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Abstract— Low-light image (LLI) enhancement techniques have recently demonstrated remarkable progress especially with the use of deep 

learning approaches. However, most existing techniques are developed as standalone solutions and do not take into account the impact of LLI 

enhancement on high-level computer vision tasks like object classification. In this paper, we propose a new LLI enhancement model titled 

LLHFNet (Low-light Homomorphic Filtering Network) which performs image-to-frequency filter learning and is designed for seamless 

integration into classification models. Through this integration, the classification model is embedded with an internal enhancement capability 

and is jointly trained to optimize both image enhancement and classification performance. We have conducted a large battery of experiments 

using SICE, Pascal VOC and ExDark datasets, to quantitatively and qualitatively evaluate our approach’s enhancement quality and classification 

performance. When evaluated as a standalone enhancement model, our solution consistently ranks among the best existing image enhancement 

techniques. When embedded with a classification model, our solution achieves an average 5.5% improvement in classification accuracy, 

compared with the traditional pipeline of separate enhancement followed by classification. Results produce robust classification quality on both 

LLIs and normal-light images (NLIs), and highlight a clear improvement to the literature.   

 

Index Terms—Image enhancement, low-light conditions, deep learning, object classification, homomorphic filtering. 

  

1. Introduction 

Modern artificial intelligence-based applications like autonomous spacecrafts, drones, autopilot car systems, robots, and security 

surveillance systems, among others, essentially rely on visualizing and understanding outdoor environments. Such systems use 

cameras as their vision sensors to perform high-level computer vision tasks like classification, detection, semantic segmentation, 

and tracking. While these systems show good performance during normal and clear outdoor conditions, yet varying weather 

conditions and poor illumination might challenge their visual perception and compromise their performance [1] [2]. More 

specifically, low-light conditions account to a considerable time of our daily life and can significantly affect the robustness of such 

systems and hinder their market deployment [1]. Therefore, low-light image (LLI) enhancement has emerged: i) as a standalone 

image processing task that aims at illuminating LLIs and improving their visual quality, and ii) as a pre-processing step embedded 

with another high-level computer vision task (e.g., object classification) to improve its performance.  
LLI enhancement techniques have been largely investigated in recent years. Many traditional approaches use gamma correction 

methods [3] [4], some rely on histogram equalization methods like CLAHE [5], DHE [6], while others follow the Retinex theory 

[7] like Multi-scale Retinex (MSR) [8], SRIE [9] and LIME [10]. More recently, Deep Learning (DL) techniques have 

demonstrated better performance and efficiency compared with traditional methods [11] [12]. Most DL solutions like DeepUPE 

[13], RetinexNet [14], and MBLLEN [15], follow a supervised training setting which requires training datasets of paired LLIs and 

their corresponding NLI counterparts. Other approaches like EnlightenGAN [16] use an unsupervised training setting, while recent 

solutions like ZeroDCE [17] are zero-reference models which do not require any paired or unpaired training data. However, most 

of these models are designed to perform LLI enhancement without considering the target high-level computer vision task. One 

major question is whether a LLI enhancement method – which performs well as a standalone component – can improve (or not) 

the performance of the high-level computer vision task as a whole. According to a recent study in [1], LLI enhancement may 

loosen the original image’s discriminative semantic features, thus deteriorating classification and detection performance. Another 

empirical evaluation in [18] shows that good enhancement quality does not necessarily correlate with good object detection and 

classification quality, attributing this to the fact that most existing LLI enhancement models are designed as standalone solutions.  

In this paper, we introduce a novel LLI enhancement solution designed for the object classification task. Our solution consists 

of two contributions: i) introducing a novel LLI enhancement model titled LLHFNet (Low-light Homomorphic Filtering Network) 

based on image-to-frequency filter learning, and ii) introducing a LLI enhancer-classifier model, which integrates the enhancement 

model into a state-of-the-art object classification solution. On the one hand, LLHFNet performs image-to-frequency filter learning, 

inspired from homomorphic filtering traditionally used for LLI enhancement. On the other hand, the LLI enhancer-classifier model 
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integrates LLHFNet into a typical classification model, namely ResNet50 [19], to perform a joint training that optimizes both 

enhancement and classification performance simultaneously. Note that our solution is not tied to ResNet50, and is designed to be 

coupled with typical feature extractors utilized with existing classification models including VGG16 [20], MobileNetv2 [21], and 

SqueezeNet [22], among others, thus making it unconstrained from any special architecture. 

We perform a large battery of experiments to evaluate the performance of our approach. On the one hand, quantitative and 

qualitative evaluations on LLHFNet show competitive results compared with state of the art enhancement models like ZeroDCE 

[17], EnlightenGAN [16], and DeepUPE [13]. On the other hand, we compare our LLI enhancer-classifier model against the 

traditional pipeline consisting of separate enhancement followed by classification. Results show a robust classification against both 

LLIs and NLIs, producing an average 5.5% improvement in classification accuracy on synthetic LLIs form the Pascal VOC 2007 

dataset [23] and real-world images from the ExDark dataset [24], highlighting a clear improvement to the literature.   

The remainder of this paper is organized as follows: Section 2 provides a brief review of the related works, Section 3 explains 

preliminaries on homomorphic filtering, Section 4 describes our LLI enhancement model design, Section 5 describes our LLI 

enhancer-classifier model design, Section 6 describes our experimental evaluation and results, before concluding in Section 7 with 

future works. 

