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Abstract. Low-light image (LLI) enhancement techniques have recently demon-

strated remarkable progress especially with the use of deep learning (DL) ap-

proaches. Yet most existing techniques adopt an image-to-image learning para-

digm where DL model architectures are constrained due to latent image feature 

reconstruction. In this paper, we propose a new LLI enhancement solution ti-

tled LLHFNet (Low-light Homomorphic Filtering Network) which performs im-

age-to-frequency filter learning. It is designed independently from custom DL 

architectures and can be seamlessly coupled with existing feature extractors like 

ResNet50 and VGG16. We have conducted a large battery of experiments using 

SICE and Pascal VOC datasets to evaluate LLHFNet ’s enhancement quality. 

Our solution consistently ranks among the best existing image enhancement tech-

niques and is able to robustly handle LLIs and normal-light images (NLIs).  

Keywords: Image enhancement, Low-light Conditions, Deep Learning, Homo-

morphic Filtering. 

1 Introduction 

Modern artificial intelligence-based applications like autonomous spacecrafts, drones, 

autopilot car systems, robots, and security surveillance systems, among others, rely on 

visualizing and understanding outdoor environments. While these systems show good 

performance during normal and clear outdoor conditions, yet varying weather condi-

tions and poor illumination might challenge their visual perception and compromise 

their performance [1] [2]. Low-light conditions account to a considerable time of our 

daily lives and can significantly affect the robustness of such systems and hinder their 

market deployment [1]. Hence, low-light image (LLI) enhancement has emerged as an 

image processing task that aims at illuminating LLIs and improving their visual quality.  

LLI enhancement techniques have been largely investigated recently. Many tradi-

tional approaches use gamma correction methods [3], some rely on histogram equali-

zation methods [4], while others follow the Retinex theory model [5]. More recently, 

Deep learning (DL) techniques have demonstrated better performance and efficiency 

compared with traditional methods [6] [7]. Yet most of these models the image-to-im-

age learning paradigm where the deep network architecture is constrained to produce 

an output image through latent feature reconstruction.  
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In this work, we introduce a novel LLI enhancement model titled LLHFNet (Low-

light Homomorphic Filtering Network) based on image-to-frequency filter learning. 

Our approach aims at learning two homomorphic filter parameters, which are conse-

quently applied on the input LLI to perform enhancement. This removes the constraints 

of performing full image reconstruction, while designing the DL model to solely focus 

on the image enhancement task. LLHFNet is independent from any specific architec-

ture and can be seamlessly coupled with typical feature extractors utilized with existing 

classification models including ResNet50 [8], VGG16 [9], and MobileNetv2 [10], 

among others. We perform a battery of experiments to evaluate the performance of our 

approach. Results show improved results compared with recent LLI enhancement mod-

els, where our solution is able to robustly handle LLIs and normal-light images (NLIs).  

Section 2 provides a review of the related works. Section 3 explains preliminaries 

on homomorphic filtering, Section 4 describes our LLI enhancement model. Section 5 

describes our experimental evaluation and results, before concluding in Section 6. 

2 Related Works 

Traditional LLI enhancement techniques rely on mathematical or algorithmic models 

to perform the enhancement task. Many approaches use gamma correction methods [3], 

some rely on histogram equalization methods [4], while others follow the Retinex the-

ory model [5] or utilize homomorphic filtering (HF) to perform image enhancement 

[11] [12]. In contrast with traditional approaches, Deep Learning (DL) techniques are 

essentially data-driven, where training datasets of LLIs and NLIs are used to drive the 

learning process. They have gained great attention in the past few years as the most 

effective solutions to perform LLI enhancement, outperforming many traditional meth-

ods based on histogram equalization, e.g., [4] [13] [14] and Retinex theory, e.g., [5] 

[15] [16] [17]. LLNet [6] is one of the first DL approaches for LLI enhancement. Its 

architecture is based on a stacked-sparse denoising autoencoder (SSDA) made of three 

denoising autoencoder layers comprising hidden units with no use of convolutional lay-

ers. In [18] authors introduce RetinexNet consisting of two subnetworks: i) DecomNet 

which learns the Retinex decomposition of the image into its reflectance and illumina-

tion components, and ii) EnhanceNet which uses a dedicated encoder-decoder structure 

to perform illumination adjustment and enhancement. In [19], the authors introduce 

GLADNET made of a global illumination estimation step, using an encoder-decoder 

structure followed by a reconstruction step through a series of convolutional layers. In 

[20], the authors propose MBLLEN, a multi-branch network which extracts the LLI 

features at each of its 10 convolutional layers through a special feature extraction mod-

ule, and then enhances the features at each layer using an encoder-decoder network. 

