) image synthesis. The first approach consists in presenting a subset of the cluster’s images re-ranked and 

organized to highlight the cluster’s visual properties. A subset of the cluster’s images is first selected following certain criteria 

targeting relevance, diversity, or their combination (cf. Section Error! Reference source not found.). Then, the image subset 

is ranked following similar criteria (relevance, diversity, or a combination of both) for presentation to the user [225, 239]. The 

second approach can be viewed as a more selective version of the first, where only one (or a small number of) image repre-

sentative(s) is selected to represent the cluster. The representative image(s) can be selected as: i) the most relevant w.r.t. the 

user query, where the original image ranking or a re-ranking of the cluster’s images is utilized to identify the top-most image(s), 

ii) the most similar to all other images in the cluster, by comparing each image with all others (pair-wise image similarity scores 

that were computed during the clustering process and can be straightforwardly utilized if available), iii) the most dissimilar 

from all other images in the cluster: mainly utilized when selecting more than one cluster representative such that the main 
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focus is on diversifying the representatives [42, 214]. The third approach consists in producing a synthetic image that would 

sum-up the cluster’s visual features. The latter is usually computed as the average image that only exists in the visual feature 

space, and is built by aggregating all the cluster images into one canonical image. This is done using mathematical aggregation 

functions (e.g., arithmetic mean, maximum, weight sum, cf. Table 2) applied on the visual features’ histogram-like vector 

representations producing a synthetic feature representation describing the cluster [4, 96, 214]. A hybrid approach is described 

in [161] were the authors first produce the synthetic image as the average of all image features in the search result, and then 

sort all images according to the new similarity values computed after subtracting the synthetic image features from the original 

ones. The re-ranked images are then clustered using a k-means approach, and a new synthetic image is computed for each 

cluster allowing to re-rank the images within the cluster according to their similarities w.r.t. to the synthetic image, such that 

every cluster is represented by its top ranked images. 
 

Representative Labels: Another way of describing clusters would be to assign them meaningful labels that describe their 

semantic contents. Typical topic extractions approaches can be utilized, e.g., [96, 187], applied on the images’ textual features 

to extract representative terms or labels. Here, we distinguish between two main approaches: i) image-based label extraction 

and ii) cluster-based label extraction. The first approach consisting in processing the images’ textual features separately, such 

as representative labels are identified for every image. Then, the image’s representative labels are combined to select the top 

labels that best describe the cluster [256]. The second approach consisting in combining the cluster images’ textual features 

together, and performing topic extraction on the combined textual features in one pass, to produce the labels that best describe 

the cluster [224]. Dedicated measures such as information gain, label importance, cluster text compactness, and cluster overlap 

entropy [231, 235, 240] have been suggested to extract the most descriptive cluster labels. More recent approaches have sug-

gested using external knowledge sources such as Wikipedia or Yago [162, 213], where the labels representing the clusters are 

identified based on their semantic meaning, and might be selected from outside the clusters (e.g., term sports car might be 

selected to describe a cluster containing terms Ferrari and Corvette, such that sports car never appears in the cluster). 

Note that representative labels can be combined with or extracted from representative images, providing an integrated 

visual and textual abstraction of the cluster [66, 222]. A recent approach in [76] clusters images of touristic attractions from 

Flickr, and then runs multiple neural network models to extract representative images of the main attractions. Photos with 

similar geotags are used to detect place-relevant tags, and are then used to merge and extend the clusters according to the 

similarity between pairs of tag embeddings. Noisy images are then filtered out using a single-shot multi-box detector model, 

before selecting the cluster representative images using an integrated ranking model. 

4.4.2  Hierarchical Arrangement 

Another way of visualizing image clusters is by arranging them in a hierarchical structure, i.e., a taxonomy consisting of a set 

of nodes and a set of hierarchical links connecting the nodes together. Hierarchical arrangement techniques can be distinguished 

following: i) the kind of taxonomy, and ii) the construction process being used. 
 

Image taxonomies: We distinguish between two kinds of image taxonomies: i) visual and ii) semantic. Visual taxonomies 

consist of nodes representing clusters of images, and hierarchical links representing the containment relationships between the 

clusters. The taxonomy’s root node represents the largest cluster consisting of all images in the search result set, and contains 

one or many sub-clusters represented as the root node’s children. The latter also contain their own sub-clusters, and the same 

structure is repeated until reaching the taxonomy’s leaf nodes which are made of individual image clusters. Visual taxonomies 

allow decomposing the output space into several layers of highly similar images which allows the user to visually browse the 

search results and identify the images of interest [160]. They can also help in object recognition by navigating the branches of 

the taxonomy which contain relevant image clusters, in order to avoid irrelevant possibilities (e.g., navigating the branch which 

includes clusters of images containing car objects means the user is probably interested in car or vehicle-related images) [72]. 

A visual taxonomy can also be used as a data mining tool, providing insights on the visual patterns and correlations between 

images in the search result set [72].  

Semantic taxonomies consist of nodes representing image labels, and links representing the semantic relationships between 

the labels. Labels are extracted from the search result images’ textual features, and allow to associate the images with the 

taxonomy. The most common hierarchical semantic relationships are hypernymy/hyponymy (IsA/HasA, e.g., Jaguar-IsA-car) 

and meronymy/holonymy (PartOf/HasPart, e.g., chassis-PartOf-car) [195, 196]. Semantic taxonomies can be used to filter-out 
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irrelevant or non-descriptive labels in the search result set. They can guide the user by offering images not just from the query 

keywords, but also from their semantically similar labels in the taxonomy [72]. Moreover, a semantic taxonomy can serve as a 

data mining tool, allowing to learn the visual appearance of textual labels in the image result set, thus narrowing the gap between 

visual and textual features to help solve the semantic gap problem [135]. 
 

