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ABSTRACT 

Many efforts have been deployed by the IR community to extend 

free-text query processing toward semi-structured XML search. Most 

methods rely on the concept of Lowest Comment Ancestor (LCA) 

between two or multiple structural nodes to identify the most specific 

XML elements containing query keywords posted by the user. Yet, 

few of the existing approaches consider XML semantics, and the 

methods that process semantics generally rely on computationally 

expensive word sense disambiguation (WSD) techniques, or apply 

semantic analysis in one stage only: performing query 

relaxation/refinement over the bag of words retrieval model, to 

reduce processing time. In this paper, we describe the building blocks 

of a new approach for XML keyword search aiming to solve the 

limitations mentioned above. Our solution first transforms the XML 

document collection (offline) and the keyword query (on-the-fly) into 

meaningful semantic representations using context-based and global 

disambiguation methods, specially designed to allow almost linear 

computation efficiency. Consequently, the semantically augmented 

XML data tree is processed for structural node clustering, based on 

semantic query concepts (i.e., key-concepts), in order to identify and 

rank candidate answer sub-trees containing related occurrences of 

query key-concepts. Preliminary experiments highlight the quality 

and potential of our approach. 
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1   Introduction 

Various methods have been proposed for XML ranked retrieval. 

While most approaches consider content-and-structure features in 

specifying XML query constraints, few approaches have targeted 

semantic XML search based on simple keyword queries. Most 

approaches in this category exploit the concept of LCA (Lowest 

Common Ancestor) between two or multiple structural nodes to 

identify the most specific XML elements containing query keywords 

posted by the user. Yet LCA-based methods underline various 

limitations: i) each result candidate must contain all query keywords, 

which is not always intuitive since a candidate result (element or sub-

tree) containing most (and not necessarily all) keywords might be 

deemed relevant by the user; ii) some meaningful results might be 

missed: as XML trees underline different nesting hierarchies, 

restricting results to the LCA encompassing all keywords might miss 

some more general, and yet relevant results; iii) few of the proposed 

approaches consider semantics: for instance, when submitting sample 

keyword query “Universities in Sao Paulo”, the user is probably 

interested in information concerning universities, academies and 

colleges in Sao Paulo, and cities in its vicinity such as Campinas, Sao 

Carlos, etc. Hence, semantic analysis becomes essential in such a 

context in order to improve search results; iv) the few existing 

methods that do target XML semantics generally rely on word sense 

disambiguation (WSD) and are computationally expensive, or v) 

apply semantic analysis in one stage only, performing query 

relaxation/refinement over the bag of words retrieval model, to 

reduce processing time. 

In this paper, we describe the building blocks of a new approach 

for XML keyword search aiming to solve the limitations mentioned 

above. We propose to integrate semantic analysis and structural 

clustering in formulating an efficient solution to the problem. Our 

solution first transforms the XML document collection (offline) and 

the keyword query (on-the-fly) into meaningful semantic 

representations using context-based and global disambiguation 

methods, specially designed to allow almost linear computation 

efficiency. The semantically augmented XML data tree is processed 

for structural node clustering, based on semantic query concepts (i.e., 

key-concepts), in order to identify and rank candidate answer sub-

trees containing related occurrences of query key-concepts. The 

overall architecture of our approach is depicted in Figure 1. 

Section 2 reviews the background in XML and query semantic 

analysis. Section 3 provides an overview of our framework. Sections 

4 and 5 respectively describe the XML semantic analysis and 

keyword query semantic analysis components. Section 6 describes 

the query processing component. Section 7 provides preliminary 

experimental results, before concluding in Section 8. 
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Figure 1: Overall architecture of our XML keyword search approach 

2 Background 

In this section, we briefly review the background in semantic 

information retrieval, while focusing on XML and keyword query 

semantic analysis and disambiguation. 

2.1  Semantic Information Retrieval 

The retrieval model for an information retrieval system specifies how 

documents and queries are represented, and how these 

representations are compared to produce relevant result estimates [7]. 

A core problem in this context is lexical ambiguity: a word may have 

multiple meanings (homonymy), a word maybe implied by other 

related words (metonymy), and/or several words can have the same 

meaning (synonymy) [34]. 

The lexical ambiguity problem becomes even more acute on the 

Web, with the latter’s heterogeneous and unstructured nature which 

makes it even more difficult to query and retrieve meaningful 

information. Semantic IR is part of the Semantic Web vision [60] that 

promises to solve the retrieval ambiguity problem, by i) associating 

terms in Web pages and queries with explicit semantics (i.e., word 

senses or concepts), and then ii) performing search functions based 

on document/query concepts rather than plain terms [45]. A core 

challenge in this context is word sense disambiguation (WSD): how 

to resolve the semantic ambiguities and identify the intended 

meanings of document terms and query keywords [10]. Various 

methods have been proposed for WSD in the literature [34, 43, 59]. 

They fall in two main categories: corpus-based WSD and knowledge-

based WSD. The corpus-based approach is data-driven, as it involves 

information about words previously disambiguated and requires 

supervised learning from sense-tagged corpora to enable predictions 

for new words. Knowledge-based methods are knowledge-driven, as 

they handle a sense inventory and/or a repository of information 

about words that can be exploited to distinguish their meanings in the 

text. Machine-readable knowledge bases (e.g., dictionaries or 

semantic networks: thesauri, taxonomies, or ontologies) provide 

ready-made sources of information about word senses to be exploited 

in knowledge-based WSD. While corpus-based methods have been 

popular in recent years [6, 30], they are generally data hungry and 

require extensive training, huge textual corpora, and/or a considerable 

amount of manual effort to produce a relevant sense-annotated 

corpus, which are not always available or feasible in practice. 

