
Computing

Data Redundancy Management Framework for Connected Environments
--Manuscript Draft--

Manuscript Number: COMP-D-21-00354

Full Title: Data Redundancy Management Framework for Connected Environments

Article Type: Original Research Article

Corresponding Author: Elio Mansour, Ph.D.
Universite de Pau et des Pays de l'Adour
FRANCE

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Universite de Pau et des Pays de l'Adour

Corresponding Author's Secondary
Institution:

First Author: Elio Mansour, Ph.D.

First Author Secondary Information:

Order of Authors: Elio Mansour, Ph.D.

Faisal Shahzad

Joe Tekli, Ph.D.

Richard Chbeir, Ph.D.

Order of Authors Secondary Information:

Funding Information:

Abstract: Major advances in the fields of Internet and Communication Technology (ICT), data
modeling/processing, and sensing technology have rendered traditional environments
(e.g., cities, buildings) more connected. Although the sensed data could be useful for
various applications (e.g., event detection in cities, energy management in commercial
buildings), it first requires pre-processing to clean various inconsistencies (e.g.,
anomalies, redundancies, missing values). In this work, we focus on managing data
redundancies in connected environments. Existing approaches suffer from (i)
disregarding edge data redundancies either at the edge or at the core of the network;
(ii) disregarding sensor mobility and the dynamicity of the network; (iii) disregarding the
limited resources of edge devices; (iv) disregarding network/infrastructure resources;
and (v) disregarding data consumer needs/requirements when cleaning the data
redundancies. To address these limitations, we propose here a new Data Redundancy
Management Framework (DRMF) allowing to identify and remove data redundancies in
connected environments at the device level. DRMF considers both static and mobile
edge devices, and provides two algorithms for temporal and spatio-temporal
redundancy detection. Once redundancies are identied, DRMF performs data
deduplication taking into account the dynamic requirements of data consumers and
device resources (e.g., processing, battery, memory). Experimental results highlight
the performance and accuracy of our solution in detecting and eliminating edge data
redundancies.

Suggested Reviewers: Djamal Benslimane
djamal.benslimane@liris.cnrs.fr

Laurent d'Orazio
laurent.dorazio@univ-rennes1.fr

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Noname manuscript No.
(will be inserted by the editor)

Data Redundancy Management Framework for
Connected Environments

Elio Mansour ⋅ Faisal Shahzad ⋅ Joe
Tekli ⋅ Richard Chbeir

Received: date / Accepted: date

Abstract Major advances in the fields of Internet and Communication Tech-
nology (ICT), data modeling/processing, and sensing technology have ren-
dered traditional environments (e.g., cities, buildings) more connected. Al-
though the sensed data could be useful for various applications (e.g., event de-
tection in cities, energy management in commercial buildings), it first requires
pre-processing to clean various inconsistencies (e.g., anomalies, redundancies,
missing values). In this work, we focus on managing data redundancies in con-
nected environments. Existing approaches suffer from (i) disregarding edge
data redundancies either at the edge or at the core of the network; (ii) disre-
garding sensor mobility and the dynamicity of the network; (iii) disregarding
the limited resources of edge devices; (iv) disregarding network/infrastruc-
ture resources; and (v) disregarding data consumer needs/requirements when
cleaning the data redundancies. To address these limitations, we propose here
a new Data Redundancy Management Framework (DRMF) allowing to iden-
tify and remove data redundancies in connected environments at the device
level. DRMF considers both static and mobile edge devices, and provides two
algorithms for temporal and spatio-temporal redundancy detection. Once re-
dundancies are identied, DRMF performs data deduplication taking into ac-
count the dynamic requirements of data consumers and device resources (e.g.,
processing, battery, memory). Experimental results highlight the performance
and accuracy of our solution in detecting and eliminating edge data redun-
dancies.

Keywords Connected Environments ⋅ Sensor Networks ⋅ Internet of Things
(IoT) ⋅ Data Redundancy ⋅ Data Cleaning

E. Mansour, F. Shahzad, R. Chbeir
Univ. Pau & Pays Adour, E2S UPPA, LIUPPA, Anglet, 64600, France
E-mail: firstname.lastname@univ-pau.fr

J. Tekli
Lebanese American University, E.C.E Dept. 36 Byblos, Lebanon
E-mail: firstname.lastname@lau.edu.lb

Manuscript (inclusive Title Page) Click here to access/download;Manuscript (inclusive Title
Page);DRMF.pdf

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/comp/download.aspx?id=138069&guid=ea5c065c-f0df-45ec-bf60-f6047047bbcd&scheme=1
https://www.editorialmanager.com/comp/download.aspx?id=138069&guid=ea5c065c-f0df-45ec-bf60-f6047047bbcd&scheme=1
https://www.editorialmanager.com/comp/viewRCResults.aspx?pdf=1&docID=7105&rev=0&fileID=138069&msid=28d05da0-8de3-4b95-9ee2-1f4821d0643e

2 Elio Mansour et al.

1 Introduction

Recent advances in the fields of Internet and Communication Technology
(ICT), sensing technology, sensor networks, and data processing have allowed
traditional environments to become more and more connected [6]. These con-
nected environments are typically defined as physical infrastructures (e.g.,
buildings, cities, grids) equipped with a sensor network capable of provid-
ing various recordings and observations from the real world. As a result, the
aforementioned environments generate huge amounts of heterogeneous data
that are useful for various data consumers (e.g., users, data stores, data pro-
cessing services, other network devices) and high-level applications (e.g., traffic
event detection in a city [17], energy management in a building [14], electri-
cal storage in a smart grid [5]). Although the sensed data contains useful
and valuable information, pre-processing is needed in most cases since the
observations are in raw form and often suffer from various inconsistencies [8,
18] (e.g., redundancies, anomalies, and missing values). In this work, we fo-
cus on managing data redundancies in connected environments. Identifying
and cleaning unnecessary data duplicates are beneficial for (i) querying edge
data efficiently from edge devices and/or the network’s database; (ii) query-
ing spatial-temporal data efficiently from mobile edge devices; (iii) conserving
the limited resources of edge devices (e.g., battery, memory, bandwidth); (iv)
conserving the network’s shared resources (e.g., central database, bandwidth)
; and (v) providing ready-to-use data collections for consumers based on their
needs/requirements. Existing works (e.g., [1,4,7,10–13,16,19]) have targeted
data redundancy in connected environments, however most of them suffer from
the following limitations:

1. Disregarding edge data redundancies at the edge/core: one should be able
to query the edge data from devices directly or from the network core
(i.e., central database). Therefore, it is important to handle redundancies
at the device level to improve querying data from the edge, and to prevent
redundancies from reaching the core for improved database querying.