2. Related Works 

2.1. Traditional Methods 

Traditional LLI enhancement techniques rely on mathematical or algorithmic models to perform the enhancement task. For 

instance, gamma correction methods, e.g., [3] [4], use a nonlinear transformation-based function in which a gamma correction 

parameter is adjusted to stretch or compress different gray regions of the image, aiming to enhance it. Also, histogram equalization 

methods, e.g., [6] [5] [25], rely on a cumulative distribution function to change the image output gray levels such that they fit into 

a uniform distribution. The original LLI is mapped to its enhanced counterpart with an approximately uniform gray-level 

distribution. Yet the latter methods generally ignore spatially varying lightness and result in under or over brightened regions. In 

addition, Retinex theory –i.e., the theory of the human retinal cortex [7] has been utilized to perform LLI enhancement. According 

to the theory, an image comprises two components: i) reflectance which is considered to be constant under varying light conditions 

and holds the inherent characteristics of visual objects, and ii) illumination which represents the varying lighting conditions of the 

image. Hence, the Retinex model is used to estimate the illumination component of the image and retain its reflectance component, 

preserving the image’s inherent features to allow more accurate image processing. Yet most Retinex-based approaches like Single 

Scale Retinex (SSR) [26], MultiScale Retinex (MSR) [8], MultiScale Retinex with Color Restoration (MSRCR) [27], LIME [10]  

and SRIE [9] assume that enhancement does not affect image reflectance, regardless of the color distortions or lost details that 

result from applying the Retinex model [28]. In addition, Retinex-based enhancement quality is dependent on a set of carefully 

hand-crafted parameters allowing to estimate the resulting illumination map [14] . More recent techniques rely on homomorphic 

filtering (HF) to perform enhancement. In [29], the authors propose an HF algorithm to improve image brightness and avoid the 

edge blocking effect. They integrate a denoising approach based on guided image filtering to eliminate the amplified noise. The 

authors in [30] design a two-channel HF image enhancement method, where they first convert the input image from RGB to HSV 

color domain, and then perform enhancement separately on the saturation channel (S) and on the illumination channel (V) using 

Butterworth HF and Gaussian HF respectively. In [31], the authors combine HF with a parametric fuzzy transform. They first use 

an HF algorithm to acquire the exact illumination image of the V channel in the HSV domain, and then perform fuzzy image 

processing through a parametric transform to smooth and enhance the image’s illumination.    

2.2. Deep learning Approaches 

In contrast to the traditional algorithmic or mathematical enhancement approaches, Deep Learning (DL) techniques are essentially 

data-driven, where training datasets of LLIs and NLIs are used to drive the learning process. They have gained great attention in 

the past few years as the most effective solutions to perform LLI enhancement, outperforming many traditional methods based on 

histogram equalization, e.g., [6] [5] and Retinex theory, e.g., [26] [27] [8]. LLNet [11] is one of the first DL approaches for LLI 

enhancement. Its architecture is based on a stacked-sparse denoising autoencoder (SSDA) made of three denoising autoencoder 

layers comprising hidden units with no use of convolutional layers. LLCNN [32] is proposed as a Convolutional Neural Network 

(CNN) based model for LLI enhancement. It is built using specially designed inception and residual modules, convolving an input 

using different size convolutional layers and then combining their outputs to the next layer. LightenNet [12] is another CNN-based 

model which estimates the Retinex-based illumination component from the original LLI and then uses it to produce the enhanced 

image. The model architecture consists of 4 convolutional layers used for: i) patch extraction and representation, ii) feature 

enhancement, iii) non-linear mapping, and iv) reconstruction. In [14] authors introduce RetinexNet consisting of two subnetworks: 

i) DecomNet which learns the Retinex decomposition of the image into its reflectance and illumination components, and ii) 

EnhanceNet which uses a dedicated encoder-decoder structure to perform illumination adjustment and enhancement. The model 

is embedded with a denoising operation using the BM3D [33] denoising algorithm. Wang et al. introduce a Global Illumination 

Aware and Detail-preserving NETwork (GLADNET) [34] made of a global illumination estimation step that uses an encoder-
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decoder structure followed by a reconstruction step through a series of convolutional layers. In [15] authors propose MBLLEN, a 

Multi-Branch Low-Light Enhancement Network which extracts the LLI features at each of its 10 convolutional layers through a 

special feature extraction module, and then enhances the features at each layer using an encoder-decoder network. It then fuses the 

multi-branch enhanced features into a final enhanced image. Wang_et_al in [13] propose a Deep Underexposed Photo 

Enhancement (DeepUPE) model which performs an image-to-illumination map learning. It consists of an encoder network based 

on a pre-trained VGG16 model [20] which extracts the local and global features of the input image. Then, a bilateral grid based 

up-sampling is added to produce the image’s full resolution illumination map, which in turn is used to enhance the image based on 

the Retinex model. In [28] authors describe Retinex Decomposition based Generative Adversarial Network (RDGAN) which 

consists of two subnetworks: i) Retinex Decomposition Net (RDNet) that decomposes the LLI into its illumination and reflectance 

components, and ii) Fusion Enhancement Net (FENet) that fuses the decomposed parts into an enhanced image.  

In a recent approach, the authors in [16] introduce EnlightenGAN, an unsupervised GAN approach which achieves state-of-the-

art enhancement performance and successfully generalizes to real-world scenes. The model uses an attention guided U-Net [35] as 

its generator backbone, in addition to a global relativistic discriminator [36], and a local discriminator to handle spatially varying 

light conditions in the image. It is driven by non-reference loss functions combining local and global discriminator adversarial 

losses and a self-feature preserving loss. A more recent approach in [17] proposes a Zero Reference Deep Curve Estimation 

(ZeroDCE) model which does not require any paired or unpaired training data (hence the name “Zero Reference”). The authors 

entirely reformulate the LLI enhancement task: from image-to-image learning into image-to-light curve learning. The light 

enhancement curves are estimated using a lightweight deep curve estimation network (DCE-Net), and are iteratively applied on 

the input LLI to produce the final enhanced image. The model is optimized by non-reference loss functions including spatial 

consistency, exposure control, color constancy, and illumination smoothness losses.  

2.3.  Discussion 

While many of the traditional and DL-based models show success when utilized as standalone LLI enhancement solutions, yet 

they share a common limitation: they are not tailored for high-level computer vision tasks like object classification. The models 

are designed solely to perform enhancement without considering the impact of this enhancement when used as a preprocessing 

stage for object classification. A recent study in [18] performs an evaluation for the performance of state of art classification and 

detection models on LLI datasets preprocessed by recent enhancement models. Results show that DL-based LLI enhancement 

solutions add slight (or no) improvement to detection and classification performance. The authors conclude that a good 

enhancement solution does not necessarily produce improved detection and classification quality since existing LLI enhancement 

models are designed as standalone solutions.  