Therefore, knowledge-based methods have been receiving more 

attention [14, 34]. In the remainder of our study, we focus on 

knowledge-based WSD and semantic analysis. 

2.2  XML Semantic Analysis and Disambiguation 

While a considerable amount of research has been undertaken around 

(knowledge-based) WSD in flat textual data [43], yet few approaches 

have been developed in the context of XML and semi-structured 

information [59]. The main difference resides in the notion of XML 

(structural) contextualization. The context of a keyword, in traditional 

textual data, consists of the set of terms in the keyword’s vicinity (i.e., 

terms occurring to the left and right of the considered keyword, within 

a certain predefined distance from the keyword [10]). However, there 

is no clear definition regarding the context of a node in an XML tree. 

The authors in [56, 57] consider the context of an XML data element 

to be efficiently determined by its parent element, and thus process a 

parent node and its children data elements as one unified (canonical) 

entity, using context-driven search techniques for determining the 

relationships between the different unified entities, so as to identify 

related semantic labels. In [54, 55], the authors extend the notion of 

XML node context to include the whole XML root path, i.e., path 

consisting of the sequence of nodes connecting a given node with the 

root of the XML document (or document collection). They 

consequently perform per-path sense disambiguation, comparing 

every node label in each path with all possible senses of node labels 

occurring in the same path (using a gloss-based WordNet similarity 

measure [8]) in order to select the most appropriate sense for the label 

at hand. Different from the notions of parent context and path context, 

the authors in [68] consider the set of XML tag names contained in 

the sub-tree rooted at a given element node, i.e., the set of labels 

corresponding to the node at hand and all its subordinates, to describe 

the node’s XML context. The authors apply a similar paradigm to 

identify to contexts of all possible node label senses in WordNet. 

Consequently, they perform label sense disambiguation by 

comparing the XML label context to all candidate sense contexts in 

WordNet, identifying the sense (semantic concept) with the highest 

similarity. In [40], the authors combine the notions of parent context 

and descendent (sub-tree) context in disambiguating generic 

structured data (e.g., XML, web directories, and ontologies). The 

authors consider that a node’s context definition depends on the 

nature of the data and the application domain at hand. They propose 

various edge-weighting heuristics (namely a Gaussian decay 

function) to identify crossable edges, i.e., nodes reachable from a 

given node through any crossable edge belong to the target node’s 

context. Consequently, structure disambiguation is undertaken by 

comparing the target node label with each candidate sense (semantic 

concept) corresponding to the labels in the target node’s context 

(using an edge-based semantic similarity measure [35], following the 

hypernymy/hyponymy relations in WordNet) in order to identify the 

highest matching semantic concept. 

Another concern in XML-based WSD is how to effectively 

process the context of an XML node taking into account the structural 

dispositions of XML data. In fact, most existing WSD methods 

developed for flat textual data [34, 43], and those developed for 

XML-based data [54-57], follow the bag-of-words paradigm where 

the context is processed as a plain set of words surrounding the 
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term/label (node) to disambiguate. In other words, all context nodes 

are treated the same, despite their structural positions in the XML 

tree. We encountered an approach in [40] which extends the 

traditional bag-or-words paradigm with additional information 

considering distance weights separating the context and target nodes 

(identified as relational information model [40]). The authors employ 

a heuristic Gaussian distance decay function estimating edge weights 

such that the closer a node (following a user-specified direction, e.g., 

ancestor, descendent, or both), the more it influences the target node’s 

disambiguation [40]. The semantic contribution of each context node 

is weighted by its position in the context graph of the target node. 

2.3  Query Semantic Analysis and Disambiguation 

Semantic query analysis in information retrieval usually involves two 

steps: i) WSD to identify the user’s intended meaning of query terms, 

and ii) semantic query representation/expansion in order to alter the 

query so that it achieves better (precision and recall) results [51]. As 

described in the previous section, traditional semantic analysis and 

disambiguation techniques usually rely on the notion of context such 

that terms (e.g., node labels in the context of XML) that appear 

together in the same context have related meanings [10]. While 

context-based solutions are applicable with classic IR queries which 

are rather lengthy (e.g., 15 terms on average for short queries [72], 

reaching up to 50-85 terms for long queries [11]), nonetheless, 

keyword queries on the Web are usually 2-3 words long [13] which 

is generally insufficient in identifying a meaningful context [34, 40]. 

In fact, lexical ambiguity with Web search is often the consequence 

of the low number of query words entered on average by Web users 

[32]. Therefore, some sort of user interaction is usually required to 

counter the lack of contextualization, and more accurately identify the 

intended senses of Web query terms [19, 71].  

Various methods for interactive keyword querying have been 

proposed in the literature, e.g., [33, 50] [25, 58]. Most existing 

approaches are corpus-based in that they expand user queries by 

adding words that co-occur with the query terms in a given corpora, 

i.e. words that, on a probabilistic ground, are believed to describe the 

same semantic concept (e.g. car and driver). Here, expansion terms 

are usually identified from i) user feedback: extracting frequent terms 

occurring in previous results deemed relevant by the user [33, 50], 

and/or ii) query logs: identifying frequent terms in the document 

collection based on the associations between past queries and the 

documents downloaded by the user [25, 58]. Yet, the extensive 

training and huge corpora requirements of corpus-based methods 

makes them less practical in the context of Web search applications, 

which has led to a growing interest in knowledge-based solutions [29, 

49]. The latter family of methods investigates the use of ontological 

information to assist the user in formulating and/or expanding 

keyword queries by: i) allowing user interaction to identify the 

intended senses of query-terms, and then ii) expanding/modifying 

query keywords via their most related semantic concepts in the 

reference semantic source (e.g., WordNet) [51].  