Construction process: The taxonomy construction process involves two phases: i) generating a hierarchical organization 

of nodes (i.e., image clusters or labels) and ii) associating the images with the nodes. The latter can be undertaken using two 

kinds of construction processes: i) semi-automated, or ii) fully-automated. Following the semi-automated approach, either the 

first phase, the second phase, or both phases of the taxonomy construction process are done manually by humans. Various 

works for semi-automatic generation of Web document and image hierarchies have been developed in the literature, e.g., [72, 

135, 164, 253]. They mainly rely on labelled data or predefined categories applied on self-organizing maps [54, 149] to produce 

the node hierarchy. Visual or textual categorization techniques [18, 72, 135] are then used to associate the images with the 

produced hierarchy. In this context, result images can be classified against existing taxonomies where relevant taxonomic ex-

tracts are returned to the user. While the semi-automated approach usually produces reliable structures and associations, yet it 

is time and effort consuming and depends on the quality and expressiveness of the manual taxonomies or labeled data used as 

reference. 

The fully-automated approach for taxonomy construction consists in building a hierarchical organization of search result 

images without human intervention or prior knowledge of the structure or predefined categories. Most methods in this category 

rely on hierarchical clustering algorithms, e.g., [72, 185], where the taxonomy consists of an adaptation of the dendrogram of 

nested hierarchical image clusters. The latter can be post-processed to extract representative images or labels for every cluster 

(cf. Section 4.4.1) and append them to the taxonomy. Compared with semi-automated methods, the fully-automated approach 

requires minimal human intervention in the form of tuning certain parameters of the hierarchical clustering algorithms which 

might affect the produced clusters (e.g., choice of stopping rule [23, 139, 177] to halt the hierarchical process and determine 

the best set of output clusters that form the dendrogram). 

4.4.3  Spatial Arrangement 

Various studies have investigated similarity-based spatial arrangements that present the image search results as a set of thumb-

nails in a spatial distribution, e.g., [11, 145, 169, 228]. The main idea consists in measuring the pair-wise similarities between 

images in the search result set, and then transforming the image similarity matrix into a 2-dimensional configuration of points, 

where the thumbnails of the corresponding images are properly placed to produce the arrangement. This is done in a way where 

similar images are positioned closer together. While spatial arrangement techniques can be used as stand-alone search result 

organization techniques (cf. Section 2.3), they can also be applied to visualize clustering results. In this context, several visu-

alization techniques have been suggested to answer different user preferences, including: i) representative display, ii) cluster 

list view display, iii) 2D display, iv) grid view display, and v) fish-eye view display. 
 

Representative display: Following this layout, the representative image of each cluster is displayed at first, and then when 

the user clicks on one of the images, a new window opens containing the images of the corresponding cluster [11]. This is done 

by looping through the first image in the array list for each cluster, and displaying the images in one window. Then, each image 

can be selected to retrieve the corresponding cluster and display the images in that cluster. The main advantage of this view is 

its speed in displaying the result images since it only requires initially displaying the representative images without having to 

display the rest of the images in each cluster. In other words, there is no need to load all cluster images unless the user chooses 

to do so explicitly for a given (number of) clusters. A disadvantage of this view is that it might not be very intuitive in displaying 

the clustering results, since the user cannot easily visualize how the clusters are organized w.r.t. image similarities/distances, 

or how close/far away clusters are from each other (cf. Fig. 4.a). 
 

Cluster list view display: It consists of a list in which each item represents a cluster. For each cluster, the representative 

image is displayed in large, and then the rest of the images are displayed in smaller size and are placed next to the representative 

[169, 228]. Each image can be enlarged (upon user selection) to display it in its actual size, while allowing the user to change 

the cluster representative (choosing another image from the cluster to serve as its representative). Changing cluster represent-

atives not only affects the visualization of clusters, but can also replace the old cluster representatives upon the user’s request. 

The main advantage of this layout is that it allows the user to view all clusters at once in an organized manner and allows the 
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user to change representative images. A disadvantage is that it can be time and memory consuming due to the fact that a new 

instance should be created for every cluster, and all image search results will be loaded into memory upon display (cf. Fig. 4.b). 

 
 

 
 

a. Sample cluster representative display 

 

 
 

b. Sample cluster list view display 

 

 

 
 

 

c. Sample 2D view display 

 
 

 

 

d. Grid view display (with 2 clusters: white & blue) 

 

Fig. 4. Sample spatial arrangement displays (from [11, 169]). 

 

2D display: It presents images in a 2-dimensional plane, where each cluster of images is separated from the rest (using 

different color indicators), and within each cluster of images: the representative image is placed in the middle, and the rest of 

the images are placed around it according to the similarity between the images and the representative image [11, 169]. In a 

given cluster, images that are most similar to the cluster’s representative are displayed closest to the center, while those that are 

least similar are displayed farther from the center. This is done by creating a specific display pane for each cluster in which the 

images are laid out according to the above description. Then, each display pane is added to the main grid which separates the 

clusters from each other. The main advantage of this approach is that it helps visualize clusters while highlighting their intra-

cluster similarities and inter-cluster similarity-based spatial organization. A disadvantage of this display is that it is more com-

putationally expensive and time-consuming, compared with the previous two displays (cf. Fig. 4.c). 
 

Grid view display: It places all the images in a 2-dimensional grid such that images in the same cluster are placed as close 

as possible to each other. The difference between the grid view and the 2D display is that grid view places images in an ordered 

manner as tiles next to the cluster representative, whereas 2D display places images in a spiral shape around the representative. 

Different clusters are distinguished using background colors assigned to each cluster [11, 169]. To do this, the representative 

image is placed first in the grid, and then the next image in the cluster having the highest similarity to the representative is 

placed as close to it as possible. For each new image, the system identifies the next tile in the grid which can be filled taking 

into account the similarity/distance w.r.t. the representative (i.e., trying to keep the maximum similarity/minimum distance). 

The main advantage of this view is that images can be displayed in a 2-dimentional manner while requiring less computation 

and time compared with the 2D display approach. A disadvantage of this display is that it seems less expressive of the intra- 

and inter-organization of the clusters in comparison with 2D display (e.g., the distances among images and among clusters 

cannot be easily spotted with the grid view display, compared with 2D display where these are clearly highlighted, cf. Fig. 4.d).  