2. Disregarding environment dynamicity: dynamic environments include mo-
bile devices/sensors in addition to static nodes. Considering mobile devices
allows the detection of new redundancies generated by device mobility.

3. Disregarding the limited resources of edge devices: devices at the edge of
the network often have limited resources (e.g., processing, memory, and
power). Moreover, devices need to exchange data as well as push data
to the core. Therefore, it is important not to deplete device resources by
excessive communications and heavy processing of redundant data.

4. Disregarding the network’s shared resources: the network provides several
shared resources for all nodes (e.g., communication channels, storage repos-
itories). Therefore, it is important not to deplete the network’s resources by
consuming unnecessary bandwidth and storage space for redundant data.

5. Disregarding data consumer needs: different data consumers (e.g., users,
services, databases, devices) have different requirements for the requested
data (e.g., specific deduplication ratio, data size, resource consumption

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

DRMF: Data Redundancy Management Framework 3

constraints for deduplication). Therefore, it is important to consider the
aforementioned needs when removing redundancies to provide ready-to-use
data sets for these consumers.

In this paper, we propose a new Data Redundancy Management Framework
(DRMF) to identify and remove data redundancies in connected environments
at the device level. DRMF considers both static and mobile sensing devices
when identifying/detecting redundancies within the generated sensor observa-
tions. It provides two algorithms for redundancy detection: the first relies on
the temporal feature (specifically designed for static/immobile devices), and
the second relies on both temporal and spatial features (specifically designed
for mobile devices). The algorithms’ parameters are automatically tuned based
on historical device data, in order to identify relevant redundancy partitions
(e.g., groups of similar-enough data that are considered duplicates). Once re-
dundancies are identified, DRMF proposes a data deduplication module that
takes into account the requirements of data consumers, edge data redundancies
at the edge and core of the network, the network dynamicity and device mobil-
ity, device/network resources (e.g., processing, battery, memory, bandwidth),
and personalized ready-to-use data sets for data consumers. A summary de-
scription of DRMF was given in [13]. This paper adds: (i) an extended moti-
vating scenario that addresses redundancy identification and cleaning; (ii) an
extended discussion and evaluation of the existing approaches; (iii) a param-
eter tuning process for the redundancy identification algorithms; (iv) a data
consumer-centric deduplication process; and (v) an extensive experimentation
and evaluation of the performance and accuracy of our proposal.

The remainder of the paper is organized as follows. Section 2 presents
a motivating scenario that highlights the needs and challenges of this work.
Section 3 reviews existing redundancy management approaches. Then, Section
4 details our proposal. Section 5 describes the experimentation and evaluates
the performance and accuracy of DRMF. Finally, Section 6 concludes this
work and discusses future research directions.

2 Motivating Scenario

Consider the smart parking connected environment presented in Figure 1. Al-
though this example does not summarize all data redundancy management
issues in connected environments, we use it to highlight the motivation, spe-
cific needs, and challenges of this work. The smart parking is equipped with
a variety of devices, some static (e.g., deployed in individual parking spots)
and others mobile (e.g., smart phones, connected vehicles). Devices could em-
bed one or more sensors, each sensing a specific observation. For the sake of
brevity, we consider three observations in this example: (i) temperature for
heating/air conditioning management; (ii) air quality for ventilation and pol-
lution management; and (iii) occupancy for free parking spot detection. The
aforementioned edge devices are also equipped with a local memory for tem-
porary sensed data storage, a processor for query answering, and a network

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Elio Mansour et al.

Fig. 1: The smart parking

interface for communicating with data consumers (e.g., database, users, ser-
vices, other devices). All devices push data to the central database, and all data
consumers can retrieve edge data directly from either devices or the database.
The parking manager (i.e., user) needs to monitor the environment and handle
specific events (e.g., overheating, pollution) using a set of resources (e.g., the
network, data processing services, central database). To do so, he/she has the
following needs:

– Need 1. Querying edge data from devices and the central database to
monitor sensor breakdowns, anomalies, and local events. The retrieved data
can be exploited by various data processing and mining services.

– Need 2. Querying edge data from mobile devices to handle the environ-
ment dynamicity, while considering mobility and spatial-temporal features.

– Need 3. Conserving the limited edge devices’ resources to minimize un-
necessary data processing, exchange, and local storage.

– Need 4. Conserving the network’s shared resources to maintain the sus-
tainability of the network by relieving communication channels and the
central database from unnecessary data communication and storage.

– Need 5. Considering data consumer needs during deduplication, e.g.,:
– User needs: the user might require a high deduplication ratio if he/she

doesn’t have enough resources to process huge amounts of data.
– Database needs: the data storage strategy might require a specific dedu-

plication ratio to store a specific amount of data from each device or
zone of the network (e.g., 1 MB per device per day).

– Device needs: the data requested by devices might require a specific
deduplication in order to comply with resource-related limitations (e.g.,
remaining battery, remaining memory, processing load).

– Service needs: different services might have different requirements for
deduplication (e.g., services that provide a statistical overview of the
data might benefit from recurring repetitions in the data allowing to
detect certain behavioral patterns, while information retrieval or data
indexing services might require full deduplication).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

DRMF: Data Redundancy Management Framework 5

As a result, static and mobile sensors in the smart parking environment will be
producing large amounts of data, exchanging some of them among each other,
and sending them periodically to the database even if no significant changes
occur in the sensed data. For instance, if a vehicle is parked for hours in the
same spot, redundant occupancy data is sent during the whole occupancy
time period. Similarly, redundant air quality and temperature data will be
periodically produced, exchanged, and stored even when the parking is not
witnessing any activity (e.g., car movements, people entering). Therefore, a
redundancy identification and cleaning framework is required to cover the
aforementioned needs, and the following challenges need to be addressed:

– Challenge 1. How to identify and clean redundancies at the edge and how
to prevent them from reaching the network’s database (cf. Need 1)?

– Challenge 2. How to consider spatial-temporal features when identifying
redundancies to cope with dynamic device mobility (cf. Need 2)?

– Challenge 3. How to prevent unnecessary data processing, exchange, and
storage on devices in order to preserve their resources (cf. Need 3)?

– Challenge 4. How to prevent unnecessary data transmission and storage
in the database to preserve the network’s shared resources (cf. Need 4)?

– Challenge 5. How to provide a (personalized) consumer-based deduplica-
tion to provide ready-to-use data sets for consumers (cf. Need 5)?

In this work, we tackle the data redundancy problem at the device level in
order to address the aforementioned challenges. Before detailing the proposal,
we first present and compare existing approaches for data redundancy man-
agement in sensor networks.

