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Abstract: During the past decade, 3D simulation models have gained importance in the development of software 

solutions that aim to mimic real-world events and phenomena with increasing levels of accuracy and detail. 

In this paper, we introduce VOWES, a Virtual Outdoor Weather Event Simulator to replicate and measure 

outdoor weather events in vivid 3D visualizations. We make use of the Unity 3D engine to build the simulator 

environment and its virtual sensors, and integrate the Mapbox SDK and the WeatherStack API for realistic 

real-world weather mapping. We have conducted a large battery of experiments involving 30 human testers, 

considering various evaluation criteria. Results highlight VOWES’ quality and performance, and its ability to 

simulate complex weather environments with large numbers of sensors and weather phenomena.

1 INTRODUCTION 

With the rising interest in creating realistic and vivid 

simulations, 3D models have been gaining increasing 

importance in the development of software solutions 

that aim to mimic real-world events and phenomena. 

Simulation modelling allows creating and analysing 

the behaviour of a digital prototype system 

representing a physical real-world entity, aiming to 

study and predict the latter’s behaviour and 

performance in the real-world (Garcia-Dorado I. et al. 

2017). Simulation software has become one of the 

most commonly used techniques for virtual 

demonstrations in different fields, especially 3D 

models used to simulate real-world structures, 

objects, and events, with increasing levels of accuracy 

and detail, e.g., (Li X. et al. 2019, Zigon B. et al. 

2018, Garcia-Dorado I. et al. 2017). 

In this paper, we introduce VOWES, a Virtual 

Outdoor Weather Event Simulator to represent 

outdoor weather events and data in vivid 3D 

visualizations. It is designed as a digital twin solution 

to describe and replicate weather measurements, 

events, sensors, and their properties from the real-

world, into a software simulation environment. We 

make use of the Unity 3D engine to build and design 

the simulator environment and its virtual sensors. We 

develop special visualizations and behaviours to 
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present weather measurements, events, and sensors as 

visible 3D structures with specifications controllable 

by the user. We utilize the Mapbox SDK (MapBox 

2021) to import high-resolution world maps showing 

countries, cities, and buildings. In addition, we utilize 

the WeatherStack API (WeatherStack 2021) to 

capture real-time weather measurements and 

conditions from the geographic area that is being 

simulated and integrate them in the simulation 

environment to allow for more realistic and accurate 

simulations. Qualitative and performance evaluations 

highlight the potential of the tool. 

In the following, Section 2 reviews related 

works. Section 3 describes the VOWES simulation 

tool. Section 4 describes the experimental evaluation, 

before concluding in Section 5 with future directions. 

2 RELATED WORKS 

With the rising interest in creating realistic and vivid 

models, Unity 3D has been gaining increasing 

importance as a powerful tool for the creation of 3D 

visualizations, functions, and attributes, and their 

integration with dedicated processing features and 

metric measurements to achieve accurate outputs and 

analyses. Unity is a cross-platform game engine 

developed by Unity Technologies, which was 



announced and released in June 2005 at Apple Inc.'s 

Worldwide Developers Conference as a Mac OS X-

exclusive game engine. Starting in 2018, the engine 

has been extended to support more than 25 platforms 

for creating two-dimensional (2D), three-dimensional 

(3D), augmented reality, and virtual reality games. 

Also, the Unity engine has been used for simulations 

in various fields including architecture, engineering, 

automotive, and construction, e.g., (Sanders B. et al. 

2020, Sun L. et al. 2020, Wang R. et al. 2020). One 

of its distinctive features is the power of its real-time 

3D rendering, making it one of the world’s leading 

real-time development platforms (Unity). 

In this context, several Unity 3D-based 

simulation solutions have been developed in the 

literature. In (Wazir H. and Annaz F. 2015), the 

authors design a Unity-3D simulator to help navigate 

unmanned aerial vehicles (UAVs). The latter is 

coupled with sensors and physical hardware allowing 

to collect data from the UAV’s surrounding 

environment and feeding it into the virtual simulation 

for processing and analysis. The authors emphasize 

the importance of Unity 3D in presenting a realistic 

and precise model while tracing the performance of 

UAVs in the real-world. In (Buyuksalih I. et al. 