In this paper, we introduce a novel LLI enhancement solution designed to be integrated and embedded with the object 

classification task, in order to make it more robust against low-light and normal-light conditions. Our model builds on 

homomorphic filtering (HF), and devises a special filter to transform the image frequency components in the Fourier transform 

domain. It then estimates the filter parameters using DL-based feature extractors used for object classification. We first provide 

preliminary notions on HF, and then describe our DL-based enhancement model. 

 

3. Preliminaries on Homomorphic Filtering 
 

LLI enhancement models based on homomorphic filtering (HF) adopt the Retinex model representation of an image as a 

combination of illumination and reflective components (cf. Section 2.1). HF aims at converting the illumination and reflectance 

components which combine multiplicatively, into an additive form in the logarithmic domain [37]. The additive components are 

separated linearly in the Fourier transform frequency domain in which high frequency components are associated with reflectance 

while low frequency components correspond to illumination. A high-pass filter is used to suppress low frequencies and amplify 

high frequencies [37]. Figure 1 depicts the flow of the HF algorithm adopted in our approach. We describe its main steps below. 

 
 

 
Figure 1. HF algorithm flow (adapted based on [37]) 

 

Step 0. The algorithm accepts as input an image representation following the Retinex Model: 
 

𝑀(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) × 𝑅(𝑥, 𝑦)  (1) 

  

where 𝑀(𝑥, 𝑦) is the original image, 𝐼(𝑥, 𝑦) is the illumination component, and 𝑅(𝑥, 𝑦) is the reflectance component.  
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Step 1. The logarithm of both sides of the Retinex model is taken to convert the illumination and reflective components from 

multiplicative form to additive form: 
 

ln 𝑀(𝑥, 𝑦) = ln 𝐼(𝑥, 𝑦) + ln 𝑅(𝑥, 𝑦)    (2) 

 

Step 2. The fast Fourier transform is applied to convert the image from the spatial domain to the frequency domain:  
 

𝐹𝐹𝑇[ln 𝑀(𝑥, 𝑦)] = 𝐹𝐹𝑇[ln 𝐼(𝑥, 𝑦) + ln 𝑅(𝑥, 𝑦)] (3) 

 

More concisely, Formula 3 can be written as: 
  

𝑀(𝑢, 𝑣) = 𝐼(𝑢, 𝑣) + 𝑅(𝑢, 𝑣)    (4) 

 

where 𝑀(𝑢, 𝑣), 𝐼(𝑢, 𝑣) and 𝑅(𝑢, 𝑣) are the Fourier transforms of 𝑀(𝑥, 𝑦), 𝐼(𝑥, 𝑦) and 𝑅(𝑥, 𝑦) respectively. Note that 𝐼(𝑢, 𝑣) is 

mainly concentrated in the low frequency range while 𝑅(𝑢, 𝑣) is concentrated in the high frequency range.  

  

Step 3. An appropriate high-pass filter with transfer function 𝐻(𝑢, 𝑣) is applied to perform the enhancement: 
 

       𝑆(𝑢, 𝑣) = 𝐻(𝑢, 𝑣) × 𝑀(𝑢, 𝑣)   = 𝐻(𝑢, 𝑣)𝐼(𝑢, 𝑣) + 𝐻(𝑢, 𝑣)𝑅(𝑢, 𝑣) 

                  
  (5) 

 

Step 4. The inverse Fourier transform is applied to transform the image from the frequency domain to the spatial domain. Let 

𝑠(𝑥, 𝑦) be the inverse Fourier transform of 𝑆(𝑢, 𝑣), then the inverse Fourier transform of Formula 5 becomes: 

 

𝑠(𝑥, 𝑦) = 𝐼𝐹𝐹𝑇(𝐻(𝑢, 𝑣)𝐼(𝑢, 𝑣)) + 𝐼𝐹𝐹𝑇(𝐻(𝑢, 𝑣)𝑅(𝑢, 𝑣)) = ℎ𝐼(𝑥, 𝑦) +  ℎ𝑅(𝑥, 𝑦) 

 

(6) 

 

Step 5. Finally, the exponential operation is applied on Formula 6 to obtain the enhanced image denoted by 𝐸(𝑥, 𝑦):  

 
𝐸(𝑥, 𝑦) = exp[𝑠(𝑥, 𝑦)] = exp[ℎ𝐼(𝑥, 𝑦)] exp[ℎ𝑅(𝑥, 𝑦)] (7) 

 

4. LLI Enhancement Model 
 

We design a novel LLI enhancement model titled LLHFNet (Low-light Homomorphic Filtering Network) which performs image-

to-frequency filter learning instead of the typical image-to-image learning paradigm adopted by most existing solutions. The overall 

model architecture is depicted in Figure 2. It is based on HF where a special filter of two parameters is devised to filter the image 

frequency components in the Fourier transform domain. The two parameters are estimated using a typical DL-based feature 

extractor utilized in classification models. In the following, we describe the main components of our model including: i) 

enhancement filter design, ii) DL network architecture, and iii) loss function. 
 

 

 
 

Figure 2. LLHFNet image enhancement framework 

 

 

 

Input 

Output 

LLI 

Enhanced 
Image 

Homomorphic Filtering (HF) Process 

Deep Learning (DL) Enhancement Model 

1@512512 

1@512512 

Input 
Image 

Output 
Parameters 



 

 

 

5 

4.1. Enhancement Filter Design 
 

A core part of the HF algorithm is the frequency filtering transform 𝐻(𝑢, 𝑣). In our design, we aim to produce a simple and effective 

filter transform that can be easily learned by the enhancement network. Here, the Fourier transform of the original image, i.e., 

𝑀(𝑢, 𝑣) at (0,0), represents its DC-term1 which corresponds to its average brightness in the spatial domain [38]. In this context, 

we make two interesting observations: i) 𝑀(0,0) with LLIs is a large negative value reflecting the low brightness of these images, 

whereas ii) 𝑀(0,0) for NLIs is either a small negative value or a positive value reflecting the normal brightness of these images. 