User clicks 

on a cluster 

representative 

image (high-

lighted in blue) 

to see  corre-
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cluster images 

Cluster representatives 

Clus. 1: Road Trip 

Clus. 2: Spring Fiesta 
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Fish-eye view display: This is similar to 2D display with one major difference: the sizes of images surrounding the cluster 

representatives decrease as their similarities w.r.t. the representatives decrease, causing the images that are farther away from 

the representatives to appear smaller. It carries the already mentioned advantages and limitations of 2D display. 
 

Discussion: Spatial arrangement techniques applied on search result clusters seem to be more user-friendly compared with 

other cluster visualization approaches [11, 228]. Yet, they also suffer from the same limitations of stand-alone spatial arrange-

ment methods described in Section 2.3, namely: ii) difficulty in distinguishing many images placed next to each other, and ii) 

potential information loss due to the overlapping of certain thumbnails or images with certain visualizations. The choice of the 

best cluster visualization technique depends on the user’s needs and the application at hand. 

5 Evaluation Methodology 

As for empirical evaluation, we identify two main issues facing cluster-based ISRO approaches: i) the lack of common evalu-

ation metrics to compare empirical results, and ii) the lack of common evaluation datasets. Existing evaluation studies are 

usually carried out on particular and closed datasets which limits the reproducibility and comparison of their results. 

5.1 Test Measures 

The effectiveness (i.e., quality) of a cluster-based ISRO solution can be evaluated based on the relevance and diversity of the 

search results. In this context, most existing approaches suggest to i) first manually solve the clustering task, and then ii) use 

the results as a reference to evaluate the quality of the clusters produced by the system [91].  

The precision (PR) and recall (R) evaluation measures adopted from the field of information retrieval [176] can be utilized 

to compare user and system generated clusters [204, 205]. For an extracted cluster Ci that corresponds to a given ground truth 

cluster Gi: 

 ai is the number of images in Ci that indeed correspond to Gi (correctly clustered images). 

 bi is the number of images in Ci that do not correspond to Gi (miss-clustered).  

 ci is the number of images not in Ci, although they correspond to Gi (images that should have been clustered in Ci). 
 

Consequently, given n the total number of generated clusters: 
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High precision denotes that the clustering task achieved high accuracy, grouping together images that actually correspond 

to the ground truth clusters. High recall means that very few images are not in the appropriate cluster where they should have 

been. In addition to comparing one approach’s precision improvement with another’s recall, it is a common practice to consider 

f-value, which represents the harmonic mean of precision and recall: 
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(2) 

 

Therefore, as with traditional information retrieval evaluation, high precision and recall, and thus high f-value characterize 

a good clustering approach. Other similar cluster-based evaluation measures have been proposed in the data clustering litera-

ture, such as Davies-Boulding and Dunn indices among others [21, 50, 58], and can be adapted to evaluate the relevance of 

cluster-based ISRO methods. Yet, an aspect which is not directly evaluated by the latter measures is the impact of search result 

ordering in evaluating the diversity of the clustering results. To that end, the authors in [154] utilize precision at X (PR@X) and 

introduce cluster recall at X (CR@X) as two measures that can evaluate both image cluster relevance and diversity. Precision 

at X measures the number or relevant images among the top X results, and cluster recall at X measures how many clusters from 

the ground truth are represented among the top X results provided by the system to assess result diversity [91]: 
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where aX is the number of relevant images from the first X ranked results, |CX| the number of image clusters represented in the 

first X ranked images, and |G| the total number of image clusters from the ground truth. To perform and overall assessment of 

both relevance and diversity, f-value at X (f-value@X) is introduced in [91] as the harmonic mean of the two measures: 
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(4) 

 

High precision at X and cluster recall at X, and thus high f-value at X characterize relevant and diverse image clusters and 

a good cluster-based ISRO approach [91, 154]. 

Besides evaluating effectiveness (i.e., quality), note that evaluating the efficiency (i.e., time and/or space performance) of 

ISRO methods is almost completely dismissed in existing approaches, and needs to be addressed in upcoming studies. 

5.2 Test Data 

Few studies have published information regarding image datasets and manually annotated tag names that can be used for search 

result evaluation, and which can form the seed for an integrated baseline for future evaluation and comparative studies. The 

existing dataset characteristics are summarized in Table 4. 

The authors in [171] use a collection of 207,000 Flickr images captured around 207 locations in Paris (i.e., 100 images per 

location) to assess the diversity of visual summaries of geographic areas. They determine the ground truth labels by exploiting 

the geographical coordinates accompanying the images, using an affinity propagation clustering of the latitude and longitude 

coordinates, and thus do not require manual user input. In [199], the authors address the diversification problem in the context 

of populating the YAGO knowledge base, using 2 million labelled images (e.g., people, buildings, mountains, lakes, etc.) 

gathered from Wikipedia. The authors suggest using mean average precision (MAP) and other related measures to evaluate the 

usefulness (i.e., information gain) of images based on their positions in the result list. In [214], the authors use a dynamic 

dataset of 3,750 images produced from the results of 75 randomly selected queries from Flickr logs for which only the top 50 

results are retained. They acquire manual annotations from human assessors to group the data into clusters with similar visual 

appearances, and evaluate performance using the Folwkes-Mallows metric (i.e., a measure equivalent to the f-value metric, cf. 