3 Related Works

To compare existing approaches, we propose here the following criteria based
on the previously discussed needs and challenges:

– Criterion 1. Considering edge redundancies at the edge and core: stating
if the approach handles data redundancy at the source (device level) and if
it prevents redundancies from reaching the database. This enables efficient
querying on the edge and core of the network (cf. Need 1).

– Criterion 2. Considering device mobility: specifying if the approach con-
siders dynamic redundancies due to device mobility (cf. Need 2).

– Criterion 3. Considering device resources: specifying if the approach con-
siders the limited resources of edge devices when processing, storing, and
exchanging data (cf. Need 3).

– Criterion 4. Considering network resources: indicating if the approach
considers the network’s shared resources when transmitting and perma-
nently storing data (cf. Need 4).

– Criterion 5. Considering consumer-centric data deduplication: specifying
if the approach considers data consumer needs and requirements when
removing data redundancies (cf. Need 5).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Elio Mansour et al.

In the following, we review related data redundancy management works in
connected environments [1,4,7,10–13,16,19]. Then, we present a comparison
of these approaches based on the aforementioned criteria.

3.1 Existing Approaches

In [4], the authors focus on the spatial distribution of sensors in the environ-
ment, and how it can be managed in order to prevent redundancies. To do so,
a graph of nodes and detected events is constructed from raw sensory data to
identify nodes producing redundant data. Next, these so-called ”redundant”
nodes are either relocated or put into sleep mode using a circle packing tech-
nique to enhance coverage while minimizing energy usage during relocation.
This work only handles redundancy from a sensor deployment perspective
(i.e., avoiding deploying sensors that provide the same type of data in the
same area). Therefore, the emphasis is on detecting redundant sensor nodes
and not on the data itself. Moreover, the proposal does not consider sensor mo-
bility (cf. Criterion 2). In [11], the authors present a data reduction scheme for
Internet of Things (IoT) using data filtering and fusion. Their approach han-
dles redundancies at the device layer before forwarding non-redundant data
to sink nodes. Redundancy detection is solely based on data value deviations.
Although, this work handles redundancies at the edge of the network, it does
not cover redundant data from mobile devices (cf. Criterion 2). Therefore, spe-
cific spatial-temporal redundancies at device level are not handled. Moreover,
redundancy cleaning does not consider data consumer needs (cf. Criterion 5).
In [16], the authors address data redundancies at the core of the network us-
ing a supervised machine learning solution based on Support Vector Machine
(SVM). They build an aggregation tree for the given size of the network and
then apply SVM to recognize data redundancies. In this work, the authors
target temporal and spatial redundancies once the data is consolidated in a
central node, which provides a redundancy-free data repository that could be
mined using advanced data processing techniques. However, redundancies are
not handled at the device level, and data exchange between devices at the edge
remains costly due to unnecessary communications. Moreover, the authors do
not consider spatial-temporal redundancies generated by mobile devices (cf.
Criterion 2-4). Although the central database contains redundancy-free data,
the deduplication process is not customized to fit data consumer needs (cf.
Criterion 5). In [19], the authors present a data deduplication technique in a
healthcare-based IoT environment. They propose a Controlled Window-size
based Chunking Algorithm (CWCA) to identify cut-points in sensor data dis-
tributions. The data deduplication is applied at the collector node (i.e., at
the core and does not consider data consumer needs). More recently, the au-
thors in [12] propose a data redundancy elimination technique using an un-
supervised learning approach based on data clustering. The authors suggest
clustering the edge nodes based on their produced sensory data in order to
aggregate identical data to eliminate redundancies, before storing the data in

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

DRMF: Data Redundancy Management Framework 7

the cloud. However, the works in [12,19] do not consider device mobility and
spatial-temporal redundancies (cf. Criterion 2). The authors in [1] propose
an approach for cleansing indoor RFID data. They focus on two tasks: (i)
temporal redundancy elimination; and (ii) spatial ambiguity reduction (un-
determined whereabouts of an object). To detect temporal redundancy, they
look for temporal intervals where values do not change. Although, this work
handles data redundancies at device level, it does not consider the dynam-
icity of the environment and it disregards device mobility (cf. Criterion 2).
Moreover, a straightforward aggregation of duplicates is done to clean redun-
dancies without considering data consumer needs (cf. Criterion 5). In [7], the
authors propose an approach that filters data at the sensor level in Periodic
Sensor Networks (PSNs) using the Pearson coefficient metric. Then, another
filtering process is triggered at the sink node to remove redundancies even
more. However, the approach only considers static devices in order to detect
redundant data (cf. Criterion 2). Moreover, the redundancy removal focuses
on reducing the data size in order to minimize energy consumption in the
network. Also, the deduplication cannot be customized based on individual
data consumer needs (cf. Criterion 5). In [10], the authors propose a technique
denoted DiDAMoK (Distributed Data Aggregation based Modified K-Means)
for detecting sensor data redundancies in an IoT environment. This approach
detects clusters of redundant data within a time period. However, the authors
do not consider spatial-temporal redundancies produced by mobile sensors (cf.
Criterion 2). Furthermore, the redundancy removal process consists of summa-
rizing each cluster of redundancies at the device level into one representative
sensor observation prior to data transmission.

3.2 Comparison Summary

The main characteristics of existing solutions are summarized in Table 1. To
sum up, none of the aforementioned works covers all the required criteria.
Some approaches focus on handling redundancies at the core of the network,
thus neglecting the impact of redundancies on the edge devices where resources
are often limited (e.g., power, processing, and memory). Last but not least,
none of the mentioned works provides a consumer-centric data deduplication
solution.

Table 1: Related Works Comparison

Approach
Criterion 1
Edge & Core
Consideration

Criterion 2
Dynamicity

Consideration

Criterion 3
Device Resources

Consideration

Criterion 4
Network Resources

Consideration

Criterion 5
Personalized

Cleaning

Baba A.I. et al. [1] 3 × 3 3 ×

Chowdhury S. et al. [4] × × × × ×

Harb H. et al. [7] 3 × 3 3 ×

Idrees A.K. et al. [10] 3 × 3 3 ×

Ismael W.M. et al. [11] 3 × 3 3 ×

Li S. et al. [12] 3 × 3 3 ×

Patil P. et al. [16] × × × × ×

Ullah A. et al. [19] × × × × ×

Our approach DRMF 3 3 3 3 3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Elio Mansour et al.

4 Proposal: DRMF

To address the aforementioned limitations, we extend DRMF, a new Data
Redundancy Management Framework that provides: (i) static and mobile de-
vice handling; (ii) temporal and spatial-temporal data handling; (iii) flexible
deduplication to consider data consumer needs; (iv) automatic tuning of the
redundancy identification algorithms based on historical data; and (v) edge
data deduplication considering the dynamic requirements of device resources.