Based on the latter observations, we assume that brightness can be enhanced by increasing 𝑀(0,0). As a result, we define our 

enhancement filter as follows: 
 

𝐻(𝑢, 𝑣) =  {
𝛾𝐿      (0,0)           
𝛾𝐻     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
             (8) 

where 𝛾𝐿 ∈ [0,1] denotes the lightness parameter associated with low-frequency components and is placed at 𝐻(0,0), and 𝛾𝐻 ∈
[0,1] denotes the sharpness parameter associated with the remaining higher-frequency components of 𝑀(𝑢, 𝑣) corresponding to 

the image variations. The filter’s behavior can be described as follows: i) the smaller (larger) the value of parameter 𝛾𝐿, the higher 

(lower) the brightness level of the image, ii) the larger (smaller) the value of 𝛾𝐻, the sharper(blurrier) the contents of the image. 

Consequently, we run the HF algorithm by applying our enhancement filter on the Value channel of the HSV (Hue-Saturation-

Value) color domain, instead of using the Red, Green, and Blue channels of the RGB domain. We make this design choice for the 

following reasons: i) it is more efficient to apply the Fourier transform and its inverse on one channel only instead of three, ii) the 

Value channel in HSV describes the lightness of the image which we aim to improve; while Hue and Saturation remain unchanged, 

and iii) HSV allows more simplicity with only two required parameters, compared with the RGB domain which may require two 

parameters for each of its channels to achieve a good enhancement quality. 

Figure 3 provides two examples highlighting the behavior of our enhancement filter with different exposure levels. On the one 

hand, Figure 3a presents a LLI with a low exposure level, requiring parameter values <0.5 (𝛾𝐿 = 0.35, 𝛾𝐻 = 0.45) to produce a 

visually pleasing enhanced image with minimal artifacts. On the other hand, Figure 3b presents a LLI with a medium exposure 

level, requiring relatively higher parameter values (𝛾𝐿 =  0.60, 𝛾𝐻 = 0.70) to perform a minimal enhancement while avoiding 

overexposure. Here, there is a need to identify and fine-tune the parametric values of the filter function in order to maximize image 

enhancement quality. So, we develop a DL network model which can powerfully and efficiently extract high-level features from 

input images and allow estimating the values of parameters 𝛾𝐿 and 𝛾𝐻 while handling different input exposure levels.  

    
LLI Enhanced Image (𝛾𝐿 = 0.35, 𝛾𝐻 = 0.45) LLI Enhanced Image (𝛾𝐿 = 0.60, 𝛾𝐻 = 0.70) 

a. LLI with low exposure level and its enhanced counterpart b. LLI with medium exposure level and its enhanced counterpart 
 

Figure 3. LLIs with from the SICE dataset [39] and their enhanced counterparts using the HF algorithm 

 

4.2. Deep Learner Network Architecture 
 

Our DL network architecture is depicted in Figure 4. It consists of two main parts: i) feature extractor, and ii) enhancement head.  

 The feature extractor is responsible for extracting high-level features from the input images. In contrast with image-to-image 

learning models where custom architectures are required for specific approaches, our solution allows the usage of any feature 

extractor network (e.g., VGG16 [20], ResNet50 [19], MobileNetv2 [21], SqueezeNet [22], among others) to perform the image-

to-filter mapping, which comes down to estimating filter parameters 𝛾𝐿 and 𝛾𝐻. We modify the first layer of the extractor to accept 

as input the Value channel of the image represented in the HSV domain. 

 The enhancement head consists of four convolutional layers followed by ReLU activation and max pooling layers, allowing to 

downsize the feature maps obtained from the feature extractor. The last convolutional layer is followed by an adaptive average 

pooling layer to resize the network output to size 1x2x1, and then a Sigmoid activation function to limit the 2 output values 

representing 𝛾𝐿 and 𝛾𝐻 to the range [0,1], following our enhancement filter definition described in the previous section. 

 

 

 
1  The DC-term is the 0 Hz term and is equivalent to the average of all the samples in the sampling window. 
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Figure 4. DL enhancement model network architecture 

 

4.3.  Enhancement Loss Function 
 

The loss function is a major element of the LLI enhancement model and drives the entire learning process. In our approach, we 

adopt a supervised training setting in which reference-based loss functions are needed. We rely on Multi-scale Structural Similarity 

Index Measure (MS-SSIM) [40] for our loss function. MS-SSIM is an advanced version of SSIM (cf. Formula 12) which conducts 

assessment over multiple scales of the image. Yet a recent empirical evaluation in [18] shows that quantitative image quality 

assessment metrics do not always correlate with the human perception of visual quality, due to the disparity between computational 

enhancement (done by the machine) and enhancement quality (perceived by humans). While the latter miscorrelation is difficult 

to evaluate through the loss function with existing image-to-image learning models, yet it is easier to monitor with our image-to-

filter enhancement model (which seeks to learn two filter parameters only, rather than learning the image as a whole). In this 

context, a preliminary evaluation of our enhancement model shows two contradictory observations. On the one hand, an MS-SSIM 

based loss function may show a tendency to generate values for the lightness parameter 𝛾𝐿 which are greater than those of the 

sharpness parameter 𝛾𝐻. This tends to produce enhanced images which are smoothed with distinctive color deviations, making 

them perceptually unpleasing. On the other hand, this tendency is encouraged by lower MS-SSIM loss values indicating that the 

metric is failing to properly quantify the quality of these enhanced images. To minimize the impact of this miscorrelation between 

qualitative perception and quantitative measure, we add a regularization term to the loss function, encouraging the learner model 

to generate values for 𝛾𝐻 which are greater than 𝛾𝐿 while reducing the overall loss value. More formally:  
 

enhLoss(IEnhanced, INLI) = 1-MS_SSIM(IEnhanced, INLI) +  
 

(9) 

where enhLoss designates the enhancement loss function, IEnhanced is the enhanced image, INLI is the normal light image, = 𝛾𝐿 −

𝛾𝐻 is the regularization term, 𝛼 >= 0 is a linear weight parameter highlighting the impact of regularization on overall loss. Our 

empirical evaluation (cf. Section 6) shows that values of 𝛼 ranging between [0.05, 0.1] produce satisfactory LLI enhancement 

results (in our experiments, we use 𝛼 = 0.08). Deciding on the best value of   that optimizes the loss function and image 

enhancement quality requires a dedicated optimization process, and will be handled in a future study. 