Following [12], a keyword query is first processed for lexical 

normalization, and then presented to the user as a set of lexical tokens, 

where each token is associated with a set of possible semantic 

meanings (identified using WordNet and/or domain specific 

ontologies). Consequently, the user is asked to select the most 

relevant sense for each lexical token. The system then exploits the 

selected user senses to reformulate the query using dedicated 

heuristics (e.g., replacing actual keywords via their synonyms with 

highest frequency of usage in WordNet, identifying negative 

keywords, i.e., the terms corresponding to the highest frequency 

synset remaining beside the one selected by the user, etc.), thus 

obtaining a semantically augmented keyword query. A similar 

approach is adopted in [37] with a special emphasis on failed-query 

reformulation. The authors in [37] assume that the reformulation of a 

failed query without help from the system can be frustrating to the 

user, and thus suggest to assist the later by proposing semantically 

meaningful keywords selected from WordNet (using heuristics 

similar to those adopted in [12]). The method in [37] is developed in 

the context of the NALIX project for building an interactive natural 

language interface for querying XML [36]. 

A fully automated approach to knowledge-based query 

disambiguation is introduced in [44], where the authors exploit 

structural pattern recognition [20] in mapping query keyword senses. 

The proposed method creates a local semantic network for each 

keyword-sense in the query, including most semantic relations 

utilized in WordNet [23] (hypernymy, hyponymy, meronymy, etc.). 

Then, for each possible configuration of senses, the system identifies 

the intersections between corresponding pair-wise local semantic 

networks using an adapted structure pattern recognition algorithm. 

Common nodes are those that can be reached through both semantic 

networks being compared. The configuration with the highest 

intersection score (i.e., highest number of intersecting nodes) is 

selected as the one encompassing the most relevant keyword senses. 

In a subsequent step, the authors propose various heuristics to expand 

the query using synset, hyponymy and/or gloss information. 

Experimental results in [44]  show a 26.85% improvement in retrieval 

precision over the plain query words.  

Note that most existing studies targeting knowledge-based query 

semantic analysis, e.g., [29, 49] [12, 37, 46], do not evaluate the 

complexity (or execution time) levels of their proposed methods. 

Nonetheless, time complexity is critical for on-the-fly execution on 

the Web (in comparison with document semantic analysis which 

could be performed offline). The time complexity of query semantic 

analysis might even prove to be problematic in the case of the pattern 

recognition-based methods [16, 44], since traditional structure pattern 

recognition problems are usually of exponential complexity [20, 47]. 

3 Proposal Overview 

Semantic similarity evaluation between two terms usually consists in 

looking up each term’s lexical concept in a reference knowledge base 

(e.g., a semantic network such as WordNet), and consequently 

comparing the underlying concepts. Nonetheless, semantic similarity 

evaluation has been proven to be an expensive task: comparing two 

semantic concepts following one of the most prominent semantic 

similarity measures in the literature, i.e., [38], requires 

O(|SN|×Depth(SN)) time where |SN| is the size (i.e., cardinality in 

number of concepts) of the reference semantic network SN, and 

Depth(SN) its maximum depth. Evaluating the semantic similarity 

between query keywords and each label/term in the XML document 

collection becomes extremely complex, and practically unfeasible. 

A way of getting round the complexity problem would be to 

perform semantic analysis of the XML document collection, offline, 

and prior to the retrieval phase. This consists in transforming the 

XML documents into weighted semantic trees (graphs), and 

transforming and expanding the keyword query into a set of weighed 

semantic concepts. Consequently, an adapted XML IR engine (cf. 

Section 6) processes the semantically indexed documents and 

queries, so as produce more meaningful results. Our semantic 

analysis processes are depicted in Figure 2. 
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Note that while semantic query indexing is performed online, 

XML document indexing is performed offline, and does not affect the 

complexity of the approach. As shown in Figure 2, semantic indexing 

consists of three main phases: i) Linguistic Normalization, ii) Sense 

Disambiguation, and iii) Semantic Representation. While the first 

phase (Linguistic Normalization, including tokenization, expansion, 

stop word removal, and stemming) is similar for both document labels 

and query keywords, yet, we design the latter two (sense 

disambiguation, and semantic representation) differently following 

the data models and requirements at hand. Sense disambiguation 

usually relies on the notion of context, where terms that appear 

together in the same context have related meanings [10]. While 

context information is available for XML document nodes (e.g., the 

context of a node could be its parent node, its root path, the whole 

document tree containing the node, etc.), yet, keyword queries on the 

Web are usually two-to-three words long [13] which is generally 

insufficient in identifying a meaningful context [34, 40]. Hence, we 

introduce two different methods for document and query sense 

disambiguation: i) Context-based Sense Disambiguation (CSD) for 

XML documents, ii) Global Sense Disambiguation (GSD) for 

keyword queries.  

In the following, Sections 3 and 4 present the XML document 

semantic analysis and the keyword query semantic analysis processes 

respectively.

Figure 2: Semantic analysis of XML document and keyword query 

4 Semantic XML Document Analysis 

Our XML document semantic analysis process consists in: i) 

disambiguating each label following its context, to associate each 

label with the proper semantic concept in the reference knowledge 

base (e.g., WordNet), and ii) producing a semantically indexed XML 

tree, with the corresponding index structures and pair-wise concept 

semantic weights, to be consequently utilized in the query processing 

task. We describe the latter in the following sub-sections. 