The overall architecture of DRMF is depicted in Figure 2. The bottom
layer, denoted Edge Device Data, represents the edge device local memory
where sensor observations are stored. The second layer, denoted Device Level
Redundancy Management, groups the set of modules that identify and clean
redundancies in the device. More specifically, redundancy management con-
sists of four main modules: (i) Datatype Filtering which separates the input
data into type-based data collections; (ii) Redundancy Detection which de-
tects temporal (for static devices) or spatial-temporal (for mobile devices) re-
dundancies from each data collection; (iii) Redundancy Detection Tuning
which auto-configures the redundancy detection algorithms based on histor-
ical data; and (iv) Redundancy Cleaning which deduplicates redundant
data based on consumer needs and evaluates the accuracy of redundancy re-
moval. The third layer, denoted Network Orchestrator, represents a middle-
ware tasked with bridging data consumers (e.g., users, services, databases,
devices) and producers (e.g., devices). We consider here that devices are pro-
sumers (i.e., producers when they sense and share data, and consumers when
they request data from other devices). The orchestrator allows consumers to
make data consumption subscriptions in order to define the required data,
deduplication perferences, and other features (e.g., data request frequency).
We specifically focus on how the data consumption subscriptions are used to
deduplicate data based on consumer needs. Note that we report the subscrip-
tion generation protocol (covering consumer-orchestrator communication and
preference exchange) for a dedicated future work. In the following subsections,
we start by describing the nature of sensory data in a dynamic environment.
Then, we detail the redundancy management process at device level.

4.1 Sensory Data

Connected environments contain diverse devices each embedding one or more
sensors that provide data from the real world. Static devices are immobile,
therefore the data generated by such devices could be redundant temporally.
However, mobile devices produce data while moving around the environment,
which potentially generates spatial-temporal redundancies. In the following,
we provide a set of formal definitions that allow us to describe data items
following both temporal and spatial dimensions (cf. Criterion 2).

Definition 1 (Data Items) We formally define a data item d as a 5-tuple:

d ∶ ⟨a, v, t, l, s⟩ where∶ (1)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

DRMF: Data Redundancy Management Framework 9

Fig. 2: The extended DRMF Architecture

– a is the data attribute,
– v is the data value,
– t is the creation temporal stamp of d (cf. Definition 2),
– l is the creation location stamp of d (cf. Definition 3),
– s is the data source that produced/created d ∎

Definition 2 (Temporal Stamp Definition) A temporal stamp t desig-
nates a single discrete temporal value formally defined as a 2-tuple:

t = ⟨format, value⟩ where∶ (2)

– format is a string indicating the format of the date-time value of t (e.g.,
”dd-MM-yyyy hh:mm:ss”),

– value is the timestamp value (e.g., 10-11-2020 15:34:23 following the sample
time format mentioned above) ∎

Definition 3 (Location Stamp Definition) A location stamp l is s a dis-
crete and instantaneous location value defined as a 2-tuple:

l = ⟨format, value⟩ where∶ (3)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Elio Mansour et al.

– format is the location referential format following which the location
stamp value will be represented (e.g., default GPS, or Cartesian, Spherical,
Cylindrical),

– value = ⟨x, y, z⟩ is a discrete and instantaneous value, where x, y, and z
designate individual coordinate values (the coordinates can be translated
into the referential of choice following the designated format) ∎

Table 2 shows an excerpt of the data produced by a device having two sensors
S1, and S2 that produce CO2 and temperature observations respectively.

Table 2: Sample Data Items

t l
a v format value format value s

x y z

CO2 98
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:00:00

cartesian 8 12 8 S1

CO2 109
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:02:00

cartesian 6 8 6 S1

CO2 110
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:04:00

cartesian 2 4 8 S1

CO2 111
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:06:00

cartesian 4 6 4 S1

Temperature 22
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:08:00

cartesian 6 4 8 S2

4.2 Datatype Filtering

Since the device can embed various sensors, its internal memory might store
different datatypes (i.e., different data attributes or features such as CO2 and
temperature in Table 2). Therefore, in order to detect redundancies in the
data stored locally on the device, we start by filtering the data into collections
having the same attributes (or datatypes), using DRMF’s filtering module. In
the following subsection, we show how to detect redundancies within each data
collection (cf. Figure 2). To illustrate the attribute filtering process, the data
shown in Table 2 produces two distinct data collections: the first for CO2 data
(first four tuples - cf. Table 3); and the second for temperature data containing
the last tuple.

Table 3: CO2 Data Collection

t l
a v format value format value s

x y z

CO2 98
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:00:00

cartesian 8 12 8 S1

CO2 109
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:02:00

cartesian 6 8 6 S1

CO2 110
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:04:00

cartesian 2 4 8 S1

CO2 111
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:06:00

cartesian 4 6 4 S1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

DRMF: Data Redundancy Management Framework 11

4.3 Redundancy Detection & Algorithm Tuning

In this step, the redundancy checker applies our redundancy detection algo-
rithms over the sensor’s locally stored data. More specifically, the aforemen-
tioned algorithms cluster the data based on the deviation of the data item
values, while also considering the temporal, or spatial-temporal spread (or
coverage) of the clusters (i.e., sets of redundant data). We adopt an unsu-
pervised cluster-based approach for two main reasons: (i) to avoid applying
supervised learning which requires training time and computation power on
the edge where resources are limited; and (ii) since training data for super-
vised learning algorithms might not be available at the device level. We pro-
vide two redundancy checking algorithms: one for temporal redundancy detec-
tion, specifically designed to handle data from static devices; and another for
spatial-temporal redundancy detection, specifically designed to handle data
from mobile devices. A temporal redundancy (cf. Definition 4) represents a
cluster of redundant values spanning over a specific time coverage (cf. Defini-
tion 5). Similarly, a spatial-temporal redundancy (cf. Definition 6) is defined
as a cluster of redundant values spanning over a specific time coverage and
spatial coverage (cf. Definition 7).