The authors in [21] propose a DeepUPE to perform an image-to-illumination map learn-

ing. It consists of an encoder network based on a pre-trained VGG16 model [9], fol-

lowed by a bilateral grid based up-sampling step to produce the image’s full resolution 

illumination map, which is used to enhance the image based on the Retinex model. The 

authors in [22] introduce EnlightenGAN, an unsupervised generative adversarial net-

work (GAN) approach based on attention guided U-Net [23] as its generator backbone, 
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in addition to a global relativistic discriminator [24], and a local discriminator to handle 

spatially varying light conditions in the image. A recent approach in [25] proposes 

ZeroDCE, a zero reference deep curve estimation model which does not require any 

paired or unpaired training data. The authors reformulate the LLI enhancement task: 

from image-to-image learning into image-to-light curve learning. The light enhance-

ment curves are estimated for each pixel using a lightweight deep curve estimation net-

work (DCE-Net) thus resulting in an output with the same size of the input image. 

DL LLI enhancement techniques are designed based on carefully curated architec-

tures usually embodied within encoder-decoder networks to reconstruct latent features 

back to the image domain. In contrast, we introduce a novel LLI enhancement solution 

which performs image-to-frequency filter learning using Homomorphic Filtering (HF), 

focusing solely on the enhancement task independently of any specific DL architecture. 

3 Preliminaries on Homomorphic Filtering 

LLI enhancement models based on HF adopt the Retinex model representation of an 

image as a combination of illumination and reflective components. HF aims at convert-

ing the illumination and reflectance components which combine multiplicatively, into 

an additive form in the logarithmic domain [26]. The additive components are separated 

linearly in the Fourier transform frequency domain in which high-frequency compo-

nents are associated with reflectance while low-frequency components correspond to 

illumination. A high-pass filter is used to suppress low frequencies and amplify high 

frequencies [26]. Figure 1 depicts the flow of the HF algorithm adopted in our approach. 
 

 

Fig. 1. HF algorithm flow (adapted based on [26]). 

Step 0. The algorithm accepts as input an image following the Retinex Model: 
 

𝑀(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) × 𝑅(𝑥, 𝑦)  (1) 

where 𝑀(𝑥, 𝑦) is the original image, 𝐼(𝑥, 𝑦) is the illumination component, 

and 𝑅(𝑥, 𝑦) is the reflectance component.  
 

Step 1. The logarithm of both sides of the Retinex model is taken to convert the 

illumination and reflective components from multiplicative form to additive form: 
 

ln 𝑀(𝑥, 𝑦) = ln 𝐼(𝑥, 𝑦) + ln 𝑅(𝑥, 𝑦)    (2) 
 

Step 2. The fast Fourier transform is applied to convert the image from the spatial 

domain to the frequency domain:  
 

𝑀(𝑢, 𝑣) = 𝐼(𝑢, 𝑣) + 𝑅(𝑢, 𝑣)    (3) 

where 𝑀(𝑢, 𝑣), 𝐼(𝑢, 𝑣) and 𝑅(𝑢, 𝑣) are the Fourier transforms of 𝑀(𝑥, 𝑦), 𝐼(𝑥, 𝑦) 

and 𝑅(𝑥, 𝑦) respectively. Note that 𝐼(𝑢, 𝑣) is mainly concentrated in the low frequency 

range while 𝑅(𝑢, 𝑣) is concentrated in the high frequency range.    