4.1  XML Context-based Sense Disambiguation 

Our XML sense disambiguation approach was introduced in [15, 62]. 

Here, we only provide an overview of the approach describing the 

constructs and methods required in our current study.  

Different from previous approaches which limit XML context to 

the parent node [56, 57], to the root node path [54, 55], to the node 

sub-tree [68], or to nodes reachable through heuristically identified 

crossable edges [40], we introduce the notion of XML Sphere-Ring 

context, inspired from the sphere-search paradigm in XML IR [26]1, 

to consider the whole structural surrounding of an XML node, 

including its ancestors, descendants, and siblings, tuned to better 

describe the node’s context. An XML ring w.r.t. to a given node 

consists of the set of nodes situated at a specific distance from the 

center node. An XML sphere encompasses all rings contained at 

distances lesser or equal to the size (diameter) of the sphere. The size 

of the XML sphere is tuned following the nature of the XML data at 

hand (e.g., certain XML trees might underline specialized and 

domain-specific data, and thus would only require small contexts so 

as to achieve relevant WSD results, whereas more heterogeneous and 

generic XML data might require larger contexts to better describe the 

intended meaning of each node label). 

1 While comparable to the concept of XML sphere exploited in [33], the latter consists 

of an XML retrieval paradigm for computing TF-IDF scores, selecting and ranking 

XML query answers, which is different in its use and objectives from our current XML 

In addition, we extend the traditional bag-of-words WSD 

paradigm, adopting a relational information approach, i.e., 

considering the interconnections among XML nodes in computing 

disambiguation scores (in contrast with the classic bag-of-words 

approach [54-57], where all context nodes are treated as a 

homogeneous set of words regardless of their proximity/relations 

with the target node). We consider the structural distance separating 

the center node and each of its context nodes, following the intuition 

that the farther the context node from the sphere center, the lesser 

should be its impact in determining the semantic meaning of the 

center node label. Formally, consider Rd(n) to be the ring 

corresponding to the center node n at distance d, i.e. the set of all 

nodes whose distance from n is d. Hence, the context sphere SD(n) of 

node n, with size D, consists of all the rings contained in SD(n), such 

that SD(n) = {all Rd(n) / d  D}. Following our Sphere-Ring context 

model, node scores can be weighted following the sizes of the sphere 

rings to which they correspond, such that the larger the sphere ring 

radius, the lesser the node weight. Hence, we can represent the 

context of a node n as a weighed vector, whose dimensions 

correspond to the all distinct nodes in its sphere context, weighted 

following their distances from the center node. In short, our approach: 

- Integrates all notions of XML context, including ancestor, 

decedent, and sibling structural relations, which were considered 

separately in existing studies [54-57, 68],  

- Allows the user/system administrator to manually and/or 

automatically tune the size of the XML context window 

following the nature and properties of the XML data at hand, in 

comparison with most existing static methods [54-57, 68], 

- Extends the traditional bag-of-words WSD paradigm, adopting 

a relational information approach so as to consider the 

interconnections among XML nodes in computing 

disambiguation scores, in contrast with most existing methods 

using the traditional bag-of-words approach [54-57]. 

semantic disambiguation proposal.
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Once the contexts of all XML nodes have been determined, we 

process each target node label and its context node labels for WSD. 

Here, we evaluate the semantic similarity/relatedness between the 

target node label and each of its context node labels, by comparing 

the node’s context with the context of each of its potential senses, 

extracted from the reference semantic source (a similar paradigm is 

utilized in [68] for XML node annotation). The idea is to first identify 

all possible senses of the target word node label in the reference 

semantic network. Consequently, we exploit the same notion of 

Sphere-Ring, which we adopted for XML trees (graphs), to identify 

the context of each potential sense in the reference semantic network 

(e.g., WordNet). Having computed the weighted context for the XML 

target node in the XML document tree (graph), and each of its 

possible senses in the semantic network, we compute the similarity 

between the node vector and each of its sense vectors. The sense 

vector yielding the highest similarity would underline the most 

meaningful sense describing the XML node label. This approach 

requires polynomial complexity: O(|senses(x.)|×(|SD(n)|+|SD(sp)|)), 

where |SD(sp)| designates the maximum context sphere cardinality for 

any sense (concept) in the semantic network. 

Note that to our knowledge, existing approaches have seldom 

provide a complexity and time performance analysis of their WSD 

methods. Despite being performed offline, nonetheless, WSD time 

performance remains potent w.r.t. practicability, when indexing 

documents published on Web. The proposed approach has to be: i) 

effective in identifying the correct senses, but also ii) reasonably 

efficient in order to be practically applied to the large corpora of XML 

documents published online. Here, the complexity of our combined 

XML sense disambiguation approach is polynomial and simplified to 

O(|X|×|senses(x.)|×(|SD(n)|+|SD(sp)|)), where |X| represents the 

number of nodes to be disambiguated in the target XML document.

4.2  XML Document Semantic Indexing 

Having disambiguated all XML labels, the latter are replaced with 

their corresponding semantic concepts extracted from the reference 

semantic network (e.g., WordNet). Dedicated index structures 

(Concept-Doc and Concept-SN indexes [63-65], cf. Figure 3) are 

utilized to handle the mapping between XML document labels and 

knowledge base concepts. The output of the semantic document 

indexing process is a conceptual XML tree, i.e., an XML tree which 

labels consist of concepts with explicit semantic definitions (which is 

at the core of the vision of the Semantic Web: Extending the WWW 

by giving information well defined meaning [60]). 