Formula 2). In [106], the authors introduce a dataset of 71,478 Web images produced from the top ranked search results of 353 

image search queries, along with their associated meta-data. The metadata consists of the original textual query, the image 

URL, the URL of the webpage containing the image, the page title, the image’s alternative text, the 10 words before and after 

the image in the containing webpage, as well as user-provided manual labels describing the images’ relevance to the search 

query. In [154], the authors introduce the ImageCLEF benchmark, including the Photo Retrieval task with a dataset of 498,920 

news photograph images and caption texts classified into sub-topics (e.g., locations and animals). The authors conduct an 

empirical evaluation exercise on a total of 50 topics associated with a certain number of clusters, and suggest the use of precision 

at X (=20) images and cluster recall at X (=20) to evaluate the percentage of different clusters represented in the top X (=20) 

results. In a recent study in [90, 91], the authors introduce a new dataset dedicated to evaluating ISRO, consisting of 43,418 

Flickr ranked photos of 396 geographic location landmarks that are manually annotated for both relevance and diversity. While 

smaller in size than the ImageCLEF collections [154, 212], yet the dataset proposed in [90, 91] contains images that are already 

associated with topics by Flickr, and can be straightforwardly used to evaluate information retrieval and search result organi-

zation. Also, unlike ImageCLEF and other datasets which target generic ad-hoc retrieval scenarios, the dataset in [90, 91] 

considers a focused real-world scenario (i.e., tourism), to evaluate search diversification quality [89]. Another recent study in 

[170] introduces the SubDiv17 dataset that is specifically designed to evaluate visual diversification in ISRO. It consists of 

57,326 images retrieved from Flickr based on 200 general-purpose queries sampled from the word-wide Google query trends1. 

The dataset includes manual annotations by 33 human annotators describing the relevance and diversity of the images w.r.t. 

their queries, to facilitate the investigation of the quality and subjectivity aspects in ISRO. The proposed dataset was validated 

in the MediaEval 2017 Retrieving Diverse Social Images task using PR@X, CR@X, and f-value@X measures (cf. Section 5.1) 

to reflect the relevance and diversification levels of image search results. 

 

 
 

1  http://trends.google.com/ 
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Table 4. Characteristics of test datasets 
 

Approach # of images Source Scenario Application Evaluation 

van Leuken R. et al. [214] 3,750 Flikr Generic – based on user queries Image clustering Individual 

Krapac J. et al. [106] 71,478 Web Generic – based on user queries Search Result Clustering Individual 

Paramita M. et al. [154] 498,920 Web Generic – news photographs Search Result Diversification Comparative 

Taneva B. et al. [199] 2,000,000 Wikipedia Generic – from Wiki pages Populating a knowledge base Individual 

Rudinac S. et al.  [171] 207,000 Flikr Specific - geolocations Search Result Diversification Individual 

Ionescu B. et al. [90, 91] 43,418 Flikr Specific - tourism Search Result Clustering Comparative 

Rohm M. et al. [170] 57,326 Flick Generic – based on Google trends Search Result Diversification Comparative 

 

Discussion: Many datasets in Table 4 have been developed to evaluate individual solutions introduced by the authors 

themselves, which limits the reproducibility of the results. Recent studies by Paramita M. et al. [154], Ionescu B. et al. [90, 91], 

and Rohm M. et al. [170] introduce different datasets which are specifically developed to perform comparative evaluation 

studies. A main challenge in this context is to integrate the latter datasets in a unified benchmark with common evaluation 

measures to be used as a gold standard data repository for future image search result organization studies. 

6 Discussion and Research Challenges 

To wrap up, we discuss some of the research challenges facing existing ISRO methods, and outline some ongoing and future 

directions. We organize the challenges following the main steps involved in ISRO, including i) image representation, ii) simi-

larity computation, iii) search result clustering, and iv) search result presentation and visualization. For more on general ImR 

research challenges, the reader can refer to recent survey studies in [95, 114]. 

6.1 Image Representation 

6.1.1 High-dimensional Indexing of Image Features 

Despite the importance of evaluating ISRO quality (effectiveness) as mentioned previously, ISRO efficiency remains a central 

factor that contributes to the adoption or dismissal of a given ISRO approach, especially when applied on huge image collec-

tions. A basic challenge that would affect the whole ISRO pipeline is how to handle high-dimensional image features. In this 

context, multi-dimensional image indexing has been investigated as an offline solution to improve the representation of image 

features, in order to allow faster access, processing, and retrieval. Most existing solutions fall into three main categories: i) 

tree-based indexing, ii) hashing-based indexing, and iii) visual words based indexing. Tree-based indexing solutions succes-

sively partition the image search space and form hierarchical tree structures. The inner-nodes represent groups (clusters) of 

images or image regions, and the leaf nodes represent the images or the regions that are indexed. Image or region partitioning 

is conducted using adapted image clustering algorithms, e.g., k-means and hierarchical k-means used for region-based cluster 

indexing in [88, 230]. While relatively efficient to produce, tree-based indexing solutions are usully inefficient when the num-

ber of feature dimensions exceeds 20 [3]. This requires the image features to be pre-processed for dimension reduction prior to 

applying tree-based indexing, or to be divided into sub-vectors of lower dimensionality that are (separatly) suitable for tree-

based indexing, which might not be always feasible. Hash-based indexing solutions project image features from high dimen-

sions to low dimensions using hash functions. Different approaches have been proposed, including Locality Sensitive Hashing 

(LSH) [57] to construct a family of spectral hashing functions where the probability of collision is higher for images that are 

close to each compared with those which are far apart in the reduced dimensional space. Nonetheless, hash-based indexing is 

usually inefficient on sparse features, and requires the features representations to be pre-processed into dense vectors before 

being indexed [3]. This adds significant overhead to the index construction process, and might lead to reduced indexing quality 

due to the features’  transformation into dense vectors representations. Visual words based indexing solutions extract the local 

features from images, and quantize them into their closest visual words (codebook) based on a pre-learned training set. Conse-

quently, a visual word-based vector is produced and is represented as an inverted file to allow for fast identification of all 

images containing the visual word entries, and subsequently fast feature processing and similarity computation. A major chal-

lenge with visual words based indexing is how to produce semantically relevant visual words that are more discriminative of 

the image contents compared with its initial feature representation. Another major challenge is how to produce indexing struc-

tures which are robust to adding or removing images from the search space in order to allow fast and dynamic index updates 

[3], especially that the index would need to updated regularly and on-the-fly for ISRO. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

6.1.2 Joint Word-Image Modeling and Implicit Image Semantics  

Word embeddings have recently proven to be an important tool for the representation of word meanings in large text corpora. 