2017), the authors develop a Unity 3D virtual 

environment to study the properties and potential 

prospects of using solar energy on buildings in a 

highly populated urban area. They mimic building 

structured using dedicated 3D visualizations, and 

mimic solar energy measurements based on values 

and calculations accumulated from a real world urban 

area in the city of Istanbul. The authors specifically 

address the challenge of attaining high accuracy in 

predicting solar energy outcomes with the influence 

of the buildings’ shadow casting. The authors extend 

their simulated environment to represent and study 

the underground utility systems in the city, where the 

whole city map is translated into a dedicated 

underground 3D model. In (Jain V. and Mahdavi A. 

2016), the authors design and integrate virtual sensors 

to measure light conditions in both indoor and 

outdoor environments. They focus on monitoring 

daylight conditions and design artificial light sources 

to map different sunlight conditions in the real world. 

They accumulate measurements from real sensors 

and map the data to the virtual sensors to create 

realistic conditions in the virtual environment. The 

authors utilize dedicated CAD software to create both 

indoor and outdoor environments with high degrees 

of precision and accuracy. Unity 3D is used to 

animate the CAD environment and handle light 

condition variations and sensor simulations. In 

(Wazir H. and Annaz F. 2015), the authors show how 

environmental events, such as fire, can be 

demonstrated in a 3D manner. They attempt to imitate 

real-life scenarios and study the level of stress that 

different people might face in simulating different 

kinds of fire events. The authors highlight the 

capabilities of Unity 3D in visualizing and animating 

complex objects and events such as fire, flame, 

smoke, and their propagation.  

3 VOWES SIMULATION TOOL 

We design and develop our VOWES simulation tool 

using the Unity 3D game engine to build the 

environment and its virtual sensors, and integrate 

them with real-world 3D maps and a weather API for 

realistic weather mapping. We develop special 

visualizations and behaviours to present weather 

measurements, events, and sensors as visible 3D 

structures with specifications controllable by the user. 

The following subsections describe the main 

components of our simulator tool. 

 

3.1    Virtual 3D World 

 
To achieve a realistic 3D simulation of outdoor 

environmental events and measurements, we use 

Unity’s flexibility in integrating third-party APIs to 

acquire dynamic 3D maps and real-world weather 

measurements. More specifically we utilize the 

Mapbox SDK (MapBox 2021) to import high-

resolution world maps showing countries, cities, and 

buildings, and we integrate the WeatherStack API 

(WeatherStack 2021) to capture real-time weather 

measurements and conditions from the geographic 

area that is being simulated. 

Mapbox offers APIs, SDKs, and live-updating 

map data, allowing to build better mapping, 

navigation, and search experiences across different 

platforms (MapBox 2021). We utilize the Mapbox 

SDK to import the 3D maps of real-life cities and 

allow the user to explore and visualize those cities 

from within the Unity 3D environment, with high 

levels of detail, where particular locations or 

buildings can be easily leveraged for procedurally 

generating user-specific experiences or styling. Users 

are prompted to select their city of choice upon 

launching a new simulation project. Consequently, 

the data layers are imported and built into the Unity 

3D environment, including buildings data, points of 

interest (POIs), roads, and real-time traffic data, 

where the data can be fully customized within Unity 

3D’s development environment (e.g., changing the 



layout of certain buildings, adding a building, 

removing or changing the properties of a road, etc., 

cf. Figure 1.a). In addition, we utilize the 

WeatherStack API (WeatherStack 2021) to acquire 

real-time weather data for the selected city being 

simulated by the user 2 , while storing a 14-day 

historical record of the weather information. The 

historical record is useful to allow weather 

forecasting through the simulator. Following the 

user’s selection of the city of interest, and upon 

launching the simulation project, the tool 

automatically acquires and processes the real-data 

weather information and presents the corresponding 

visualizations and behaviours on-screen (Figure 1.b). 
 