Consequently, we compute the semantic relatedness between 

each pair of node concepts in the XML tree. The idea is to produce a 

semantically weighted XML tree to be consequently exploited in 

keyword query processing (cf. Section 6). Here, various semantic 

similarity measures can be used (as briefly mentioned in the previous 

section): i) edge-based measures (computing semantic similarity 

based on the distance separating the concepts in the semantic 

network) [70], ii) node-based (computing semantic similarity based 

on the information content of each concept in the semantic network, 

w.r.t. a given text corpus) [38], and iii) gloss-based (comparing the 

glosses associated with each concept definition in the semantic 

network)  [8]. Gloss-based approaches are particularly interesting in 

the context of WSD since they allow ‘semantic relatedness’ 

evaluation, which is a more general notion than ‘semantic similarity’, 

including the latter as well as any kind of functional relation between 

terms [31] (e.g., penguin and Antarctica are not necessarily similar, 

but they are semantic related due to their natural_ habitat 

connection), particularly antonymy (e.g., hot and cold are 

semantically dissimilar since they have opposite meanings, but they 

are semantically related). 

A simple example depicting the semantic indexing of a sample 

XML tree is shown in Figure 3. The sample XML document describes 

the movie Rear Window, one of Alfred Hitchcock’s masterpieces. 

While the XML labels seem meaningful and straightforward for a 

human user, nonetheless, they are highly ambiguous for a computer 

system. Most labels can be associated with more than 2 or 3 semantic 

senses (concepts) in WordNet reference. For instance, the label 

Stewart is associated with 2 semantic concepts: i) James Stewart (the 

leading actor who starred in Rear Window), and ii) Dugald Stewart 

(an 18th century Scottish philosopher). Likewise for most remaining 

labels in the input tree (e.g., Kelly underlines 3 semantic concepts, 

among which is Grace Kelly, the co-star of Stewart in Rear Window; 

plot underlines 4 different senses, among which movie plot, etc.).  

Recall that semantic XML document indexing is performed 

offline, as a pre-processing step prior to query evaluation, and does 

not affect the online computational complexity of the approach. 

5 Semantic Keyword Query Analysis 

While semantic XML document analysis relies on the notion of XML 

context (e.g., the surroundings of a given node) in identifying the 

meanings of XML labels, nonetheless, semantic keyword query 

analysis differs in the lack of sufficient contextualization (keyword 

queries on the Web are usually 2-3 words long [13], which might not 

be sufficient in identifying a meaningful context [34, 40], cf. 

background in Section 2). To get round the lack of keyword 

contextualization in identifying meaningful query keyword senses, 

we introduce a method to global query sense disambiguation. Our 

proposal is based on the following assumption: A keyword query on 

the Web usually conveys a certain global semantic meaning, 

reflecting a certain global information need. Hence, rather than 

analyzing the individual senses of each query-term separately, 

considering each term’s context information (similarly to most 

existing approaches, e.g., [29, 49]), we evaluate the aggregate 

semantic meaning of the query as a whole such that: the higher the 

semantic homogeneity of the query, the higher the consistency of the 

unified global semantic meaning conveyed by the query, and thus the 

more likely the query reflects the user’s need. This is in accordance 

with the traditional assumption in WSD: the most plausible 

assignment of senses to multiple co-occurring words is the one that 

maximizes the relatedness of meaning among the chosen senses [42]. 

In short, we disambiguate the query as a whole, by i) pinpointing 

all possible configurations of query-term senses, and ii) consequently 

estimating a global semantic relatedness score (given a reference 

information source, e.g., WordNet) for all senses combined in each 

configuration. The configuration with the highest score would 

underline the most semantically meaningful query. Global query 

sense ranking can also be performed to identify the top most 

meaningful query sense configurations.  

A major problem with the above approach is its computational 

complexity. In fact, computing semantic similarity/relatedness for all 

possible sense configurations for a set of lexical terms was shown to 

be intractable [42] due to its best case exponential complexity (i.e., 

O(senses(k)N) where N is the number of query keywords, and 

senses(k) is the maximum number of senses per keyword). A few 

approximation methods have been proposed, such as computing pair-

wise keyword similarities [42], and evaluating the similarity between 
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each keyword sense and all remaining node senses [9]. Nonetheless, 

in contrast with existing approximation solutions, e.g., [9, 48], we 

introduce a sense disambiguation method to solve the computational 

complexity described above, producing optimal results similarly to 

the initial (exponential complexity) approach, while confining to 

polynomial complexity. We do so by transforming the problem of 

identifying all possible sense configurations, into that of identifying 

the shortest (semantic) path in a (semantically) weighted graph, using 

an adaptation of Dijkstra’s shortest path algorithm [17]. In short, we 

capitalize on Dijkstra’s polynomial computation approach to 

eliminate all unnecessary similarity computations, while still 

considering all possible query sense configurations. 

Our query semantic analysis approach is described in the 

following sub-sections (cf. Figure 2). Sub-section 5.1 presents our 

global query sense disambiguation approach, while Sub-section 5.2 

describes our semantic query representation method. Recall that 

linguistic normalization (including tokenization, expansion, stop 

word removal, and stemming) is similar for both XML documents 

labels and query keywords, and will not be discussed hereunder.