Definition 4 (Temporal Redundancy) A temporal redundancy tr is de-
fined as a 2-tuple:

tr ∶ (coveraget,D) where∶ (4)

– coveraget is the temporal coverage during which the data is temporally
redundant

– D = ⋃z
j=0 dj is a cluster of redundant data items where:

– ∀ dj ∈D, dj .t ∈ coveraget.δt
– ∀ dj1, dj2 ∈D, dj1.a = dj2.a
– ∀ k ∈ N+, dk.v = dcentroid.v ± δv where∶

● dcentroid.v is the centroid value of all data items in D
● δv is an acceptable deviation threshold

Remark 1 The threshold δv is calculated based on the data distribution within
the redundant data set D. ∎

Definition 5 (Temporal Coverage Definition) A temporal coverage coveraget
is a time interval consisting of an ordered collection of temporal stamps en-
closed within a start and an end stamp, describing the temporal coverage of
a sensor observation (e.g., video feed) or a group of observations (e.g., scalar
measurements, images). Formally, it is defined as a 2-tuple:

coveraget = ⟨δt, gt⟩ where∶ (5)

– δt = [ts, te] is a temporal interval where:
– ts < te is the start temporal stamp
– te is the end temporal stamp

– gt is a temporal granularity or unit of the temporal coverage (e.g., millisec-
ond, second, minute, etc.) ∎

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Elio Mansour et al.

Definition 6 (Spatial-Temporal Redundancy) A spatial-temporal redun-
dancy str is defined as a 3-tuple:

str ∶ (coveraget, coveragel,D) where∶ (6)

– coveraget is the temporal coverage
– coveragel is the location coverage
– D = ⋃z

j=0 dj is a cluster of redundant data where:
– ∀ dj ∈D, dj .t ∈ coveraget.δt
– ∀ dj ∈D, dj .l ∈ coveragel.δl
– ∀ dj1, dj2 ∈D, dj1.a = dj2.a
– ∀ k ∈ N+, dk.v = dcentroid.v ± δv where∶

● dcentroid.v is the centroid value of all data items in D
● δv is an acceptable deviation threshold ∎

Definition 7 (Location Coverage Definition) A location coverage coveragel
is the set of spatial stamps designating the surface coverage in which a sensor
observation is created (e.g., area in which a video stream or a bunch of mobile
measurements are recorded). Formally, it is defined as a 2-tuple:

coveragel = (δl, gl) where∶ (7)

– δl = ⟨shape,L⟩ defines the area of the location coverage where:
– L = ⋃n

i=0 li∀i ∈ N is a set of location stamps
– shape is a mathematical abstraction used to describe the location cov-

erage, as a continuous coverage area (e.g., rectangle, circle), or non-
continuous coverage area (e.g., disk, path, polygon, random)

– gl is the location granularity or unit of the location coverage (e.g., millime-
ter, centimeter, meter).

Remark 2 The shape of a location coverage depends on the sensors and the
environment where they are deployed. For instance, the shape could be lines
(for mobile sensor tracking), continuous rectangles (e.g., in an office), or non-
continuous disks or random shapes (e.g., in a forest excluding lakes). ∎

The Redundancy Detection module (cf. Figure 2) consists of two clustering
algorithms for the detection of temporal redundancies from static devices (cf.
Algorithm 1), and the detection of spatial-temporal redundancies from mobile
devices (cf. Algorithm 2). The generated clusters contain redundant data based
on value similarity. In addition, the temporal and spatial-temporal coverage
of each cluster is calculated to keep track of the temporal and spatial spread
of each redundancy.

Algorithm 1 groups the data into clusters of temporally redundant data.
It takes a data collection C as input, and produces a set TR of temporal re-
dundancies (clusters) as output. First, the algorithm sorts all data items in
the input collection by ascending time. Then, for each data item, the algo-
rithm checks if a cluster already exists. If not, a new cluster is created with
the current data item added as its centroid (lines 3-6). However, if a cluster

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

DRMF: Data Redundancy Management Framework 13

Algorithm 1: Temporal Redundancy Checker
Input : C
Output: TR
Parameters: δv , gt
Local Variables: SC,covt, centroid,D,mint,maxt, δt

1 Initialize TR← ∅

2 SC ← sortt(C) foreach data item di ∈ SC do
3 if (/∃ cluster of redundant data D) then
4 Create new cluster D
5 Initialize centroid← di.v

6 else
7 if (Absolute difference ∣di.v − centroid∣ ≤ δv) then
8 Add data item to cluster D ← di
9 Update centroid←Avg(all di.v ∈D)

10 else
11 Identify temporal interval δt ← [mint,maxt] of D
12 Compute temporal coverage w.r.t. time unit covt ← (gt, δt)
13 Add new temporal redundancy TR← (covt,D)

14 Flush out cluster D

15 end

16 end

17 end
18 Return TR

already exists, the algorithm checks if the current data item belongs to the
aforementioned cluster. This is done by measuring the distance between the
data item and the cluster centroid values and comparing it to a deviation
threshold δv (line 8). If the current data item belongs to the cluster, a new
centroid is computed and the algorithm checks the next value in the collection
(lines 9-10). This step is repeated until the algorithm finds a value that does
not belong to the cluster. In this case, the temporal coverage of the cluster
is calculated (lines 12-13), the cluster (i.e., temporal redundancy) is added to
the output list (line 14), and the variable cluster content (D) is reset (line 15)
in order to generate a new cluster and look for other redundancies.

Similarly, Algorithm 2 takes a data collection as input and generates a set
of clusters as output, where each cluster represents a spatial-temporal redun-
dancy. The clustering principles are the same in both algorithms. However, the
spatial-temporal redundancy checker calculates the spatial coverage for each
redundancy (i.e., cluster) in addition to the temporal coverage. This entails
keeping track of data location stamps in each cluster (line 11) and calculating
the characteristics of the coverage area (lines 13, 15, and 17). Note that both
clustering algorithms calculate the temporal and spatial-temporal coverage of
each cluster respectively, in order to keep track of the temporal and spatial
spread of each redundancy.

To illustrate the temporal redundancy detection process, consider the CO2

data collection presented in Table 3. If we apply the temporal redundancy
detection algorithm with a deviation threshold δv = 3, we detect one temporal
redundancy (containing values 109, 110, and 111) spanning over a temporal
coverage of 4 minutes (from 10/02/2019 10:02:00 till 10/02/2019 10:06:00).

Algorithm Tuning. The aforementioned algorithms cluster redundant data
within collections based on the value deviation threshold δv which can be
adjusted per device. However, the set value will affect the accuracy of the dedu-
plication. Therefore, we propose here the Redundancy Detection Tuning
component (cf. Figure 2) to automatically set, and re-adjust if necessary, the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Elio Mansour et al.