 

5. Enhancer-Classifier Model 
 

In this section, we describe our LLI enhancer-classifier model, which integrates LLHFNet into an existing object classification 

model, namely ResNet50 [19], in order to perform a joint training that optimizes both enhancement and classification 

simultaneously. We choose ResNet50 [19] as one of the most effective classification solutions in the literature, boasting a smaller 

model size and requiring a lower training time compared with other denser alternatives [41]. Note that LLHFNet is not tied to 

ResNet50, and is designed to use typical feature extractors utilized with existing classification models including VGG16 [20] , 

MobileNetv2 [21], and SqueezeNet [22], among others. The enhancement capability is embedded to the classifier model, allowing 

it to handle LLIs and NLIs simultaneously, and produce a more robust classification result. 

5.1.  Enhancer-Classifier Design 
 

Our enhancer-classier model design is shown in Figure 5. It accepts the input image and feeds it into a first classification feature 

extractor (e.g., ResNet50 in our case, yet other classification feature extractors can be used). The output feature maps of the first 

feature extractor are passed to the enhancement head (cf. Figure 4) to estimate the frequency filter parameters. The latter are then 

processed through the HF algorithm (cf. Figure 1) to produce the enhanced image, which will be optimized by the enhancement 

loss (cf. Formula 9). We add the fully connected (FC) layer of the first feature extractor at its output branch, and use it to evaluate 

classification loss (cf. Formula 11). Note that the first feature extractor is performing a dual task of optimizing both enhancement 

and classification performance, and adding the FC layer allows to improve its classification performance (cf. experiments in Section 
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6). Then, the enhanced image is fed into a second classification feature extractor (e.g., RestNet50 in our case), to extract features 

which are at the same level of those obtained from the first extractor. Both feature maps from the first and the second feature 

extractors are merged in an element-wise addition. The merged maps are passed to the FC layer of the second feature extractor to 

produce as output the final classification scores. 
 

 
 

Figure 5. LLHFNet Enhancer-Classifier model 

 
5.2.  Enhancer-Classifier Loss Function 
 

The enhancer-classifier loss function is used to perform a joint optimization for both classification and enhancement. It consists of 

the aggregation of two loss functions: enhancement loss (enhLoss) and classification loss (clsLoss), and is formally defined as 

follows: 

 
Loss(IEnhanced, INLI, LP, LG) =     enhLoss(IEnhanced, INLI )  +   clsLoss(LP, LG) 

 
(10) 

Where LP is the predicted class label, LG is the ground truth class label, enhLoss is defined following Formula 9 (cf. Section 4.3), 

,   0 are linear weight parameters, and clsLoss is defined as the cross entropy loss (commonly used in the classification task) 

for both FC layers, more formally:  

 
clsLoss(LP, LG) =   clsLoss1(LP, LG) +   clsLoss2(LP, LG) 

 
(11) 

where 𝑐𝑙𝑠𝐿𝑜𝑠𝑠1 is the loss from the first FC layer, and 𝑐𝑙𝑠𝐿𝑜𝑠𝑠2 is the loss from the second FC layer, ,   0  are linear weight 

parameters. Our empirical evaluations show that equal linear weight parameters  =  =  =  = 1 produce satisfactory enhancement 

and classification results. Note that deciding on the best parameter values requires a dedicated optimization process, which we will 

address in a dedicated future study. 

 

6. Experimental Evaluation 

Our empirical evaluation consists of two main experiments to evaluate the performance of LLHFNet: i) as a standalone LLI 

enhancement model, and ii) as an integrated enhancer-classifier model. Our prototype implementation and experimental data are 

available online2. 

 

6.1. LLI Enhancement Evaluation 
 

In this experiment, we perform an image quality assessment (IQA) that aims at evaluating whether an image is visually pleasing 

and how it is visually perceived. Image quality refers to the different visual attributes of the image and focuses on the perceptual 

assessment of viewers. IQA methods are either i) quantitative: based on objective evaluation metrics, or ii) qualitative: based on 

the human perception of visual quality. Here, we conduct both quantitative and qualitative evaluations, by evaluating the visual 

quality achieved by 5 prominent enhancement models (2 traditional solutions: SRIE [9] and LIME [10], and 3 DL-based solutions: 

ZeroDCE3 [17], EnlightenGAN4  [16] and DeepUPE5 [13]). We compare the models with our LLHFNet2 implemented using 

PyTorch on a P100 Tesla Nvidia GPU, with a batch size of 8. We utilize an Adam optimizer with default parameters and a reduce-

on-plateau based decaying learning rate with an initial value of 1e-4 for network optimization. 
 