 

 

  

 

a. 3D visualization of the city of New York, with sample 

weather measurements and some of their parameters 

b. Sample visualization of the city of New York, shown during 

a snow storm in late January 2021 
 

Figure 1.  VOWES simulation tool snapshots of the city of New York 
 

 

3.2    Virtual Weather Measurements 
and Events 

We develop a dedicated weather simulation module 

using Unity 3D’s Particle System graphics (Unity 

2020) to create dynamic weather objects, visualizing 

and simulating the behaviours of weather 

measurements (e.g., wind, humidity, temperature) 

and weather events (e.g., storm, tornado, fire). We 

utilize Unity’s particle system to render small images, 

called particles, and control their collective behaviour 

to produce visual effects where every particle within 

the system presents an individual graphical element 

in the effect. Every particle system is modelled as a 

3D sphere object with mutable boundaries, serving as 

a container for a blob of particles associated with the 

target weather measurement or event. The object’s 

properties can be defined and fine-tuned by the user 

through controllable parameters (e.g., coverage, 

value, dissipation) as seen in Figure 1. 

 
3.3 Virtual Sensors and Multi-Sensors 

We define a virtual sensor as a spherical Unity 3D 

game object with mutable boundaries, having user-

controllable properties including location 

(coordinates of the sphere’s centre point), 
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measurement range (radius of the sphere), sampling 

rate (frequency of capture), and sampling accuracy 

(precision of capture, cf. Figure 2). Every weather 

measurement is associated with an identifying tag, 

which is assigned to the corresponding virtual sensor 

objects once its measurable feature is chosen by the 

user. The user can easily toggle between the sensors’ 

measurable features using their identifying tags. The 

tags help identify all virtual sensor game objects 

without the need for any additional manual code 

writing or Unity scripting. A virtual multi-sensor is 

modelled as a set of multiple overlapping 3D sphere 

objects where each sphere object represents an 

individual virtual sensor. This allows a multi-sensor 

to capture multiple weather measurements from its 

constituent virtual sensors and allows flexibility and 

modularity in designing different kinds of virtual 

sensors. The sensed values are based on the user-

chosen properties for the corresponding weather 

measurement or the event object. Knowingly, the 

sensor starts first finding the contact points with the 

weather game object, estimating the corresponding 

weather value at each point, accumulating the average 

of all points, and showing the output values to the user 

through the database console. This process is done 

continuously until no weather item is detected within 

the sensing range. As soon as the collision ends, the 



function on collision exist indicates that contact has 

been broken between the sensor and the weather 

game objects, signaling the end of the weather 

measurements sensing process. 

 

 

Figure 2. Virtual sensor configuration panel 

 
 

 
a. Conceptual ER describing an extract of the database  
 

 

 

 

b. Sample data produced by the VOWES simulator tool 
 

Figure 3. Extract of the VOWES database schema and 

sample data. 
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3.4 Environment Data Storage 

The data generated through the VOWES simulation 

environment, including virtual weather 

measurements and events, as well as virtual sensor 

properties and readings, are organized and stored in a 

relational database structure. Figure 3 shows the 

database conceptual schema and corresponding 

sample data snapshots from the simulator tool. The 

data from every simulation project is saved in the 

database, with its timestamp under the user’s account, 

and can be utilized by the user to save, exit, reload, 

refresh and query the simulation project. The data is 

also essential to allow the development of data 

monitoring, mining, and extrapolation functionalities, 

including project versioning, temporal querying, 

measurement forecasting, and event prediction. For 

instance, while VOWES does not currently perform 

forecasting and prediction, yet it will allow 

visualizing predicted events once their data becomes 

available. In other words, VOWES will allow the user 

to easily fast-forward (or fast-backward) in time to 

visualize the weather environment and its events in 

the future (or in the past), according to the available 

temporal data in its database. The predicted events 

and their measurements will plug into VOWES and 

benefit from its visualization functionalities. The 

latter are outside the scope of this work and will be 

addressed in a future study. 

 

4 EMPIRICAL EVALUATION 

We have conducted qualitative and performance 

evaluations to assess the VOWES’ tool, considering 

three evaluation criteria: i) simulation accuracy, ii) 

user friendliness, and iii) time performance. The 

prototype system is available online3. 