Their effectiveness rests on the distributional hypothesis that words occurring in the same context carry similar semantic in-

formation. This leads to the creation of so-called implicit concepts, i.e., synthetic concepts generated by extracting latent rela-

tionships between terms in a document collection, or by calculating probabilities of encountering terms, such that the generated 

concepts do not necessarily align with any human-interpretable concept [97, 201]. This is different from conventional concept-

based semantic analysis, which utilizes explicit concepts representing real-life entities/notions defined following human per-

ception (e.g., concepts defined within a conventional knowledge base such as WordNet or Wikipedia) [255]. In this context, 

various recent approaches have investigated the adaptation of word embeddings and related techniques to perform joint word-

picture modeling and extracting implicit concepts from image objects and regions. The main hypothesis with this family of 

methods is that images (or regions) containing similar objects (or subregions) are considered to be semantically related [209]. 

As a result, few approaches have been put forward to learn object and region embeddings from an image corpora. In [69, 148], 

the authors study the co-occurrence of both visual and textual features using PLSA to produce a combined vectored data rep-

resentation of both modalities. They extend the PLSA to higher order to become applicable to more that two observable varia-

bles (visual and textual), and utilize cross-modal dependencies learned from corpora of tagged images to approximate the join 

distribution of the two variables. In [210], the authors adapt LSA and word2vec’s skipgram and CBOW models to generate 

embeddings from object co-occurrences in images and subregions, and show that the produced embeddings improve typical 

object classification models by an average 3-to-4.5% top 1 accuracy. In [41], the authors introduce a Dual Path Recurrent 

Neural Network (DP-RNN) which processes images and sentences symmetrically by a deep learning model. Given an input 

image-text pair, the model reorders the image objects based on the positions of their most related words in the text. Similarity 

to extracting the hidden features from word embeddings, the model leverages the RNN to extract high-level object features 

from the reordered object inputs, producing similar representations in describing  semantically related objects. The proposed 

approach produces state-of-the-art retrieval quality results compared with typical ImR techniques.  

While extracting implicit semantics from images is promising, yet existing methods suffer from various limitations, 

namely: i) implicit concepts are difficult to understand and evaluate by human users, ii) the number of generated implicit 

concepts depends on statistical analysis/deep learning rather than the actual meaning of the visual objects, iii) deep learning 

based methods rely on object or region annotations which are not always available, iv) image semantics are not limited to the 

objects or regions that they contain, but often depend on the spatial relationships between the objects and regions, where con-

sidering spatial context embeddings could help improve feature vector quality. 

 

6.1.3 Describing Images based on Aesthetics 

The focus of most ISRO solutions thus far has been on image contents (visual) and meta-data (textual and linkage). Another 

way to organize and distinguish among images is following their quality. Quality can be perceived at two levels, one involving 

concrete image parameters like size, aspect ratio, and color depth, and the other involving human perception which is denoted 

as aesthetics [47, 151]. While it is trivial to organize images based on their parameters, their differences may not be significant 

enough to use as discriminative criteria. On the other hand, aesthetics designate the way people perceive images, as good quality 

(like) or bad quality (dislike). Yet given the vagueness and subjectivity of human perception, how to aesthetically organize 

pictures remains an open challenge. In a sense, this is similar to the problem of semantic gap [114], where the aesthetics gap 

can be viewed as the lack of relationship between the information that can be extracted from the image features and the inter-

pretation of the human perception of image quality [47]. One way to model aesthetics is to study image rating trends in photo-

sharing sites such PhotoNet1 which supports the peer-rating of photographs based on their aesthetics [100]. This has generated 

a sizeable database of ratings corresponding to the over 5 million photographs. Another major attempt is the Aesthetic and 

Attributes Database (AADB) consisting of 10k images with ratings of various aesthetic attributes including interesting content, 

object emphasis, good lighting,  and color harmony, among others [105]. Recent studies have utilized Convolutional Neural 

Networks (CNNs) and related deep learning algorithms to learn to assess image aesthetics by training on the above mentioned 

image databases and others, e.g., [165, 197]. Nonetheless, major concerns in this field include: i) the lack of a common large-

 

1 https://www.photo.net/ 
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scale image aesthetics benchmark for model training and evaluation, ii) the lack of common attributes and feature representa-

tions to describe aesthetics, iii) the lack of objective measures to evaluate the quality of aesthetic features in ImR systems, as 

well as iv) the subjective nature of image aesthetics and the impact of human psychology (e.g., personality, taste, history, 

preferences) on the reliability of the rating process [151]. 

 

6.2 Image Similarity Computation 
 

6.2.1 Automatic Learning of a Similarity Metric 

While machine learning techniques have been used to help solve some of basic problems of ImR, namely feature selection, 

query processing, as well as result ranking and presentation (e.g., cluster-based ISRO), few studies have investigated the adap-

tation of machine learning algorithms to automatically learn a similarity metric from ground-truth image data. One approach 

to achieve this is to learn a generalized Mahalanobis distance defined over the input image feature space using equivalence 

constraints. Unlike image labels, equivalent constraints can be automatically obtained without the need for human intervention, 

and allow to modify the representation of the feature space, leading to improved clustering and classification performance [200, 

223]. Under certain assumptions, the problem of learning a generalized Mahalanobis distance can be viewed as a Maximum 

Likelihood estimation of the within class covariance matrix. In [244], the authors use a boosting approach to learn a improved 

distance measure for similarity estimation based on statistical analysis of distribution models and distance functions. Based on 

the assumption that a single isotropic distribution model is often inappropriate, the authors use a boosted distance measure 

framework that finds multiple distance measures, which fit the distribution of selected feature elements that are better suited 

for accurate similarity estimation in the consider feature spare representation. Experimental results on stereo matching and 

motion tracking in video sequence show a more accurate feature representation model compared with legacy Euclidean and 