 

6.1.1. Experiment Data 
 
 

We use the well-known SICE dataset [39] to conduct our training and testing experiments. It includes 360 multi-exposure 

sequences allowing the model to be trained on a variety of exposure conditions ranging from low-exposure to high-exposure 

images. We adopt two subsets for: i) training and ii) testing. The training subset consists of 2,150 image pairs from Part 1 of SICE, 

 
2 https://github.com/rayanalsubbahi/LLHFNet 
3 https://github.com/Li-Chongyi/Zero-DCE  
4 https://github.com/TAMU-VITA/EnlightenGAN  
5 https://github.com/wangruixing/DeepUPE  

https://github.com/Li-Chongyi/Zero-DCE
https://github.com/TAMU-VITA/EnlightenGAN
https://github.com/wangruixing/DeepUPE
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excluding extremely underexposed and overexposed images (which are difficult to handle and may tend to disrupt the training 

process). We resize all the training images to 512x512, and perform cross validation where 1700 pairs (i.e., 80%) are used for 

model learning and 450 pairs (i.e., 20%) are used for model evaluation. Although the training dataset seems relatively small, yet 

our enhancement model does not require huge training data since it relies on powerful pre-trained feature extractors for its 

backbone. In this experiment, we utilize five pre-trained extractors including VGG16 [20], ResNet50 [19], MobileNetv2 [21], 

SqueezeNet [22] and DenseNet [42].  

As for the testing subset, it consists of 767 paired LLIs/NLIs collected from Part 2 of the SICE dataset [39] and resized to 

1200x900x3 following the same approach adopted in [17] to perform our empirical evaluations.   

 

6.1.2. Evaluation Metrics 
 

To perform a quantitative evaluation, we run the enhancement models against three objective metrics commonly used in the 

literature: Structural Similarity index (SSIM) [43], Peak Signal to Noise Ratio (PSNR), and Mean Absolute Error (MAE). SSIM 

[43] measures the structural similarity between images based on independent comparisons of their luminance, contrast, and 

structure features, and is defined as:  
 

( , )x y 
x y xy

2 2 2 2

x y x y

(2μ μ + C1)(2σ + C2)
SSIM

(μ +μ +C1)(σ + σ +C2)
 (12) 

 

where x is a ground truth image with N pixels and maximum pixel value L, y is the enhanced image,
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with k1 << 1 and k2 << 1.  

PSNR considers the maximum pixel value (denoted as L) and the mean squared error (MSE or L2 loss) between images. Given 

a ground truth image x with N pixels and the corresponding enhanced image y, PSNR is defined as:  
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1
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PSNR x, y
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(13) 

Similarly, MAE measures the absolute errors between paired observations, and allows to perform IQA by measuring the absolute 

difference in pixel values between LLI/NLI pairs: 
 

i=1...

| |     
N

1
MAE(x, y)= x(i)- y(i)

N
 (14) 

 

6.1.3. Quantitative Evaluation Results 
 

 

Table 1 shows quantitative IQA results comparing LLHFNet with its prominent counterparts, applied on the SICE testing subset. 

Results show that our solution produces the best PSNR and MAE average scores, as well as the second best scores following SSIM. 

In addition, Table 2 provides the average scores of LLHFNet using different feature extractors, including: ResNet50, MobileNetv2, 

VGG16, DenseNet, and SqueezeNet. MobileNetv2 and VGG16 produce some of the best average scores across all evaluation 

metrics. This is probably due to their dense architectures.  ResNet50 and DenseNet are ranked 3rd and 4th respectively, while 

SqueezeNet produces the worst results across all evaluation metrics, which is probably due to its lightweight architecture. Yet all 

feature extractors show consistently competitive results when compared with the enhancement solutions in Table 1. 

To sum up, results in this experiment show that LLHFNet can be effectively used with different feature extractors, making it 

independent of any specific architecture and thus easy to integration with object classification models. 
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Table 1. Quantitative results comparing the quality of existing LLI enhancement models and LLHFNet. The best result is shown in red and the 

second best result is shown in green. LLHFNet uses MobileNetv2 [21] as its feature extractor. 
 

 
 

 

Table 2. Quantitative results comparing different feature extractors used with LLHFNet. The best result is shown in red and the second best 

result is shown in green. 
 

 
 

6.1.4. Qualitative Evaluation Results 
 

 

In addition to the quantitative evaluation, we also perform a qualitative evaluation to assess the human visual perception of images 

enhanced by our model and its five counterparts considered in this experiment. To do so, we randomly select 20 images from the 

SICE testing subset, and display the reference input LLI and the enhanced image side by side in a dedicated online survey6. 

Responders are asked to rate each image considering three visual IQA criteria including: i) level of exposure (over/under-exposed 

regions), ii) color deviations, and iii) overall beauty of the image. A total of 76 testers (senior computer engineering and master’s 

students) were invited to contribute in the experiment, and independently rate every enhancement model on an integer scale from 

1 to 10 (i.e., worst to best). We also deal with inconsistencies in image ratings by computing the average score for every image, 

and then eliminating ratings which have an extreme deviation from the average (e.g., ratings which are extremely low/high for 

images deemed visually pleasing/unpleasing by most testers). A total of at least 1200 responses were collected for each model, 

with every image receiving 60 rating scores. The ratings are aggregated for every enhancement model to evaluate its overall 

perceptual quality. Results are provided in Figure 6, and sample LLIs and NLIs are visualized in Figure 7 and Figure 8 respectively. 

 

 
Figure 6. Average user ratings for the enhancement models ranked from best to worst 

 

Results in Figure 6 show that LLHFNet ranks second best among the five compared models, and is thus favored by human 

testers. Sample LLIs in Figure 7 show that LLHFNet produces visually pleasing enhanced images with minimal artifacts. In the 

first image (Figure 7a), our model is able to uncover the dark regions of the fence and is able to effectively restore the green colors 

of the trees. In the second image (Figure 7b), our model properly restores the colors of the trees, grass, and white clouds without 

overexposing them (compared with EnlightenGAN where the clouds are overexposed, and ZeroDCE and SRIE where the cloud 

colors and overall image colors deviate into blue). In the third image (Figure 7.c), our model shows a good illumination level and 

produces results comparable with to ZeroDCE and SRIE.  

 
6 https://forms.gle/FrjzGAZXpyKqGRnw9 
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In addition to the LLIs in Figure 7, Figure 8 shows the enhancement results applied on a sample LLI with almost a normal 

exposure level. While models like LIME and EnlightenGAN tend to overexpose certain parts of the image, especially the light 

from the windows, LLHFNet performs a slight and minimal enhancement and preserves most of the original colors of the image. 