Algorithm 2: Spatial-Temporal Redundancy Checker
Input : C
Output: STR
Parameters: δv , gt,gl
Local Variables: SC,covt, covl, centroid,D,mint,maxt,L,δt, δl, shape

1 Initialize STR← ∅

2 SC ← sortt(C) foreach data item di ∈ SC do
3 if (/∃ cluster of redundant data D) then
4 Create new cluster D
5 Initialize centroid← di.v

6 else
7 if (Absolute difference ∣di.v − centroid∣ ≤ δv) then
8 Add data item to cluster D ← di
9 Update centroid←Avg(all di.v ∈D)

10 Add data item location to L← di.l

11 else
12 Identify shape← getShape(L)

13 Identify temporal interval δt ← [mint,maxt] of D
14 Identify location area δl ← (shape,L) of D
15 Compute temporal coverage w.r.t. time unit covt ← (gt, δt)
16 Compute location coverage w.r.t. location unit covl ← (gl, δl)
17 Add new spatio − temporal redundancy STR← (covt, covl,D)

18 Flush out cluster D

19 end

20 end

21 end
22 Return STR

deviation threshold (algorithms’ parameter) based on historical data. To do so,
the filtered data collections are sent to the data distribution discovery module
that identifies the distribution of the sensor observation values using tests such
as Chi-Squared and Kolmogrov-Smirnov. Once a distribution is identified (e.g.,
Normal, Gamma, Beta, Exponential, Weibull, Bernoulli), we estimate the de-
viation threshold δv using one of the following techniques: (i) MAD: Mean
Absolute Deviation; (ii) Z-score; and (iii) IQR: Interquartile Range. The es-
timated threshold is used for a specific type of collection (e.g., temperature)
when identifying temporal or spatial-temporal redundancies. In order to avoid
repeating this process at each run, we keep using the same threshold until
the accuracy of the deduplication drops below a specific acceptable level. Only
then, the Redundancy Detection Tuning component is triggered again and
the threshold is re-estimated and adjusted accordingly. To do so, we evaluate
deduplication accuracy using the Jaccard similarity measure applied in the
deduplication accuracy evaluation module, and compare the resulting accu-
racy to a configurable acceptable level in the redundancy checker adjustment
module, in order to decide if the tuning should be triggered.

4.4 Redundancy Cleaning

Once redundancies are identified, the deduplication (i.e., redundancy clean-
ing) process occurs. We propose two cleaning modes: (i) the auto-clean mode
fully summarizes a cluster of redundancies into one representative data item
using the mean or median values; and (ii) the consumer-centric mode which
considers data consumer subscirptions that describe the deduplication require-
ments/conditions when removing redundancies. Following the same example
illustrated in Figure 3, the identified temporal redundancies could be removed
using the auto-clean median method (cf. Figure 4).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

DRMF: Data Redundancy Management Framework 15

Table 4: Auto-clean ∣ Redundancy-free CO2 Data Collection

t l
a v format value format value s

x y z

CO2 98
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:00:00

cartesian 8 12 8 S1

CO2 110
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:04:00

cartesian 4 6 6 S1

However, data consumers might have different needs for redundancy re-
moval. For instance, a database could require a specific amount of data from
each device per day (thus impacting the deduplication ratio). A user could have
different requirements based on his/her available resources (e.g., high dedu-
plication ratio if resources are low). Similarly, devices and services consuming
data might have specifications for the redundancy removal process. In order
to consider these needs (cf. Needs - Section 2), data consumers engage the
network orchestrator (cf. Figure 2) to make data consumption subscriptions
that detail their requirements. More formally:

Definition 8 (Data Consumption Subscription Definition) A data con-
sumption subscription dcs is defined as a 2-tuple:

dcs = (δl, gl) where∶ (8)

– consumerid is the data consumer identifier
– producerid is the data producer identifier
– P is a set of data consumption preferences where ∀p ∈ P p is a 4-tuple
p = ⟨reqa, consf , deduptype, dudupc⟩ where:
– reqa = dj .a∀j ∈ N is a required data attribute (cf. Definition 1)
– consf is the data consumption frequency of reqa
– deduptype is the required deduplication type
– dedupc ∶ ⟨LeftOperand⊕RightOperand⟩ is the deduplication condition.

Remark 3 The deduptype could be ratio-based (a specified deduplication ra-
tio or percentage), memory-based (expressed as required output data size in
Bytes), processor-based (expressed as the required percentage of CPU to be
consumed for deduplication), or energy-based (expressed in the amount of
energy consumed during deduplication). ∎

The subscriptions are translated into redundancy removal rules that we con-
sider in the redundancy removal process (cf. Subscription-based Data Dedupli-
cation module - Figure 2). Various markup languages can be used to describe
the aforementioned rules (e.g., RuleML [3], SWRL [9], ECA [2], ECA RuleML
[15]). To illustrate, consider the following data consumption subscription ex-
ample between a user (data consumer) and a device (data producer) where the
user requires a specific deduplication ratio (e.g., for resource-related reasons).
Table 5 shows the cleaned data collection based on the user’s needs.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Elio Mansour et al.

Data Consumption Subscription - Example

<dcs_1 >

<consumer_id >user1 </ consumer_id >

<producer_id >device1 </ producer_id >

<P>

<p>

<req_a >temperature </req_a >

<cons_f >everyDay </cons_f >

<dedup_type >ratio -based </dedup_type >

<dedup_c >ratio ≤ 34</dedup_c >

</p>

</P>

</dcs_1 >

Table 5: dcs1 ∣ Redundancy-free CO2 Data Collection

t l
a v format value format value s

x y z

CO2 98
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:00:00

cartesian 8 12 8 S1

CO2 109
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:02:00

cartesian 6 8 6 S1

CO2 110
dd/mm/yyyy

hh:mm:ss
10/02/2019
10:04:00

cartesian 4 6 6 S1

Device Capabilities Discussion. In a connected environment, devices might
have different capabilities (i.e., some are more advanced in terms of storage,
autonomy, processing, and communication than others). In our proposal, the
bulk of the processing concerns the Device Level Redundancy Manage-
ment modules (cf. Figure 2) where we identify and clean data duplicates.
Therefore, in order to cover a wide plethora of devices, we consider two main
scenarios: (i) the device has an acceptable level of capabilities/resources and
can run the aforementioned modules locally; and (ii) the device has no or
low/limited resources and delegates the processing to another capable edge
device, or to the nearest sink.

5 Experiments & Results

We have implemented DRMF and have conducted a large battery of exper-
iments to evaluate its redundancy identification and removal functionalities.
Our experiments can be grouped in two main category: (i) performance eval-
uation (i.e., run-time, CPU consumption, and RAM size); and (ii) accuracy
evaluation (i.e., deduplication quality, deduplication ratio, and threshold es-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

DRMF: Data Redundancy Management Framework 17

timation). To do so, we used the publicly available Intel Lab Data set1, and
tested the algorithms (developed in Python 3.8) on 38,656 records. The data
set provides various observations (e.g., temperature, humidity, light) from 54
sensors deployed in various locations in the Intel Berkeley Research lab be-
tween February 28th and April 5th, 2004.