E(x, y) 
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Step 3. An appropriate high-pass filter with transfer function 𝐻(𝑢, 𝑣) is applied to 

perform the enhancement: 
 

       𝑆(𝑢, 𝑣) = 𝐻(𝑢, 𝑣) × 𝑀(𝑢, 𝑣)   = 𝐻(𝑢, 𝑣)𝐼(𝑢, 𝑣) + 𝐻(𝑢, 𝑣)𝑅(𝑢, 𝑣) 
                  

  (4) 

Step 4. The inverse Fourier transform is applied to transform the image from the 

frequency domain to the spatial domain. Let 𝑠(𝑥, 𝑦) be the inverse Fourier transform 

of 𝑆(𝑢, 𝑣), then the inverse Fourier transform of Formula 4 becomes: 
 

𝑠(𝑥, 𝑦) = 𝐼𝐹𝐹𝑇(𝐻(𝑢, 𝑣)𝐼(𝑢, 𝑣)) + 𝐼𝐹𝐹𝑇(𝐻(𝑢, 𝑣)𝑅(𝑢, 𝑣)) = ℎ𝐼(𝑥, 𝑦) +  ℎ𝑅(𝑥, 𝑦) 
 

(5) 

Step 5. Finally, the exponential operation is applied on Formula 5 to obtain the 

enhanced image denoted by 𝐸(𝑥, 𝑦):  
 

𝐸(𝑥, 𝑦) = exp[𝑠(𝑥, 𝑦)] = exp[ℎ𝐼(𝑥, 𝑦)] exp[ℎ𝑅(𝑥, 𝑦)] (6) 

 

4 LLI Enhancement Model 

We design a new model titled LLHFNet (Low-light Homomorphic Filtering Network) 

which performs image-to-frequency filter learning instead of the typical image-to-im-

age learning paradigm adopted by most existing solutions. The overall model architec-

ture is depicted in Figure 2. It is based on HF where a special filter of two parameters 

is devised to filter the image frequency components in the Fourier transform domain. 

The two parameters are estimated using a typical DL-based feature extractor utilized in 

classification models. We describe the main components of our model including: i) 

enhancement filter design, ii) DL network architecture, and iii) loss function. 

 

 
 

Fig. 2. LLHFNet image enhancement framework. 

4.1 Enhancement Filter Design 

A core part of the HF algorithm is the frequency filtering transform 𝐻(𝑢, 𝑣). In our 

design, we aim to produce a simple and effective filter transform that can be easily 

learned by the enhancement network. Here, the Fourier transform of the original image, 

i.e., 𝑀(𝑢, 𝑣) at (0,0), represents its DC-term1 which corresponds to its average bright-

ness in the spatial domain [27]. We make two interesting observations: i) 𝑀(0,0) with 

LLIs is a large negative value reflecting the low brightness of these images, whereas ii) 

                                                           
1  The DC-term is the 0 Hz term and is equivalent to the average of all the samples in the sampling window. 
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𝑀(0,0) for NLIs is either a small negative value or a positive value reflecting the nor-

mal brightness of these images. Based on the latter observations, we assume that bright-

ness can be enhanced by increasing 𝑀(0,0). We define our enhancement filter: 

𝐻(𝑢, 𝑣) =  {
𝛾𝐿      (0,0)           
𝛾𝐻     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (7) 

where 𝛾𝐿 ∈ [0,1] denotes the lightness parameter associated with low-frequency com-

ponents and is placed at 𝐻(0,0), and 𝛾𝐻 ∈ [0,1] denotes the sharpness parameter asso-

ciated with the remaining higher-frequency components of 𝑀(𝑢, 𝑣) corresponding to 

the image variations. The filter’s behavior can be described as follows: i) the smaller 

(larger) the value of parameter 𝛾𝐿, the higher (lower) the brightness level of the image, 

ii) the larger (smaller) the value of 𝛾𝐻, the sharper (blurrier) the contents of the image. 

We run the HF algorithm by applying our enhancement filter on the Value channel 

of the HSV (Hue-Saturation-Value) color domain, instead of using the Red, Green, and 

Blue channels of the RGB domain. We make this choice for the following reasons: i) it 

is more efficient to apply the Fourier transform and its inverse on one channel only 

instead of three, ii) the Value channel in HSV describes the lightness of the image which 

we aim to improve; while Hue and Saturation remain unchanged, and iii) HSV allows 

more simplicity with only two required parameters, compared with the RGB domain 

which may require two parameters for each of its channels to achieve good quality. 

 

    

LLI Enhanced Image 

 (𝛾𝐿 = 0.35, 𝛾𝐻 = 0.45) 
LLI Enhanced Image  

(𝛾𝐿 = 0.60, 𝛾𝐻 = 0.70) 
 

a. LLI with low exposure and the enhanced image 
 

b. LLI with medium exposure and the enhanced image 

Fig. 3. LLIs with from the SICE dataset [28] and their enhanced counterparts. 