Manhattan distances [182, 244]. Another approach to learn a similarity metric is to perform kernel-based learning by capturing 

the non-linear relationships among the meta-data and contextual information provided by the data, e.g., [147, 236, 237]. Mul-

tiple Kernel Learning (MLK) algorithms have also be used to address the problems associated with kernel selection, and have 

been shown to produce improved classification quality [237]. For instance, the authors in [147] introduce three new similarity-

based MKL algorithms to classify remote-sensing images. They introduce three kernel-based similarity measures (kernel align-

ment, norm of kernel difference, and Hilbert-Schmidt independence criterion), and then solve the optimization problem asso-

ciated with each similarity measure using heuristic and convex optimization methods. The proposed algorithms identify the 

optimal combination of kernels by maximization compared with an ideal kernel. While promising, yet most of the above-

mentioned solutions for automatic similarity learning suffer from the same limitations of general machine learning algorithms, 

namely the need for adequate training time and data which are not always available. In addition, most methods have produced 

good results in separate and specific application domains, and need to be further investigated and evaluated within common 

scenarios and benchmarks. 

 

6.3 Clustering 
 

6.3.1 Combining Multiple Clustering Methods 

Given the number of different clustering algorithms that have been used to perform ISRO, and considering the relevance and 

diversification issues discussed in the previous paragraphs, a major challenge in this context is how to choose the most adequate 

algorithm or combination of algorithms that would best organize the image search results. Here, we can identify various sub-

challenges: i) there is no prior knowledge about the underlying structure of the search results and the user might not have a 

clear idea of what to consider as a good solution, ii) different clustering algorithms may produce different clustering results for 

the same data, by imposing a particular structure or computation process onto the data, iii) there is no single clustering algorithm 

that can perform reliably well for different scenarios or criteria, and iv) there are no clear guidelines to follow for choosing 

individual clustering algorithms [9].  

In this context, a possible solution that is worth investigating is the use of consensus clustering, as a method for aggregating 

different results from multiple clustering algorithms [152, 257]. Also referred to as cluster ensembles, consensus clustering 

consists in reconciling the clustering results produced for the same data by different clustering algorithms or different runs of 

the same algorithm [218]. More specifically, it consists in combining multiple clustering solutions (clusters or partitions) into 

a single consolidated solution [7]. While the ensemble method has been well-studied in the field of supervised learning due to 
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its successful applications in classification tasks [70], yet, the transition from supervised learning to unsupervised learning is 

not straightforward. Few studies have recently attempted to apply the same paradigm to the unsupervised learning field, par-

ticularly to clustering problems, e.g., [8, 9], aiming to produce more consistent, reliable, and accurate clustering results. A main 

challenge here is how to combine the clusters that are generated by the individual clustering solutions in an ensemble, as this 

cannot be done through simple voting or averaging as in classification [8]. Few cluster aggregation functions have been sug-

gested in the literature. For instance, the authors in [8] propose a three-step adaptive consensus function: i) transforming the 

member clusters into binary representations, ii) measuring the similarity between initial clusters and adaptively merging the 

most similar ones to produce k consensus clusters, and iii) identifying the candidate clusters and evaluating their quality. The 

process is repeated iteratively until reaching convergence where a minimal number of elements change clusters. The authors in 

[9] attempt to improve on the previous approach by applying an adaptive method to choose the number of clusters k and fine-

tune the convergence parameters. Yet, the authors state that the literature still lacks an effective and scalable consensus function 

that can be commonly utilized for practical applications [9], including solutions adapted for cluster-based ISRO. 

 
6.3.2 Performing Adaptive Clustering 

Adaptive clustering uses external feedback to improve cluster quality. External feedback can take different shapes such as direct 

user feedback, or reward values computed based on successive data clustering runs by memorizing what worked well in the 

past. It provides a means of exploring multiple paths when searching for good clusters, starting from the features extracted and 

the measures used for feature similarity computation, to the usage of the clustering algorithms and their tunable parameters. 

For instance, if certain features are not useful in producing good quality clusters in certain contexts, they will be considered as 

less rewarding than other features, and will be transformed or neglected when measuring image similarity to perform the clus-

tering task [5]. Statistical and entropy-based measures can be used to evaluate the relatedness between feature representations 

and result clustering quality [16, 178]. For instance, the authors in [229] generate adaptable multi-histogram features and utilize 

fuzzy c-means clustering to optimize the original feature set and adaptively determine the optimal number of clusters for low 

embedding rates. In [211], the authors introduce an approach for feature extraction based on Grassmann manifolds, and run 

multiple clustering tasks under different subspace views. They consequently and adaptively learn the neighborhood relation-

ships from the obtained coefficient matrix. In [14], the authors propose an adaptive feature representation model based on the 

Common Spatial Pattern (CSP), and introduce a generalized eigendecomposition method by Recursive Least Squares updates 

of the CSP filter coefficients. They describe an incremental self-training classification algorithm using density clustering to 

select high-confidence samples to update the spatial filters and classifier accordingly [98, 128]. Another approach  to improve 

the robustness of selecting spatial constraint parameters is described in [234], where the author introduce a new symmetric 

regularizing considering the correlation between pixels and their neighbors using adaptive weighting fusion of local mean 

information, and embedding the maximum weight entropy constraint in parameter selection. The local spatial information is 

then utilized to modify the fuzzy partition information and adapt fuzzy c-means clustering centers accordingly. In [138, 227], 

the authors address the problem of image segmentation and introduce an adapted fuzzy c-means clustering algorithm for image 

segmentation with adaptive noise reduction capability. They apply a bilateral filter to acquire the image’s local spatial infor-

mation, and compute the difference between the original image and the bilateral filtered image. The reciprocal of the difference 

images and the difference images themselves are processed using fuzzy c-means, and the membership degrees within every 

cluster are aggregated to produce an objective function for spatial features. In [128], the authors address the problem of clus-

tering imbalanced data, and introduce a so-called self-adaptive competitive cluster learning for imbalanced clusters. They uti-

lize multiple sub-clusters to represent each cluster with an automatic adjustment of the number of sub-clusters. Then, the sub-

clusters are merged into the final clusters based on an adapted separation measure to determine the number of final clusters 

during the merging process. 