Recall that our enhancement approach is designed to properly handle normal exposure levels in input images, by processing the 

input image with minimal enhancement or even no enhancement with filter parameters γL, γH  1. 
 

6.1.5. Discussion 
 

 

Results show that LLHFNet is ranked among the best enhancement models compared with its five counterparts. Its good 

performance is mainly due to its easy integration and usage of very powerful pre-trained extractors like ResNet50 as its backbone, 

allowing LLHFNet to easily generalize and handle both LLIs and NLIs. It can also be partly due to its original image-to-filter 

approach where the enhancement network focuses on optimizing two filter parameters only, compared with the image-to-image 

paradigm adopted by most existing models following a more complex multi-parameter optimization process.  
 

6.2. Enhancer-Classifier Evaluation  
 

High-level computer vision tasks like object classification usually suffer from a degraded performance when processing LLIs [1] 

[18]. In this experiment, we aim to verify whether our integrated LLHFNet enhancer-classifier model can improve the performance 

of the object classification task. To do so, we perform a comparative analysis: i) using the five LLI enhancement models considered 

in our first experiment in addition to our standalone LLHFNet, following a typical classification process consisting of separate 

image enhancement followed by object classification on the enhanced images, ii) using LLHFNet integrated within its novel 

enhancer-classifier model, performing a joint training to optimize both enhancement and classification performance 

simultaneously. 

 

6.2.1. Experiment Data 
 

 

To train our enhancer-classifier model, we utilize the well known Pascal VOC (2012 + 2007) dataset [23] considering a training 

subset of 9,625 images labelled under 20 single generic classes (e.g., chair, cat, car, etc.). We synthetically generate LLIs 

considering five different exposure levels using gamma correction with gamma values {4.5, 3.5, 2.5} corresponding to low-

exposure levels, and gamma values {0.5, 0.8} corresponding to high-exposure levels. We then perform cross validation where 

8500 LLI/NLI pairs (i.e., 88%) are used for model learning and 1125 pairs (i.e., 12%) are used for model evaluation, such that both 

training and evaluation subsets are equally divided among the used exposure levels along with their class labels. All images are 

converted to the HSV domain where the Value channel-based image is used in training.  

As for model testing, we utilize another subset of Pascal VOC 2007 consisting of 3,000 image pairs, divided equally among the 

used (ϒ corrected) exposure levels. In addition to these synthetic images, we utilize 3000 real LLIs from the ExDark dataset [24], 

to further test the performance of our enhancer-classifier model in a real-world setting. All the images for training and testing are 

resized to 512x512, following the same approach adopted in [17]. 

 

6.2.2. Experiment Set-up 
 

 

Similarly to our previous experiment, we implement our LLHFNet enhancer-classifier using PyTorch on a P100 Tesla Nvidia 

GPU, with a batch size of 8. We utilize an Adam optimizer with default parameters and a reduce-on-plateau based decaying 

learning rate with an initial value of 1e-5 for network optimization. For the first epoch, we multiply the classification loss by 0.1 

(i.e.,  = 1,  = 0.1 cf. Formula 10) to give it less weight to the advantage of stabilizing enhancement and warming-up the joint 

models. As for the embedding classifier, we use ResNet50 pre-trained on the ImageNet database [44] (any other classifier could 

have been used, as mentioned previously). 

 

6.2.3. Experiment Results 
 

 

Our empirical evaluation consists of four main tests: i) evaluating the traditional classification pipeline, ii) evaluating the new 

integrated enhancer-classifier solution, iii) comparing the enhancer-classifier model with existing enhancement solutions, and iv) 

evaluating the relationship between enhancement quality and classification performance.
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Figure 7. Visual comparison of sample LLIs from the SICE Part 2 subset [39] and their enhanced versions. 
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Figure 8. Visual comparison of an input image with almost normal exposure level from SICE Part 2 [39] and its enhanced versions. 

 
Test 1: Evaluating the Traditional Classification Pipeline 
 

We first start by evaluating the traditional classification pipeline adopted in the literature, i.e., performing LLI enhancement 

separately as a preprocessing step, and then performing classification on the enhanced images using a classifier pre-trained on 

abundantly available NLIs. We build six variants of the traditional pipeline using the five enhancement models considered in our 

first experiment (i.e., SRIE, LIME, ZeroDCE, EnlightenGAN, and DeepUPE) in addition to our standalone LLHFNet. We then 

perform the classification task using the ResNet50 classifier trained on the NLIs of our training dataset, and tested on the standalone 

enhanced images produced by each of the six enhancement models. Average classification accuracy levels are provided in table 3. 

Results show that LLHFNet produces the best RestNet50 classification accuracy results on both Pascal VOC and ExDark test 

subsets (i.e., 80.81% and 66.18% respectively) compared with the existing enhancement solutions. In other words, the standalone 

LLHFNet model, used as a LLI pre-processing step with the traditional pipeline, is able to significantly improve the target 

classification task. 
 

Table 3. Classification accuracy results following the traditional pipeline (enhancement, followed by classification), applied on Pascal VOC 

and ExDark test subsets. We apply the five enhancement models considered in the first experiment in addition to our standalone LLHFNet,  

and we utilize ResNet50 classification. 
 