Figure 3: Semantic analysis of XML document 

5.1  Query Global Sense Disambiguation 

As mentioned previously, we assume that a keyword query on the 

Web conveys a certain global semantic information request. The 

main objective is to associate each query-term with the appropriate 

semantic sense (concept) maximizing global query sense 

homogeneity. To do so, we proceed as follows: 

Step 1 – Identifying Keyword Senses: The first step consists 

in identifying the set of possible senses corresponding to each 

individual query-term (keyword). Formally, for each keyword kr, 

we obtain a set of senses Sr = {sr
1, sr

2, …, sr
|Sr|} where sr

i underlines 

the ith possible sense of keyword kr extracted from the reference 

knowledge base (e.g., WordNet), and |senses(kr)| the maximum 

number of possible senses corresponding to kr. This first step is 

similar to most existing semantic based approaches. 

Step 2 – Building the Semantic Query Graph: Having 

identified all possible senses for each query-term, we construct a 

semantic graph where each node represents of a possible keyword 

sense. The graph is structured in different layers, such that: 

i. Each layer corresponds to a query-term, and consists of nodes

representing all possible semantic senses for that query-term, 

ii. The layers are ordered following the order of appearance of

the query-terms in the keyword query, 

iii. Nodes within the same layer (i.e., representing possible senses

for the same term) are not connected to each other. In fact, 

same layer nodes underline senses of the same query-term and 

thus should not appear simultaneously in the same path (i.e., 

same query sense configuration),  

iv. Each pair of nodes corresponding to two consecutive layers

(i.e., describing the possible meanings of two consecutive 

query-terms), are connected together via a weighted edge, 

underlining the semantic distance (as an inverse function of 

semantic similarity/relatedness) between node senses,   

v. Two virtual start and end nodes are added to the graph,

connected to the nodes of the first/last graph layers 

respectively, via edges of null distances. These are introduced 

to guide the execution process of our adapted shortest path 

discovery algorithm (described hereunder). 

Step 3 - Identifying the Shortest Semantic Path: 

Consequently, the problem of identifying the most homogeneous 

configuration of query-term senses, simplifies to that of identifying 

the shortest semantic path in the semantic query graph. Here, we 
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introduce an adaptation of Dijkstra’s famous shortest path 

algorithm [17]. Our approach can be summarized as follows: 

i. Initialize node distance scores such that: the start node score

is set to zero, and all other node scores are set to infinity, 

ii. Mark all nodes as unvisited, and set the start node as current

node, 

iii. For current node nc, calculate the semantic distance with each

of its connected nodes nj in the consecutive layer, and preserve 

minimum distance scores, i.e., for each nj,  Dist(nj) = Min{ 

Dist(nc) + Weight(Egde(nc, nj)), Dist(nj) }, 

iv. When scores for all nodes connected to the current node nc

have been computed, nc is marked as visited. A visited node 

would have a minimal and final distance score, 

v. Select the unvisited node with the smallest distance score

(from the initial node, considering all nodes in the graph) as 

the current node and continue from step 3, 

vi. Terminate the algorithm when end node is deemed visited.

Consider keyword query ‘Stewart Mystery Films’. The 

corresponding semantic query graph, built based on query-term 

semantic senses extracted from WordNet [41], is depicted in Figure 

5. Each graph layer corresponds to a query-term, and each node in

a given layer underlines a semantic sense (concept) corresponding 

to the term at hand. The weight of an edge underlines the semantic 

distance between the connected nodes. Semantic distance can be 

computed as an inverse function of semantic similarity/relatedness, 

e.g., DistSem = 1 - SimSem. Recall that we adopt an aggregate

semantic similarity/relatedness function combining edge-based 

methods [70], node-based methods [38], and gloss-based methods 

[8], w.r.t. WordNet. For ease of presentation, Figure 4 shows 

sample semantic weight values for some (and not all) of the graph 

edges (e.g., weight(edge(n1, n4)) = 0.3 indicating that semantic 

concepts James Stewart and Mystery story are more similar than 

James Stewart and Enigma, having weight(edge(n1, n3)) = 0.5). 

Figure 4: Semantic analysis of keyword query 

The result of applying our adapted shortest path algorithm to 

the semantic query graph in Figure 4 is highlighted in the graph, 

and consists of nodes: n1, n4 and n5. These underline the (WordNet) 

semantic concepts maximizing global query sense homogeneity: 

James Stewart, Mystery story, and Movie. 

2
 The semantic contexts of query concepts can be determined, since the latter have 

already been disambiguated (as opposed to the pre-disambiguation keyword query 

5.2  Semantic Query Representation 

Having identified the best (i.e., most homogeneous) query sense 

configuration, we represent the query as a set of weighted semantic 

concepts (i.e., key-concepts), allowing the user to semantically 

expand the query, including additional concepts related to those 

originally conveyed by the query, in order to improve search result 

precision/recall.  

Formally, a user keyword query Q consisting of a sequence of 

lexical keywords kr, Q = k1, k2, … kN is transformed into a 

semantic query representation QSem consisting of a set of weighted 

concepts, QSem(D)= {(c1, w1), (c2, w2), …, (cM, wM)} where ci is a 

key-concept, wi is the weight of ci, and D is the query semantic 

expansion parameter. The number of resulting key-concepts M  N 

since additional key-concepts can be added following the user-

chosen D expansion parameter as explained in the following. 

Semantic query expansion is performed using our Sphere-Ring 

model (cf. Section 4.1) to consider the semantic context2 of each 

query key-concept in the reference semantic network (e.g., 

WordNet). The idea is to expand the query with additional concepts 

within the semantic vicinity of the original query key-concepts. 