While most existing approaches highlight the quality and potential of adaptive methods in improving clustering quality, 

nonetheless, they also point out the added complexity and overhead required to perform the necessary computations, as well as 

the probability of producing inadequate results and generating big noise if certain specific constraints are not met. Hence, 

adaptive clustering remains a hot and promising research area. 
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6.3.3 Performance Trade-off between Clustering Quality and Efficiency 

Another research issue is the performance of the clustering process, which is specifically important in ISRO since clustering is 

run on-the-fly during query execution time. When the size of the result set and the number of images to be processed for result 

clustering increase, most current approaches do not scale well. A possible solution that can be investigated is to employ two 

similarity measures in the cluster evaluation process: the first one would be a coarse-grained measure able to quickly identify 

the images that are dissimilar in order to distinguish them into broad clusters, and the second one would be a fine-grained (and 

probably more time consuming) measure that processes the results of the first measure to produce the final set of image clusters. 

A key challenge is the choice of the two measures. They should be compatible where the first measure serves as a filter function 

for the second measure, while complying with certain conditions inspired from query-filter architectures, e.g., [101, 207], 

namely: allowing to produce an initial clustering result which is as close as possible to the final result, while satisfying the 

completeness property of the filtering phase [207]. The completeness property underlines that the filter measure must not allow 

any false clustering or dropouts, such that all images that are deemed similar following the second measure are also deemed 

similar according to the first filter measure. In addition, the performance of the clustering task involves multiple aspects in-

cluding clustering quality (accuracy), clustering efficiency (speed), and other cluster properties (size, shape, density, etc.). 

Optimizing one aspect generally affects the other aspects. The trade-off between the different aspects can be addressed as a 

multi-objective optimization problem [5], allowing to identify a combined measure as a compromise between them. For in-

stance, considering a set of image search results to be clustered, and considered two clustering solutions A and B, where system 

A is more effective than B, while system B is more efficient than A, the questions here are: i) which system will be used to 

solve the problem? [5], and ii) how can solutions A and B be combined into a hybrid solution C that fulfills both requirements?  

 

6.4  Search Result Presentation 
 

6.4.1 Diversifying Image Search Results 

An efficient ISRO solution should be able to summarize and provide a global view the search space, identifying results that are 

both relevant and that cover diverse aspects of the query. Most queries involve many intents and target multiple sub-topics 

(e.g., animals are of different species, cars are of different types and manufacturers) [26]. By widening the pool of possible 

results, one can increase the likelihood of the retrieval system to provide the user with the information needed and thus to 

increase its effectiveness. In this context, the problem of result diversification was initially addressed for text-based retrieval, 

and typically involves two steps [219]: i) first, a ranking candidate set with elements that are most relevant to the user query is 

retrieved, ii) then, a subset of the relevant results is computed by retaining only the most diverse elements. In fact, the main 

idea behind search result diversification is to mitigate relevance and diversity [90], which in general tends to be antinomic [91], 

i.e., the improvement of one of them usually results in a degradation of the other. Too much diversification may result in losing 

relevant elements while increasing relevance only tends to provide many near duplicates [91]. Considering multimedia data 

and more specifically Web and social images, the diversification problem receives the additional challenge of dealing with 

different (multimodal) feature representations, e.g., visual, textual, link-based, and region-based (cf. Section 4.1). Due to the 

heterogeneous nature of the features, Web images tend to be more complex and difficult to handle than text data.  

Some approaches have attempted to simplify the task by transposing certain feature representations into more simple 

(numeric) representations using content descriptors and fusion schemes [91], where diversification is then carried out in these 

multi-dimensional feature spaces with strategies that mainly involve cluster-based ISRO. For instance, the authors in [214] 

address the visual diversification of image search results using a lightweight partitional clustering technique in combination 

with a dynamic weighting function of visual features to best capture the discriminative aspects of image results. Diversification 

is achieved by selecting a representative image from each cluster. In [49], the authors make use of dynamic programming 

techniques to produce an optimized image ranking scheme combining both relevance and diversity in the search result. In [199], 

the authors populate a database with high precision and diverse photos of different entities by re-evaluating the relatedness 

between the entities. They use a model parameter that is estimated from a small set of training entities, and handle visual 

diversity using the classic scale-invariant feature transform (SIFT). In [171], the authors address the problem of image diversi-

fication in the context of automatic visual summarization of geographic areas, and exploit user-contributed images and related 

explicit and implicit metadata collected from popular content-sharing websites. They introduce an approach based on a Random 

Walk scheme with runs over a graph modeling the relations between images, considering their visual features, associated text, 
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as well as the metadata information about the uploader and annotators. In [26], the authors use relevance feedback techniques 

to add the user in the loop, by harvesting feedback about the relevance of the search results. This information is used as ground 

truth for re-computing a better representation of the data, and diversifying the search results. Search result diversification has 

also been recently addressed in the context of Web video retrieval [87], where the authors use a video near-duplicate graph that 

represents visual similarity relationships among videos on which near-duplicate clusters are identified and ranked based on 

cluster properties and inter-cluster links. Diversification is then achieved by selecting a representative video from each ranked 

cluster. 

In short, adapting or expanding cluster-based IRSO solutions to better address search result diversification, while main-

taining highly relevant results, would provide more adapted solutions and thus improve retrieval quality. 