Figure 3 provides two examples highlighting the behavior of our enhancement fil-

ter with different exposure levels. On the one hand, Figure 3.a presents a LLI with a 

low exposure level, requiring parameter values <0.5 (𝛾𝐿 = 0.35, 𝛾𝐻 = 0.45, cf. For-

mula 7) to produce a visually pleasing enhanced image with minimal artifacts. On the 

other hand, Figure 3.b presents a LLI with a medium exposure level, requiring relatively 

higher parameter values (𝛾𝐿 =  0.60, 𝛾𝐻 = 0.70) to perform a minimal enhancement 

while avoiding overexposure. Here, there is a need to identify and fine-tune the para-

metric values of the filter function in order to maximize image enhancement quality. 

So, we develop a DL network model which can powerfully and efficiently extract high-

level features from input images and allow estimating the values of parameters 𝛾𝐿 and 

𝛾𝐻 while handling different input exposure levels. 
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4.2 Deep Learner Network Architecture  

Our DL network architecture is depicted in Figure 4. It consists of two main parts: i) 

feature extractor, and ii) enhancement head. The feature extractor is responsible for 

extracting high-level features from the input images. Our solution allows the usage of 

any feature extractor network (e.g., VGG16 [9], ResNet50 [8], MobileNetv2 [10], 

SqueezeNet [29], among others) to perform the image-to-filter mapping, which comes 

down to estimating filter parameters 𝛾𝐿 and 𝛾𝐻. We modify the first layer of the extrac-

tor to accept as input the Value channel of the image represented in the HSV domain. 

 

 
 

Fig. 4. DL enhancement model network architecture. 

 

The enhancement head consists of four convolutional layers followed by ReLU 

activation and max pooling layers, allowing to downsize the feature maps obtained 

from the feature extractor. The last convolutional layer is followed by an adaptive av-

erage pooling layer to resize the network output to size 1x2x1, and then a Sigmoid 

activation function to limit the 2 output values representing 𝛾𝐿 and 𝛾𝐻 to the range [0,1], 

following our enhancement filter definition described in the previous section. 

4.3 Enhancement Loss Function 

The loss function is a major element of the LLI enhancement model and drives the 

entire learning process. In our approach, we adopt a supervised training setting in which 

reference-based loss functions are needed. We rely on Multi-scale Structural Similarity 

Index Measure (MS-SSIM) [30] for our loss function. MS-SSIM is an advanced version 

of SSIM which conducts assessment over multiple scales of the image. SSIM is widely 

used for image quality assessment as it can capture image contrast, structure, and illu-

mination, e.g., [25] [21] [31], and is adopted as a loss function in many recent studies, 

e.g., [32] [33] [34]. Yet a recent empirical evaluation in [35] shows that quantitative 

image quality assessment metrics do not always correlate with the human perception of 

visual quality, due to the disparity between computational enhancement (done by the 

machine) and enhancement quality (perceived by humans). While the latter miscorre-

lation is difficult to evaluate through the loss function with existing image-to-image 

learning models, yet it is easier to monitor with our image-to-filter enhancement model 

(which seeks to learn two filter parameters only, rather than learning the image as a 

whole). In this context, a preliminary evaluation of our enhancement model shows two 

contradictory observations. On the one hand, an MS-SSIM based loss function may 

show a tendency to generate values for the lightness parameter 𝛾𝐿 which are greater 
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than those of the sharpness parameter 𝛾𝐻. This tends to produce enhanced images which 

are smoothed with distinctive color deviations, making them perceptually unpleasing. 

On the other hand, this tendency is encouraged by lower MS-SSIM loss values indicat-

ing that the metric is failing to properly quantify the quality of these enhanced images. 

To minimize the impact of this miscorrelation between qualitative perception and quan-

titative measure, we add a regularization term to the loss function, encouraging the 

learner model to generate values for 𝛾𝐻 which are greater than 𝛾𝐿 while reducing the 

overall loss value. More formally:  
 

enhLoss(IEnhanced, INLI) = 1-MS_SSIM(IEnhanced, INLI) +  (8) 

where enhLoss designates the enhancement loss function, IEnhanced is the enhanced im-

age, INLI is the normal light image, = 𝛾𝐿 − 𝛾𝐻  is the regularization term, 𝛼 >= 0 is a 

linear weight parameter highlighting the impact of regularization on overall loss. Our 

empirical evaluation shows that values of 𝛼 ranging between [0.05, 0.1] produce satis-

factory LLI enhancement results (in our experiments, we use 𝛼 = 0.08).  