5.1 Performance Evaluation

We ran the following experiments on a Dell machine with Windows 10, having
a Core i5 8th Generation 1.8 GHZ processor, and 16 GB of RAM. We evaluate
the performance of both redundancy detection algorithms and the auto-clean
mode for redundancy removal (we left the evaluation of the consumer-centric
deduplication for a separate work) by measuring the run-time, CPU consump-
tion, and RAM size.

– Experiment 1: Input Data Size Impact. In this test, we gradually increase
the input data size in order to assess its impact on performance.

– Experiment 2: Deviation Threshold Impact. In this test, we gradually in-
crease the deviation threshold to generate clusters with various sizes and
spreads to assess its impact on performance.

Discussion. Figures 3a, 3b, and 3c show the results of experiment 1. Increas-
ing the number of input data items from 0 to 38656 had a visible impact on
performance. The required time, CPU, and RAM for identifying and removing
redundancies increase in a quasi-linear way. However, in the worst case sce-
nario (i.e., 38656 values) the required time does not exceed 8 seconds and the
required RAM/CPU does not surpass 34 MB and 9% respectively. Figures 3d,
3e, and 3f show the results of experiment 2. Increasing the deviation thresh-
old generates fewer but bigger clusters of redundant data. This is reflected in
the results: the bigger the threshold, the less time and CPU are required since
less clusters are generated. RAM consumption slightly fluctuates between 31.9
and 32.9 MB, yet the difference is not significant since every data item even-
tually belongs to one cluster regardless of the number of generated clusters.
Finally, for both tests, Algorithm 2 requires more resources since it considers
both temporal and spatial dimensions in contrast with Algorithm 1 which only
consider the temporal dimension.

5.2 Accuracy Evaluation

We also evaluate the accuracy of our proposal by measuring data reduction
accuracy (using the Jaccard Similarity Index), and the data reduction ratio.
Each experiment is done twice (with temperature and humidity values). For

1 http://db.csail.mit.edu/labdata/labdata.html

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Elio Mansour et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 3: Performance Results: Experiments 1 and 2

the two cases, we identify redundancies using both algorithms and clean du-
plicates using the auto-clean mode. We present here the temporal redundancy
identification and cleaning results.

– Experiment 3: Input Data Size Impact. In this test, we gradually increase
the input data size to assess its impact on accuracy.

– Experiment 4: Deviation Threshold Impact. In this test, we gradually in-
crease the deviation threshold to assess its impact on accuracy.

– Experiment 5: Threshold Estimation Impact. In this test, we change the
threshold estimation technique (i.e., Z-score, MAD, IQR) and measure the
data reduction accuracy and ratio using the estimated thresholds.

Discussion. Figure 4a shows the results of experiment 3. The data reduc-
tion accuracy (with a fixed deviation threshold of 2.5) varies between 97.63%
and 98.78% for humidity data. Moreover, accuracy varies between 95.03%
and 96.54% for temperature. Figure 4b shows the results of experiment 4.
Increasing the deviation threshold affects the clustering of redundancies. The
optimal deviation threshold in the 0.5 to 5 range is 1 for humidity (accuracy of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

DRMF: Data Redundancy Management Framework 19

(a) (b)

(c)

Fig. 4: Accuracy Results: Experiments 3, 4, and 5

99.10%) and 3 for temperature (accuracy of 95.43%). In addition, both experi-
ments achieve high deduplication ratios (94.48% to 99.90%). Finally, Figure 4c
shows that results of experiment 5 which highlights the importance of choosing
the adequate technique based on the data distribution and historical patterns
(i.e., the technique should not be randomly assigned/configured). The discov-
ered distribution for both temperature and humidity collections is Weibull.
This explains why Z-Score provided the worst result since it is based on the
mean and standard deviation (i.e., more suited for normal distributions).

6 Conclusion & Future Works

In this paper, we address the problem of handling data redundancy in con-
nected environments. We introduce DRMF, a data redundancy management
framework which handles sensor data redundancy at the edge device level,
considering both static and mobile devices, in order to eliminate redundancies
from the source before reaching the core of the network. DRMF includes two
clustering algorithms that detect temporal and spatial-temporal data redun-
dancies, and a module for redundancy removal/summarization that considers
data consumer needs and device resources when deduplicating. We are cur-
rently extending DRMF to develop the consumer-centric redundancy removal
process based on the data consumption subscriptions. Consequently, we plan
to improve the deviation threshold estimation by considering pattern recogni-
tion and providing multiple thresholds for a data collection. In addition, we
plan to investigate an approach based on fuzzy reasoning, to improve the ac-
curacy of deduplication detection, especially when dealing with crisp cluster
boundaries. In the near future, we aim to detect composite redundancies that
are generated by data fusion from multiple sensors, where deduplication would
be handled both at the edge level and at the sink level of the network. This

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Elio Mansour et al.

entails special challenges depending on the structure, connectivity, dynamics,
and overall properties of the connected environment.

References

1. Baba, A.I., Lu, H., Xie, X., Pedersen, T.B.: Spatiotemporal data cleansing for indoor
rfid tracking data. In: 2013 IEEE 14th International Conference on Mobile Data Man-
agement, vol. 1, pp. 187–196. IEEE (2013)

2. Bailey, J., Papamarkos, G., Poulovassilis, A., Wood, P.T.: An event-condition-action
language for xml. In: Web Dynamics, pp. 223–248. Springer (2004)

3. Boley, H., Tabet, S., Wagner, G.: Design rationale for ruleml: A markup language for
semantic web rules. In: SWWS, vol. 1, pp. 381–401 (2001)

4. Chowdhury, S., Benslimane, A.: Relocating redundant sensors in randomly deployed
wireless sensor networks. In: 2018 IEEE Global Communications Conference (GLOBE-
COM), pp. 1–6. IEEE (2018)

5. Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid—the new and improved power grid:
A survey. IEEE communications surveys & tutorials 14(4), 944–980 (2011)

6. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (iot): A vision, ar-
chitectural elements, and future directions. Future generation computer systems 29(7),
1645–1660 (2013)

7. Harb, H., Makhoul, A., Abou Jaoude, C.: En-route data filtering technique for maxi-
mizing wireless sensor network lifetime. In: 2018 14th International Wireless Commu-
nications & Mobile Computing Conference (IWCMC), pp. 298–303. IEEE (2018)

8. He, Q., Li, Z., Zhang, X.: Data deduplication techniques. In: 2010 International Con-
ference on Future Information Technology and Management Engineering, vol. 1, pp.
430–433. IEEE (2010)