 
6.4.2 Integrating User Feedback 

Adding feedback about the quality of the search results and their organization could improve their relevance and provide the 

user with more personalized results. One of the earliest and most successful relevance feedback solutions is Rocchio’s algorithm 

[167], which is based on the assumption that most users have a general conception of which documents are relevant or non-

relevant. Using the latter judgments acquired from a certain relevance feedback window, the user's search query is revised by 

adding the features of positive examples and subtracting the features of negative examples from the original feature represen-

tation. In [172], the authors introduce the relevance feature estimation (RFE) algorithm which assumes that some specific 

features might be more important than others for a given query, according to the user’s subjective judgment. They introduce a 

re-weighting strategy which analyzes the relevant objects in order to understand which dimensions are more important than 

others in determining more relevant results. Features with higher variation with respect to the relevant queries lead to lower 

importance factors compared with elements having less variation. More recently, machine learning techniques have been used 

to allow relevance feedback, by formulating the problem either: i) as a two-class classification of the negative and positive 

samples, or ii) as a one-class classification problem, separating positive samples by negative ones [26]. Most methods use 

legacy classifiers such as support vector machines [115], nearest neighbor approaches [214], classification trees (e.g., Random 

Forests) [25], or boosting techniques (e.g., AdaBoost) [245]. Following the training phase, all the results are ranked according 

to the classifier’s confidence level [115], and are classified as relevant or irrelevant depending on some output function [245]. 

Nonetheless, most existing relevance feedback techniques focus exclusively on improving the relevance of the results, 

completely neglecting the issue of result diversification. In a recent study in [26], the authors introduce a pseudo-relevance 

approach where they combine the concept of relevance feedback with result diversification. They automatically simulate user 

feedback by selecting relevant and non-relevant sample images from the initial query results. Consequently, they utilize hier-

archical clustering to re-group images according to their visual features, and re-rank the cluster representatives to diversify the 

final search result. Note that user feedback can be integrated at the different phases of cluster-based ISRO, starting from the 

choice of the image features and the similarity measures used to compare the features, to the clustering algorithms and cluster 

search result visualization techniques used, allowing to improve the relevance and diversification of the results and better adapt 

them to the user’s needs.   

 
6.4.3 Adapting Result Presentation to Mobile Devices 

In recent years, the growing number of hand-held mobile devices which are connected to the Internet has changed the way 

users access and interact with Web contents [102, 103]. Yet Web image search on mobile phones is still conducted in a way 

similar to desktop computers, where a list or grid of ranked image results is returned to the user [142]. Previous works on 

human-computer interaction have shown that the needs of mobile users are different from those of desktop users [102]. In 

particular, ranked image lists are not suitable for the exploration and selection of relevant results on mobile devices, as they 

involve repeated scrolling, sliding, and zooming actions, which are not always practical and might become overwhelming. In 

[10], the authors conduct a study of multiple interfaces for Web image search, including a large scale analysis of search logs 

based on a set of 55 million queries. They conclude that Web image searchers view more pages of search results, spend more 

time looking at those pages, and click on more results compared with webpage searchers. According to the authors in [10], one 

of the main reasons for this observation is the fact that there is often no absolute answer to a query, which means that the sought 

after image could be one of many.  
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In this context, a few recent studies have suggested the use of adapted cluster-based ISRO methods as a potential solution 

to this problem [120, 142, 143]. Different from typical Web-based solutions, the mentioned studies particularly focus on the 

trade-off between clustering accuracy and used space-interface on the mobile phone screen. The authors in [142] consider that 

cluster-based ISRO systems should combine two criteria: i) maximum cluster accuracy and ii) minimum wasted space-inter-

face. In other words, the mobile interface is expected to clearly show the most relevant images that are sought by the user, and 

present them in a compact way to properly fit the limited-size mobile screen. To do so, the authors address the issues or rele-

vance and diversification, and introduce a new metric to quantitatively measure the compactness of a given interface: evaluating 

the mismatch of the used space-interface between the ground truth and the cluster distribution generated for ISRO. The authors 

highlight the high divergences between clustering accuracy and used space maximization, and conclude that the trade-off be-

tween relevance, diversification, and ease of exploration of Web image search results on mobile devices is difficult to define. 

This opens the door for much needed innovations and improvements in this area. 

 
6.4.4 Creating and Experimental Benchmark 

Last but not least, a major challenge for ISRO studies is to develop a common experimental benchmark: i) implementing 

existing cluster-based ISRO methods to be used in comparative studies, enabling the users to evaluate the effectiveness and 

efficiency of various algorithms in different scenarios, and allowing them to choose the one that is most adapted to their needs, 

ii) implementing dedicated test measures (e.g., precision, recall, coverage, diversity, aesthetics) for evaluating the effectiveness 

of different methods, iii) providing readily available test data with predefined queries and manually vetted search result clusters 

and cluster representatives, serving as a baseline (gold standard) for testing, and iv) allowing testers to easily append their own 

algorithms, test measures, and test data in order to dynamically extend the benchmark for future empirical evaluations. Provid-

ing an experimental benchmark would facilitate future empirical studies and thus foster further research in the area. 

7 Conclusion 

In this survey paper, we have given an overview of current research related to cluster-based image search result organization 

(ISRO). We have provided a glimpse on image information retrieval (ImR) and have briefly covered the background on ISRO. 

We have described and categorized the various steps involved in cluster-based ISRO, ranging over: image feature representation 

(visual, textual, link-based, and region-based), similarity computation (vector-based and aggregation measures), image cluster-

ing (legacy data clustering, ephemeral clustering, and image search result clustering), and search result visualization (cluster 

representatives, hierarchical arrangement, and spatial arrangement). We have presented the main evaluation metrics and exist-

ing datasets that can be used for empirical testing. We have also summarized and discussed ongoing research challenges and 

future directions, including: high-dimensional feature indexing, joint word-image modelling and implicit semantics,  describing 

images based on aesthetics, automatic similarity metric learning, combining multiple clustering methods, performing adaptive 

clustering, allowing dynamic trade-off between cluster quality and efficiency, diversifying image search results, integrating 

user feedback, adapting results to mobile devices, and creating an experimental benchmark. We hope that the unified presenta-

tion of cluster-based ISRO in this paper will contribute to strengthen further research on the subject. 
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