Following our Sphere-Ring model, a semantic ring Rd(c) w.r.t. to a 

given concept c consists of the set of concept nodes, in the reference 

semantic network, situated at a specific distance d from the target 

concept node c. The semantic context sphere SD(ci) encompasses all 

semantic rings contained at distances lesser or equal to the size 

(diameter D) of the sphere, such that SD(c) = {all Rd(c) / d  D}. 

The sphere context size is specified by the user as a query semantic 

expansion parameter: 

- For D = 0, the query is represented with it original key-

concepts, associated maximum (unit, =1) weights, 

- For D > 0, the query is expanded with concepts situated within 

each original key-concept’s semantic sphere (in the reference 

semantic network). Expanded query concepts are weighted 

such that concepts farther away from the semantic sphere 

center have a larger semantic distance w.r.t. the sphere’s 

center, and hence should have a lesser impact on the query’s 

semantic meaning. Following our Sphere-Ring context model, 

concept weights can be computed following the sizes of the 

sphere rings to which they correspond, such that the larger the 

sphere ring radius, the lesser the concept weight (e.g., a given 

weight decay function could be computed as weight(ci) = wi = 
1

1 + d
  [0, 1] having ci  Rd(c)  SD(c)). Note that parameter 

D can be normalized in the [0, 1] interval, following the 

maximum depth of the reference semantic network SN at hand 

(e.g., 
D

Depth(SN)
 ), to simplify the user’s task in specifying the 

expansion threshold. 

Consider for instance the sample keyword query Q = ‘Stewart 

Mystery Films’: 

- For D = 0, QSem(0) = {(James Stewart, 1), (Mystery story, 1), 

(Movie, 1)}, 

- For D = 1, the resulting query representation includes all 

semantic concepts appearing in the unit (D=1) semantic 

context spheres of each original key-concept. Here, following 

the WordNet extracts in Figure 5, the semantic context of 

where the semantic meanings of query-terms were undefined). 
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concept James Stewart includes concept Actor (cf. Figure 5.a). 

Likewise, the semantic context of concept Mystery movie 

includes Story, Detective story and Murder story (Figure 5.b). 

The semantic context of concept Movie includes Show, and 17 

children (hyponym) concepts including Telefilm, Feature film, 

Final cut, Home movie, etc., (the remaining child concepts are 

omitted here for ease of presentation, cf. Figure 5.c). The 

weights of all expanded concepts are equal to 
1

1 + d
 = 

1

1 +D 
 = 

0.5, following our adopted decay function. Hence, the 

semantic query becomes:    

QSem(1)={ (James Stewart, 1), (Actor, 0.5), (Mystery story, 1),  

      (Story, 0.5), (Detective story, 0.5),  

      (Murder story, 0.5), (Movie, 1), (Show, 0.5),  

      (Telefilm, 0.5), (Final cut, 0.5), (Home movie, 0.5) } 

The time complexity of our global query disambiguation 

approach comes down to that of the shortest path computation 

process, which comes down to almost linear O(N×log(N)) time 

where N=|SD(c)|×|Q|×|senses(kr)|. The latter simplifies to 

N=|SD(c)|×|senses(kr)| since |Q| is usually limited to 2-3 keywords 

[13] and can be omitted as a fixed parameter. 

Figure 5: Taxonomic fragments extracted from WordNet, 

covering the key-concepts considered in our example 

6   Semantic Keyword Query Processing 

Having transformed the XML document collection and the 

keyword query into meaningful semantic representations, XML 

keyword query processing comes down to identifying and ranking 

the most relevant semantic XML sub-structures encompassing the 

semantic key-concepts in the query. Our querying method is based 

on a structural clustering technique to group together key-concept 

occurrences, in the XML data collection, which are structurally 

close. Our objective is to identify and rank the most prominent 

candidate answer sub-trees, in the XML data set, containing related 

occurrences of query key-concepts. Our query algorithm is shown 

in Figure 6 and is described below: 

Step 1 - Identifying concept occurrences: The first step 

consists in pinpointing the XML nodes, in the data collection, 

containing occurrences of the query key-concepts. 

3   Shakespeare collection http://metalab.unc.edu/bosak/xml/eg/shaks200.zip,  

     Amazon product files simply-amazon.com/content/XML.html 

Step 2 - Performing XML node clustering: Having 

identified the XML nodes encompassing key-concept occurrences, 

we perform structural clustering [45] to group together the XML 

nodes which are closest in the XML tree. The algorithm is applied 

on the weighted distances separating concept occurrences (cf. 

Section 4).  

Step 3 – Constructing Answer Trees: We construct 

candidate answer trees based on the XML node clusters. An answer 

tree consists of the sub-tree rooted at the lowest common ancestor 

of all concept occurrences in the corresponding cluster.  

Step 4 – Ranking Answer Trees: Having identified the 

candidate answer sub-trees, we rank them following their relevance 

to the query. Here, we utilize an integrated function combining 

various ranking criteria including i) weights of semantic concepts; 

ii) answer tree size (compactness), iii) common usage of senses

(e.g., WordNet estimates the average usage frequency of word 

meanings in the English language, following the Brown corpus 

[24]), where the most commonly used senses are deemed more 

relevant in ranking results [40]. Other weighting functions can be 

used. 