 

4.1 Simulation Accuracy 

An essential feature in our simulator is the 

functionality of the virtual sensor (and virtual multi-

sensor) component(s). As described in Section 4, a 

virtual sensor is designed to mimic the behaviour of a 

real sensor in the virtual simulation environment, by 

capturing weather measurements (e.g., temperature, 

humidity, wind) based on the occurring weather event. 

To test the accuracy of the weather measurements 

made by virtual sensors, we refer to the real-time 

weather values given by the integrated weather API, 



which are set as the initial values for any weather 

measurement or event as seen in Figure 4.a and b. The 

weather values provided by the weather API are 

regularly updated in the simulation tool, to highlight 

the real weather conditions in the chosen geo-location 

being simulated. We also test the performance of the 

virtual sensors by checking their readings in 

comparison with the selected weather measurements 

and their associated properties (e.g., value, 

dissipation, location, coverage). For example, if we 

select a wind measurement and set dissipation to 0% 

(cf. Figure 4.a), we expect the sensor to capture the 

same specified wind speed value returned by the API 

as long as it occurs within its coverage area, 

regardless of its collision location (cf. Figure 4.d). Yet 

if we set the temperature dissipation parameter to 

50%, and we incrementally move the virtual sensor 

away from the weather measurement’s location, we 

expect the sensor to capture temperature values at a 

decreasing rate of 50% considering the sensor’s 

collision location w.r.t. the temperature measurement 

location (cf. Figure 4.e). We follow the above 

approach by modifying all the weather measurement 

properties and checking the virtual sensors’ 

measurements accordingly. For every property, we 

consider 10 variations of equal spans (e.g., 

temperature varies between -30, -20, …, 60 Celsius, 

dissipation varies between 0, 10, 20, …, 100%). The 

results produced for all property variations and tests 

concur with the virtual sensors’ expected 

measurements, denoting their simulation accuracy. 
 

 

 

 

 

 
 

 

 

a. Sample wind measurement 
 

b. Sample temperature measurement 
 

c. Parameters’ panel 
 

 
 

 

d. Wind speed readings with no dissipation (cf. a)  
 

 
 

 

e. Temperature readings with 30% dissipation (cf. b) 
 

Figure 4. Display of weather measurement properties (a b, c) and sensor readings (d, e). 
 

 

4.2 User-Friendliness 

The VOWES tool is designed to allow non-expert 

users who have no previous knowledge about the 

simulation tool to be able to easily utilize it and 

benefit from its functionalities. Hence, we evaluate 

the tool’s user-friendliness by performing two kinds 

of evaluations: i) GUI 4  testing, and ii) usability 

testing. The former aims at checking the GUI’s input 

fields and components, while the latter aims at 
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checking the ease/difficulty of usage of the software 

tool by non-expert users. 

 

GUI Testing: In this experiment, we check the 

display of input fields and buttons on the screen 

considering the aspects of size, alignment, and 

content. We also check the menu and parameter 

panels of the application by testing their buttons and 

mouse hovering functionality, and their impact on the 

main display. This is applied on all user-interfaces in 

the whole simulator, starting from testing the 



capability of generating more than one project 

simultaneously (through the main page), to the ability 

to select a country/city and viewing it in a 3D 

environment, as well as scrolling and zooming in and 

out of the map with high resolution and details. We 

also evaluate and test the ability to add weather 

measurements and events in the same simulation 

project, and we test the functionality of the designed 

buttons by pressing each button more than 50 times 

consecutively. In addition, we make sure that all the 

weather measurements are movable around the map, 

by relocating every one of them more than once. We 

apply the same testing on the virtual sensors, where 

we perform 10 consecutive addition, renaming, 

deletion, and movement operations on every sensor in 

the simulation exercise. Similarly, we test up to 10 

separate projects by launching every project using a 

different city map, populating it with weather 

measurements, weather events, and virtual sensors, 

saving it, closing it, re-opening it, and verifying that 

the sensors, measurements, events, and their values 

and locations are correctly loaded and initialized 

respectively. Furthermore, we test the parameter 

panels associated with every visual component by 

checking the functionality of its buttons and range 

sliders (describing coverage, value, and dissipation, 

cf. Figure 4.c) and observing their impact on the 

visual component. Results of all GUI tests were 

successful and allowed fine-tuning and improving the 

visual aspects and behaviour in the simulation tool. 
 