9. Horrocks, I., et al.: Swrl: A semantic web rule language combining owl and ruleml. W3C
Member submission 21(79), 1–31 (2004)

10. Idrees, A.K., Al-Yaseen, W.L., Abou Taam, M., Zahwe, O.: Distributed data aggregation
based modified k-means technique for energy conservation in periodic wireless sensor
networks. In: 2018 IEEE Middle East and North Africa Communications Conference
(MENACOMM), pp. 1–6. IEEE (2018)

11. Ismael, W.M., Gao, M., Al-Shargabi, A.A., Zahary, A.: An in-networking double-layered
data reduction for internet of things (iot). Sensors 19(4), 795 (2019)

12. Li, S., et al.: Ef-dedup: Enabling collaborative data deduplication at the network
edge. In: 2019 IEEE 39th International Conference on Distributed Computing Sys-
tems (ICDCS), pp. 986–996. IEEE (2019)

13. Mansour, E., et al.: Data redundancy management in connected environments. In:
Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile
Networks, Q2SWinet ’20, p. 75–80. Association for Computing Machinery, New York,
NY, USA (2020). DOI 10.1145/3416013.3426451. URL https://doi.org/10.1145/

3416013.3426451
14. Marinakis, V., Doukas, H.: An advanced iot-based system for intelligent energy man-

agement in buildings. Sensors 18(2), 610 (2018)
15. Paschke, A.: Eca-ruleml: An approach combining eca rules with temporal interval-based

kr event/action logics and transactional update logics. arXiv preprint cs/0610167 (2006)
16. Patil, P., Kulkarni, U.: Svm based data redundancy elimination for data aggregation in

wireless sensor networks. In: 2013 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pp. 1309–1316. IEEE (2013)

17. Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities us-
ing big data analytics. In: International Conference on Smart Cities, Infrastructure,
Technologies and Applications, pp. 111–122. Springer (2017)

18. Ullah, A., Sehr, I., Akbar, M., Ning, H.: Fog assisted secure de-duplicated data dis-
semination in smart healthcare iot. In: 2018 IEEE International Conference on Smart
Internet of Things (SmartIoT), pp. 166–171. IEEE (2018)

19. Ullah, A., et al.: Secure healthcare data aggregation and deduplication scheme for fog-
orineted iot. In: 2019 IEEE International Conference on Smart Internet of Things
(SmartIoT), pp. 314–319. IEEE (2019)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Click here to access/download;Figure;Fig1.jpg

https://www.editorialmanager.com/comp/download.aspx?id=138070&guid=2fe4c4af-d41e-436d-8ff1-edf396cc5466&scheme=1
https://www.editorialmanager.com/comp/download.aspx?id=138070&guid=2fe4c4af-d41e-436d-8ff1-edf396cc5466&scheme=1

Click here to access/download;Figure;Fig2.jpg

https://www.editorialmanager.com/comp/download.aspx?id=138071&guid=43e38c37-8306-4bb7-9b49-65a7bade92ae&scheme=1
https://www.editorialmanager.com/comp/download.aspx?id=138071&guid=43e38c37-8306-4bb7-9b49-65a7bade92ae&scheme=1

Click here to access/download;Figure;Fig3.jpg

https://www.editorialmanager.com/comp/download.aspx?id=138072&guid=7601d894-7f01-4e72-9937-b2fa922c28b1&scheme=1
https://www.editorialmanager.com/comp/download.aspx?id=138072&guid=7601d894-7f01-4e72-9937-b2fa922c28b1&scheme=1

Click here to access/download;Figure;Fig4.jpg

https://www.editorialmanager.com/comp/download.aspx?id=138073&guid=3b9b0d64-02e6-4af7-9536-6c751a07dd1e&scheme=1
https://www.editorialmanager.com/comp/download.aspx?id=138073&guid=3b9b0d64-02e6-4af7-9536-6c751a07dd1e&scheme=1

Click here to access/download;Figure;Fig5.jpg

https://www.editorialmanager.com/comp/download.aspx?id=138074&guid=15b5f960-8c4a-4e79-9a96-73f813506526&scheme=1
https://www.editorialmanager.com/comp/download.aspx?id=138074&guid=15b5f960-8c4a-4e79-9a96-73f813506526&scheme=1

Click here to access/download;Figure;Fig6.jpg

https://www.editorialmanager.com/comp/download.aspx?id=138075&guid=cdb647e8-2ee1-4e73-bbdc-77de178cf7bd&scheme=1
https://www.editorialmanager.com/comp/download.aspx?id=138075&guid=cdb647e8-2ee1-4e73-bbdc-77de178cf7bd&scheme=1

Click here to access/download;Figure;Fig7.jpg

https://www.editorialmanager.com/comp/download.aspx?id=138076&guid=75704dd2-6b1e-41fc-b61d-26eccd05ae20&scheme=1
https://www.editorialmanager.com/comp/download.aspx?id=138076&guid=75704dd2-6b1e-41fc-b61d-26eccd05ae20&scheme=1

Click here to access/download;Figure;Fig8.jpg

https://www.editorialmanager.com/comp/download.aspx?id=138077&guid=2742b108-d7f0-4bb0-b555-c20f648c09ad&scheme=1
https://www.editorialmanager.com/comp/download.aspx?id=138077&guid=2742b108-d7f0-4bb0-b555-c20f648c09ad&scheme=1

Click here to access/download;Figure;Fig9.jpg

https://www.editorialmanager.com/comp/download.aspx?id=138078&guid=c569d3ea-60a0-42ce-806f-d8df89c14767&scheme=1
https://www.editorialmanager.com/comp/download.aspx?id=138078&guid=c569d3ea-60a0-42ce-806f-d8df89c14767&scheme=1

Click here to access/download;Figure;Fig10.jpg

https://www.editorialmanager.com/comp/download.aspx?id=138079&guid=c50de7af-86df-4209-9855-4a96dd89c6c5&scheme=1
https://www.editorialmanager.com/comp/download.aspx?id=138079&guid=c50de7af-86df-4209-9855-4a96dd89c6c5&scheme=1

Click here to access/download;Figure;Fig11.jpg

https://www.editorialmanager.com/comp/download.aspx?id=138080&guid=b19fba2e-bfbf-47c4-81f0-2117d14d442f&scheme=1
https://www.editorialmanager.com/comp/download.aspx?id=138080&guid=b19fba2e-bfbf-47c4-81f0-2117d14d442f&scheme=1

Summary of Differences

Click here to access/download
Supplementary Material

Summary of Differences.pdf

https://www.editorialmanager.com/comp/download.aspx?id=138085&guid=85deedec-ca53-41e6-a520-f09e2ea618fa&scheme=1