Algorithm SemanticQueryProcessing 

Input:   T            // Semantic XML tree 

     K             // Set of query selection terms  

       D             // Sphere diameter designating query context size 

Ouput: NOut         // List of ranked trees from T designating query answers  

Begin 

NOut =      

Step 0:  S = getSemanticQuerySenses(K)   // Global disambiguation 

For each term si  S    // For each keyword sense

{     
Step 1: nIn = getNodeID(si, T)    // Identify concept occurrences             

Step 2: SP = PerformClustering(nIn, D, T)     
Step 3: Ninit = constructAnswerTree(SP, T)     
Step 4: NOut = rankAnswerTree(Ninit, T)     

}  
8 

Return NOut  
9 

End 

1 
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10 

Figure 6: Pseudo-code of semantic keyword query processing 

Note that the complexity of the query processing algorithm 

comes down to the complexity of the structure clustering algorithm 

in Step 2. We utilize Lloyd’s heuristic algorithm [39] to bound 

clustering complexity to O(N  C  I) where N is the number of 

XML nodes to be clustered, C the number of produced clusters, and 

I the number of iterations to reach convergence. 

7  Preliminary Experiments 

We conducted preliminary experiments to test and evaluate our 

approach. We used a collection of 80 test documents gathered from 

several data sources3 having different properties. Target XML 

nodes were first subject to manual disambiguation (12-to-13 nodes 

were randomly selected per document, yielding a total of 1000 

target nodes, allowing human testers to annotate each node by 

choosing appropriate senses from WordNet) followed by automatic 

disambiguation. We then compared user and system generated 

senses to compute precision, recall and f-value scores.  

SIGMOD Record http://www.acm.org/sigmod/xml 

Niagara collection http://www.cs.wisc.edu/niagara/

http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
http://www.acm.org/sigmod/xml
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Table 1: Sample test queries used in our experiments 
 

 

Query Q1  Query Q2 

ID Terms  ID Terms 

Q1_1 “music”  Q2_1 “play” 

Q1_2 “music”, romance”  Q2_2 “play”, “theator” 

Q1_3 “music”, romance”, “dinner”  Q2_3 “play”, “theator”, “scene” 

Q1_4 “music”, romance”, “dinner”, “trip”  Q2_4 “play”, “theator”, “scene”, “hero” 

Q1_5 “music”, romance”, “dinner”, “trip”, “Paris”  Q2_5 “play”, “theator”, “scene”, “hero”, “climax” 

 
 

 

 

 
 

a. Precision results 
 

b. Recall results 
 

 
 

 
 

c. F-value results 
 

Figure 7: Comparing precision (PR), recall (R) and F-value 

results with legacy inverted index syntactic search 

 

We first tested the effectiveness of our approach considering 

its different features and configurations: i) the properties of XML 

data (w.r.t. ambiguity and structure), and ii) context size (sphere 

neighborhood radius). Results in Figure 7 show that precision levels 

increase with the number of query terms k. This is due to the human 

testers’ expectations: given that queries are expanded versions of 

one another, result quality is evaluated based on the user’s intent: 

which is expressed with the most expanded (i.e., most expressive) 

query (e.g., Q1_5 and Q2_5). One can realize that using fewer 

query terms produces lower precision levels, which is due to the 

system returning more results which are (semantically related to the 

query terms but which are) not necessary related to the user’s intent. 

As for recall, one can realize that levels steadily increase with 

concept depth D, where the number of correct (i.e., user expected) 

results returned by the system increases as more semantically 

related terms are covered in the querying process. F-value results 

increase with the increase of context depth D, and they slightly 

decrease with the increase of the number of query keywords k. This 

confirms the precision and recall results, where the determining 

factor affecting retrieval quality remains context depth D. An 

increase in the number of keywords k tends to reduce system recall 

with higher values of k (queries becoming very selective, thus 

missing some relevant results). F-value levels are significantly 

higher than those obtained with the legacy inverted index, 

highlighting a clear improvement over syntactic retrieval quality. 

We also evaluated our solution’s almost linear efficiency. 

Results in Figure 8 highlight the polynomial (almost linear) 

complexities of both our (offline) XML document disambiguation 

and (online) global query disambiguation approaches, considering 

different parameter configurations for both processes. Results in 

Figure 8.b show total query execution time including online 

disambiguation, by varying both the number of keywords and query 

semantic depth D (i.e., semantic context size). 

 
 

 

 

 

 

 

 

 

 

 

 

 

a. XML document disambiguation b. Query disambiguation and execution 
 

 
 

Figure 8: XML document disambiguation time (a) and query 

processing (disambiguation and execution) time (b) 

8  Conclusion 

In this paper, we introduce the building blocks of a new approach 

for XML keyword search allowing to transform both XML 

documents and keyword queries into semantic representations, 

using semantic concepts in a reference knowledge base. We 

describe two approaches for i) offline context-based XML 

document disambiguation and ii) online global keyword query 

disambiguation, both designed to run in almost linear time. Our 

solution is: i) fully automated, compared with existing interactive 

solutions which require user input to manually identify the intended 

query senses e.g., [29, 49], and ii) tractable (of almost linear time) 

and thus reasonably applicable on the Web, compared with 

polynomial or exponential solutions, e.g., [18, 47].  

We are currently investigating the integration of semantic-

aware indexing capabilities [63-65] and different clustering 

algorithms to form XML answer trees [27, 61]. This would provide 

more opportunities toward both speed-ups and semantic-based 

filtering. We are also investigating the use of alternative knowledge 

sources such as Google [1], Wikipedia [69], and FOAF [4] to 

acquire a wider word sense coverage, and explore our approach in 

practical applications, namely semantic-aware document and 

schema matching [66, 67], RSS news feed merging [52, 53], 

affective blog analysis [21, 22], social event detection [3, 5], and 

semantic relations’ identification from social media data [2]. On the 

long run, we aim to investigate word embeddings and learning 

statistical distributions in a corpus [28, 73], to infer semantics 

without the need for predefined knowledge bases. 
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