Table 1. Simulation tool usability evaluation criteria 
 

Criterion Description Evaluation question  

Stability 
It is the ability of the software tool to function over a long period 

of time without crashing. 

Given the criterion’s description, how satisfied are you with the 

stability of the simulation tool? 

Look and Feel 
It refers to the first impression a user has after using the software 

tool.  

Given the criterion’s description, how satisfied are you with the look 

and feel of the simulation tool? 

Ease of Use 
It describes how easy and straightforward it is to use and 

manipulate the software tool. 

Given the criterion’s description, how satisfied are you with the ease 

of use of simulation tool? 

Functionality 
It refers to the capacity of the software tool to provide useful 

functions and features serving its main objective. 

Given the criterion’s description, how satisfied are you with the 

functionality of the simulation tool? 

Responsiveness 
It refers to the time it takes the software tool to execute a certain 

action or behaviour.  

Given the criterion’s description, how satisfied are you with the 

responsiveness and overall speed of this application? 

Format 
It refers to the materials and options provided (e.g., buttons, 

instructions) and their organization within the software tool. 

Given the criterion’s description, how satisfied are you with the 

format of this simulation tool? 

Navigation 

It refers to the interactions that allow users to navigate across, 

into, and back-out of the software's format (e.g., back to the main 

page, opening/closing side menus, zoom in/out).  

Given the criterion’s description, how satisfied are you with the 

navigation of this simulation tool? 

Icon Intuitiveness 
It reflects how easy it is to guess a button’s resulting action or 

behaviour before a user presses it.  

Given the criterion’s description, how satisfied are you with the 

intuitiveness of the icons of this simulation tool? 

User Interface 
It is the means through which a user controls a software 

application and interacts with it.  

Given the criterion’s description, how satisfied are you with the 

interface of this simulation tool? 
 

 

    

 

            

  

 

 

 

a. Educational level      b. Field of study        c. Experience with  

           Unity 3D 
 

 

Figure 5. Non-expert testers’ education levels, majors, and 

experience with Unity 3D 

 

Usability Testing: We also created an online 

survey5 to evaluate the usability and user-friendliness 

of our simulation tool considering nine evaluation 

criteria: i) stability, ii) look and feel, iii) ease of use, 

iv) functionality, v) responsiveness, vi) format, vii) 

navigation, viii) icon intuitiveness, and ix) user 

interface (cf. Table 1). A total of 30 non-expert testers 
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(undergraduate and graduate students, cf. Figure 5) 

were invited to contribute to the experiment, where 

they independently rated every evaluation criterion 

on an integer scale from 0 to 4 (i.e., from highly 

dissatisfied to highly satisfied). Tests were conducted 

on a network version of the tool made available 

through the university’s computer labs, where every 

computer lab consists of an HP ProLiant ML350 

Generation 5 (G5) Dual-Core Intel XeonTM 5000 

processor with 2.66 GHz processing speed and 16 GB 

of RAM. A total of 170 responses were collected, 

with every criterion receiving 30 rating scores. 

Results in Figure 6 show the average rating scores and 

their standard deviations aggregated for every 

criterion. Most testers are satisfied with the tool’s 

usability, producing an overall average rating of 3 out 

of 4 considering all criteria combined. Three criteria 

received average scores below 3: look and feel (2.80), 

ease of use (2.80), and responsiveness (2.80). Tester 

5
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Know and used Unity 3D
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8
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Doctoral students
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6
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Architecture

Sciences

Other



discussions revealed that the latter are generally due 

to the perceived loading time delays of certain Unity 

3D components, visual effects, or animations, which 

probably require increased processing power. This is 

a common issue with most 3D rendering 

environments due to their high processing and 

memory requirements and can be improved with the 

usage of GPUs and other enhancements. Few testers 

recommended including additional features like: i) 

considering the impact of outside weather conditions 

on indoor environments (e.g., indoor heating/cooling 

systems), and ii) including pollution-related 

measurements (e.g., carbon dioxide concentration). 

We plan to consider the latter in a future study. 