5 Experimental Evaluation 

We perform an image quality assessment that aims at evaluating whether an image is 

visually pleasing and how it is visually perceived. We conduct both quantitative and 

qualitative evaluations, by evaluating the visual quality achieved by 5 prominent en-

hancement models (2 traditional solutions: SRIE [17] and LIME [15], and 3 DL-based 

solutions: ZeroDCE2 [25], EnlightenGAN3 [22] and DeepUPE4 [21]). We compare the 

models with LLHFNet5 implemented using PyTorch on a P100 Tesla Nvidia GPU, with 

a batch size of 8. We utilize an Adam optimizer with default parameters and a reduce-

on-plateau decay-learning rate with an initial value of 1e-4 for network optimization. 

Our prototype implementation and experimental data are available online5. 

5.1 Experimental Data 

We use the well-known SICE dataset [28] to conduct our training and testing experi-

ments. We adopt two subsets for: i) training and ii) testing. The training subset consists 

of 2,150 image pairs from Part 1 of SICE, excluding extremely underexposed and over-

exposed images (which are difficult to handle and may tend to disrupt the training pro-

cess). We resize all the training images to 512x512, and perform cross validation where 

1700 pairs (i.e., 80%) are used for model learning and 450 pairs (i.e., 20%) are used for 

model evaluation. Although the training dataset seems relatively small, yet our en-

hancement model does not require huge training data since it relies on powerful pre-

trained feature extractors for its backbone. In this experiment, we utilize five pre-trained 

extractors including VGG16 [9], ResNet50 [8], MobileNetv2 [10], SqueezeNet [29] 

and DenseNet [36]. The testing subset consists of 767 paired LLIs/NLIs collected from 

                                                           
2 https://github.com/Li-Chongyi/Zero-DCE                                        4 https://github.com/wangruixing/DeepUPE 
3 https://github.com/TAMU-VITA/EnlightenGAN                             

5 https://github.com/rayanalsubbahi/LLHFNet 

https://github.com/Li-Chongyi/Zero-DCE
https://github.com/wangruixing/DeepUPE
https://github.com/TAMU-VITA/EnlightenGAN
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Part 2 of the SICE dataset [28] and resized to 1200x900x3 following the same approach 

adopted in [25] to perform our empirical evaluations. We additionally employ 3,000 

images for testing from the well-known Pascal VOC 2007 dataset [37] and synthetically 

generate LLIs considering five different exposure levels using gamma correction with 

gamma values {4.5, 3.5, 2.5} corresponding to low-exposure levels, and gamma values 

{0.5, 0.8} corresponding to high-exposure levels. The subset is divided equally among 

the used (ϒ corrected) exposure levels and all images are resized to 512x512.  

5.2 Quantitative Evaluation Results  

We run the enhancement models against three objective metrics commonly used in the 

literature: Structural Similarity index (SSIM) [38], Peak Signal to Noise Ratio (PSNR), 

and Mean Absolute Error (MAE). Table 1 shows quantitative IQA results comparing 

LLHFNet with its prominent counterparts, applied on SICE and Pascal VOC 2007 test-

ing subsets. Our solution produces the best PSNR and MAE average scores, and the 

second best scores following SSIM on SICE while it ranks as the best following all 

three metrics on Pascal VOC 2007. Table 2 provides the average scores of LLHFNet 

using different feature extractors, including: ResNet50, MobileNetv2, VGG16, Dense-

Net, and SqueezeNet. MobileNetv2 and VGG16 produce some of the best average 

scores across all evaluation metrics using SICE subset. This is probably due to their 

dense architectures. ResNet50 shows second best result for all metrics on Pascal VOC 

2007 indicating the effectiveness of the residual architecture in learning the filter pa-

rameters. SqueezeNet produces the worst results across all evaluation metrics, which is 

probably due to its lightweight architecture. Yet all LLHFNet variants show consist-

ently competitive results when compared with the enhancement solutions in Table 1. 

 
Table 1. Comparing the quality of existing LLI enhancement models. LLHFNet uses Mo-

bileNetv2 [10] as its feature extractor. 
 