 
 

 

Test 2: Evaluating the New Enhancer-Classifier Approach 
 

Second, we perform a comparative analysis by training three classification models: 1) Classifier_NLIs: the classifier from the 

traditional pipeline described in Test 1, consisting of ResNet50 with no enhancement capability trained on the NLIs of the training 

dataset, 2) Classifier_LLIs: the classifier from the traditional pipeline, consisting of ResNet50 with no enhancement capability 

trained on the LLIs of the training dataset, and 3) Enhancer_Classifier: our LLHFNet based enhancer-classifier model trained on 

the LLIs of the training dataset. Table 4 shows the classification accuracy results obtained by the three trained models, evaluated 

on: i) the Pascal VOC (synthetic) LLI test subset, ii) the ExDark (real) LLI subset, and iii) the Pascal VOC (reference) NLI test 

subset. Based on the results, we highlight the following observations: 
  

i. With Pascal VOC (synthetic) LLI test subset: Enhancer_Classifier shows an improvement of 3.86% over Classifier_LLIs, 

and a 8.13% improvement over Classifier_NLIs, highlighting LLHFNet’s higher performance in handling synthetic LLIs.  

ii. With ExDark (real) LLI subset: Enhancer_Classifier produces a 3.25% improvement over Classifier_LLIs, and a 10.56% 

improvement over Classifier_NLIs, confirming LLHFNet’s good performance on real-world LLIs.  
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iii. With Pascal VOC (reference) NLI test subset: Enhancer_Classifier also achieves the best accuracy levels, producing a 

2.16% improvement over Classifier_LLIs, and a 1.88% improvement over Classifier_NLIs which is trained on NLIs. This 

confirms the ability of LLHFNet in handling NLIs, producing improved classification levels equivalent to training the 

classifier on NLIs only, by adding only minor enhancements through LLHFNet’s filter parameters and avoiding over 

exposure (cf. Section 6.1).  

iv. With Pascal VOC (synthetic) LLI and (reference) NLI test subsets: The Classifier_LLIs model shows a better performance 

compared with Classifier_NLIs, with a 4.27% improvement on LLIs, and approximately similar performance with a slight 

regression of -0.28% on NLIs. This indicates that Classifier_LLIs seems robust against varying light conditions. In addition, 

the degraded performance of Classifier_NLIs when evaluated against LLIs shows that training a classifier on varying exposure 

levels seems better than limiting the training to normal light conditions only. 

 
Table 4. Classification accuracy (in %) of the three trained models evaluated using Pascal VOC and ExDark test subsets. 

 

 
 

Test 3:  Comparing the Enhancer-Classifier Approach with Existing Enhancement Models 
 

In our third evaluation, we compare the performance of the three aforementioned classification models using the standalone 

enhanced images from the Pascal VOC and ExDark test subsets. We perform image enhancement using the five enhancement 

models considered in our study (i.e., SRIE, LIME, ZeroDCE, EnlightenGAN, and DeepUPE) in addition to our standalone 

LLHFNet. Average classification accuracy levels are provided in Figure 9. Based on the results, we highlight the following 

observations: 
 

i. Enhancer_Classifier produces the best classification results, compared with all other classifiers following the traditional 

pipeline. This is probably due to the fact that enhancement is performed at two stages: i) at the initial pre-processing stage 

done by the standalone enhancement models, and ii) internally through LLHFNet and its integrated classification feature 

extractors in which minor restorations are added when needed. This indicates that Enhancer_Classifier can effectively adapt 

to the data domain of enhanced images which may contain artifacts and amplified noise, while improving classification 

performance. 

ii. The Classifier_NLIs model trained only on NLIs shows the worst classification results compared with the other two 

classification models. This may indicate that the data domain of NLIs does not correlate with that of enhanced images which 

contain artifacts, noise, and varying light conditions. Therefore, processing separately enhanced images using classifiers 

pretrained on NLIs may not be the best strategy to benefit from the pre-processing enhancement task. 

 
 

 

 

 
 

a. Results on the Pascal VOC test subset 

 

b. Results on the ExDark test subset 

 

Figure 9. Classification accuracy (in %) obtained by the three trained models evaluated on the original and standalone enhanced images from 

Pascal VOC (a) and ExDark (b) test subsets 
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Test 4: Evaluating the Relationship between Enhancement Quality and Classification Performance 
 

In our fourth evaluation, we take a closer look at the enhancement performance of our Enhancer_Classifier model, in order to better 

understand the impact of enhancement quality on classification quality. In other words, we aim to discover whether the 

Enhancer_Classifier model producing the best classification quality results can also produce the best enhancement quality results. 

Average scores of the IQA evaluation metrics (i.e., SSIM, PSNR, and MAE) applied on the Pascal VOC test subset7 are shown in 

Table 5. Based on the results, we highlight the following observations: 
 

i. Enhancer_Classifier achieves the best enhancement performance following all three metrics, indicating the effectiveness of 

its internally embedded enhancement. This reflects that the joint optimization used in the integrated Enhancer_Classifier 
model has effectively improved the quality of both image enhancement and image classification tasks.  

ii. LLHFNet, used a standalone enhancement model, achieves the second best performance levels following all three evaluation 

metrics. This confirms the results obtained in our first experiment (cf. Section 6.1) and shows that our designed enhancement 

algorithm is effective and provides a clear improvement compared with existing state of art enhancement models. 

 
Table 5. Quantitative evaluation of image enhancement quality of Enhancer_Classifier compared with our standalone LLHFNet model and 

other existing enhancement models. 
 

 

7. Conclusion 
 

In this paper, we introduce a new LLI enhancement solution designed for the object classification task. Our solution consists of 

two contributions: i) a novel LLI enhancement model titled LLHFNet (Low-light Homomorphic Filtering Network)  based on 

image-to-frequency filter learning, and ii) a LLI enhancer-classifier model, which integrates the enhancement model into a state 

of the art object classification solution (e.g., RestNet50). Through this integration, the classification model is embedded with an 

internal enhancement capability and is jointly trained to optimize both enhancement and classification performance. Experimental 

results show improved enhancement quality on LLIs, and robust classification quality on both LLIs and NLIs. Compared with the 

traditional pipeline consisting of separate enhancement followed by classification, our integrated enhancer-classifier model 

highlights a clear improvement compared with existing solutions. 

As ongoing work, we are currently conducting an empirical study to evaluate the performance of our solution on extremely LLIs. 

Initial results show that LLHFNet usually fails to handle extremely LLIs and tends to produce artifacts, similarly to most existing 

enhancement models. In future works, we aim to improve our enhancement algorithm to address this problem. We also aim to 

integrate our enhancement model in other high-level computer vision tasks like object detection [45], localization and tracking 

[46], and multi-label image recognition [47].  
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