 

 

 
 

Figure 6. Average tester ratings for every usability criterion 

 
4.3 Time Performance 

The following paragraphs highlight and discuss the 

time results obtained during the tool’s: i) setup phase 

and ii) simulation phase. Experiments were 

conducted on an HP ProLiant ML350 Generation 5 

(G5) Dual-Core Intel XeonTM 5000 processor with 

2.66 GHz processing speed and 16 GB of RAM. 
 

Setup Phase: The simulation tool allows the user 

to visualize sensors, weather measurements (e.g., 

wind, humidity, temperature), and weather events 

(e.g., storm, fire, tornado) as objects with editable and 

controllable parameters. As such, we evaluate the 

tool’s setup phase by measuring the time to create and 

load large numbers of game objects, ranging over: 20, 

40, 60, 80, and 100 different objects where half of 

them represent sensors and the other half represent 

weather events and measurements. We start by 

adding 10 sensors and 10 weather phenomena with 

random values for their attributes. Then, we measure 

the time consumed to save and then load these game 

objects from the database, along with their respective 

features. Also, we measure the time to search, 

refresh, and export the game objects’ data from the 

database, to keep track of all the sensors and weather 

phenomena placed or edited in a project environment. 

Results in Figure 7 show that most setup operations 

run in almost instantaneous time, where search, 

refresh and export operations share almost identical 

performance levels with execution time increasing by 

approximately 179𝜇s for every added game object.  
 

 

Figure 7. Execution time of setup phase operations 
 

 

Figure 8. Execution time of simulation phase operations 

 

Simulation phase: This phase demonstrates the 
sensors’ behaviour in action, where sensors are 
detecting the weather measurements within their 
coverage areas, based on the features specified by the 
user. Each sensor works following its internal 
sampling rate, collecting data from the environment 
and storing them in the database. As a continuation of 
the setup phase evaluation, we create 50 sensors with 
a sampling rate of 0.1s (i.e., every 0.1s, all sensors 
carry out their reading calculations simultaneously 
and store the results in the database). We evaluate the 
time performance of sensor reading queries 
considering large numbers of data tuples ranging 
over: 10k, 20k, 30k, 40k, and 50k. We evaluate 
export, search, refresh, delete, and undo queries, by 
executing every query 10 times and computing the 
average execution time. Results in Figure 8 reflect 
efficient simulation time, where the maximum 
consumed time was detected at 945ms to export 50k 
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tuples (i.e., almost 3.7MB) into an external CSV file. 
This highlights the tool’s time performance in 
running large simulation projects, and its ability to 
simulate complex weather environments with large 
numbers of sensors and weather phenomena. 

 

5 CONCLUSION 

This paper introduces VOWES, a Virtual Outdoor 

Weather Event Simulator to replicate and measure 

outdoor weather events and data in 3D. We make use 

of the Unity 3D engine to build the simulator 

environment and introduce special visualizations and 

behaviours to present weather measurements, events, 

and sensors. We integrate the Mapbox SDK to import 

high-resolution world maps, and the WeatherStack 

API to capture real-time weather measurements and 

conditions, allowing for more realistic and accurate 

simulations. Empirical evaluations are promising and 

highlight the system’s quality and potential. 

We are currently extending VOWES to integrate 

a knowledge base structure, providing a formally 

description of the simulator’s components (Noueihed 

H. et al. 2022). We are also investigating the impact 

of data collection (Moataz S. et al., 2020, Ebrahimi 

D. et al. 2019, Ebrahimi D. et al. 2018), and data 

duplication and de-duplication techniques (Shazad F. 

et al. 2022, Mansour E. et al. 2020) on the quality and 

time performance of the tool. We also plan to 

investigate different machine learning models 

(Fuentes S. et al. 2020, Oses N. et al. 2020) and 

evolutionary developmental techniques (Salloum G. 

and Tekli J. 2021, Abboud R. and Tekli J. 2019), to 

perform weather measurement forecasting and event 

prediction (Hewage P. et al. 2021, Moreno R. et al. 

2020). Forecasting and prediction will be added as 

plug-and-play layers, allowing for model 

transparency and extensibility. 
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