                                                       a. SICE dataset                           b. Pascal VOC dataset 
 

Model   SSIM ↑  PSNR ↑  MAE ↓   SSIM ↑ PSNR ↑ MAE ↓ 

LLHFNet   0.58  16.89  94.99   0.734 15.77 117.07 

ZeroDCE    0.59  16.57  98.78   0.67 14.96 139.05 

EnlightenGAN    0.59  16.21  102.78   0.6284 13.63 152.32 

DeepUPE    0.49  13.52  142.01   0.730 14.30 143.89 

LIME   0.57  16.17  108.12   0.6286 13.33 159.68 

SRIE    0.54  14.41  127.08   0.629 13.50 154.69 

 

Table 2. Comparing different feature extractors used with LLHFNet. 
 

                                                       a. SICE dataset                            b. Pascal VOC dataset 
 

Feature Extractor  SSIM ↑  PSNR ↑  MAE ↓   SSIM ↑ PSNR ↑ MAE ↓ 

MobileNetv2    0.583  16.896  94.992   0.734 15.775 117.078 

VGG16    0.582  16.897  94.064   0.728 15.590 121.214 

ResNet50    0.577  16.686  96.152   0.731 15.696 119.922 

DenseNet    0.576  16.716  97.253   0.730 15.563 120.855 

SqueezeNet    0.575  16.593  99.129   0.726 15.442 122.063 
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Results in this experiment show that LLHFNet can be effectively used with different 

feature extractors, making it independent of any specific architecture.  

5.3 Qualitative Evaluation Results 

In addition to the quantitative evaluation, we also perform a qualitative evaluation to 

assess the human visual perception of images enhanced by our model and its five coun-

terparts considered in this experiment. We randomly select 20 images from the SICE 

testing subset, and display the reference input LLI and the enhanced image side by side 

in a dedicated online survey6. Responders are asked to rate each image considering 

three visual IQA criteria including: i) level of exposure (over/under-exposed regions), 

ii) color deviations, and iii) overall beauty of the image. A total of 76 testers (senior 

computer engineering and master’s students) were invited to contribute in the experi-

ment, and independently rate every enhancement model on an integer scale from 1 to 

10 (i.e., worst to best). We also deal with inconsistencies in image ratings by computing 

the average score for every image, and then eliminating ratings which have an extreme 

deviation from the average (e.g., ratings which are extremely low/high for images 

deemed visually pleasing/unpleasing). A total of at least 1200 responses were collected 

for each model, with every image receiving 60 rating scores. The ratings are aggregated 

for every enhancement model to evaluate its overall perceptual quality. Results are pro-

vided in Figure 5, and sample LLIs and enhanced images are shown in Figure 6. 

Results in Figure 5 show that LLHFNet ranks second best among the five compared 

models, and is thus favored by human testers. Sample LLIs in Figure 6 show that 

LLHFNet produces visually pleasing enhanced images with minimal artifacts. In the 

first image (Figure 6.a), our model is able to uncover the dark regions of the fence and 

is able to effectively restore the green colors of the trees. In the second image (Figure 

6.b), our model properly restores the colors of the trees, grass, and white clouds without 

overexposing them (compared with EnlightenGAN where the clouds are overexposed, 

and ZeroDCE and SRIE where the cloud colors and overall image colors deviate into 

blue). In the third image (Figure 6.c), our model shows a good illumination level and 

produces results comparable with to ZeroDCE and SRIE. The reader can refer to [39] 

for a detailed description of the experimental results, as well as the whole framework. 
 

 
Fig. 5. Average user ratings for the enhancement models ranked from best to worst. 

 

                                                           
6 https://forms.gle/FrjzGAZXpyKqGRnw9 
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Fig. 6. Visual comparison of sample LLIs from SICE Part 2 [28] and their enhanced versions. 

 

6 Conclusion 

In this paper, we introduce a new LLI enhancement solution titled LLHFNet (Low-light 

Homomorphic Filtering Network) based on image-to-frequency filter learning. The net-

work is designed independently from a custom architecture and can use many feature 

extractors commonly adopted in object classification. Experimental results show im-

proved enhancement quality on LLIs, and is ranked among the best enhancement mod-

els compared with recent solutions. We are currently conducting an empirical study to 

evaluate the performance of our solution on extremely LLIs. In the near future, we aim 
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to integrate and evaluate our enhancement model in high-level tasks like object detec-

tion [40], image semantization [41], localization and tracking [42, 43], and multi-label 

image recognition [44]. 
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