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Abstract. Spoken dialogue system interfaces are gaining increasing attention, 

with examples including Apple’s Siri, Amazon’s Alexa, and numerous other 

products. Yet most existing solutions remain heavily data-driven, and face 

limitations in integrating and handling data semantics. They mainly rely on 

statistical co-occurrences in the training dataset and lack a more profound 

knowledge integration model with semantically structured information such as 

knowledge graphs. This paper evaluates the impact of performing knowledge 

base integration (KBI) to regulate the dialogue output of a deep learning 

conversational system. More specifically, it evaluates whether integrating 

dependencies between the data, obtained from the semantic linking of an external 

knowledge base (KB), would help improve conversational quality. To do so, we 

compare three approaches of conversation preprocessing methods: i) no KBI: 

considering conversational data with no external knowledge integration, ii) All 

Predicates KBI: considering conversational data where all dialogue pairs are 

augmented with their linked predicates from the domain KB, and iii) Intersecting 

Predicates KBI: considering conversational data where dialogue pairs are 

augmented only with their intersecting predicates (to filter-out potentially useless 

or redundant knowledge). We vary the amount of history considered in the 

conversational data, ranging from 0% (considering the last dialogue pair only) to 

100% (considering all dialogue pairs, from the beginning of the dialogue). To 

our knowledge, this is the first study to evaluate knowledge integration in the 

preprocessing phase of conversational systems. Results are promising and show 

that knowledge integration – with an amount of history ranging between 10% 

and 75%, generally improves conversational quality. 

 

Keywords. Conversational dialogue systems, data semantics, knowledge base, 

knowledge integration, conversational data preprocessing.  

 
1 Introduction 
 

Spoken dialogue system interfaces are gaining increasing attention, with examples 

including Apple’s Siri, Google Assistant, Microsoft’s Cortana, Amazon’s Alexa, 

and numerous other products. Most existing solutions utilize deep learning, where 

recurrent neural networks (RNNs) have been successfully adapted to dialogue 

systems through encoder-decoder architectures [31]. While the main advantage of 

deep (RNN) learning is its reduced feature engineering, it often requires large 

amounts of labeled data (which are not always available), and purely data-driven 

learning can lead to unexpected results (depending on the quality of the training 
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data) [20, 29]. In this context, recent works in language representation and 

processing, e.g., [1, 5, 12, 16], have investigated the integration of external domain 

knowledge to augment the training of deep learners. Yet their applications and 

related data preprocessing do not target conversational dialogue systems.  

The development of an RNN-based dialogue system consists of four main 

steps: i) preprocessing the conversational dataset at hand to use as the training data, 

ii) building the RNN responsible for inferring dialogue policies from the 

conversational data, iii) training the model with and without testing and eventually 

preprocessing external knowledge, and iv) representing the external knowledge 

alongside the conversational data to compare the obtained results. In this context, 

data preprocessing techniques for end-to-end RNN-based conversational systems 

seem to lack common grounds and comparative evaluations. Results in [24] show 

that data representation plays a crucial role in the performance of a neural network. 

In other words, the initial preprocessing step, including input data and context 

representation, is of central importance in building an end-to-end RNN-based 

dialogue system, and needs to be properly designed and fine-tuned before diving 

deeper into external knowledge integration and processing. 

This paper evaluates the impact of performing knowledge base integration 

(KBI) to regulate the dialogue output of a deep learning conversational system. 

More specifically, it evaluates whether integrating dependencies between the 

data, obtained from the semantic linking of an external knowledge base (KB), 

would help improve conversational quality. In contrast with most existing 

solutions (cf. Section 2), where the authors rely solely on the quality of the 

training data to improve conversational quality, this study aims at evaluating 

whether integrating additional dependencies between the data, obtained from 

the semantic linking of an external KB, would help improve conversational 

quality. To do so, we evaluate and compare three approaches of conversation 

preprocessing methods: i) No KBI: considering conversational data with no 

external knowledge integration, ii) All Predicates KBI: considering 

conversational data where all dialogue pairs are augmented with their linked 

predicates from the domain KB, and iii) Intersecting Predicates KBI: 

considering conversational data where dialogue pairs are augmented only with 

their intersecting (common) predicates (in order to reduce and filter-out 

potentially useless or redundant knowledge). For each of the mentioned 

approaches, we vary the amount of history considered in the conversational 

data, ranging from 0% (considering the last dialogue pair only) to 100% 

(considering all dialogue pairs, from the beginning of the dialogue). To our 

knowledge, this is the first study to evaluate knowledge integration in the 

preprocessing phase of conversational systems. Results are promising and show 

that knowledge integration – with an amount of history ranging between 10% 

and 75%, generally improves conversational quality.  

The remainder of this paper is organized as follows. Section 2 briefly 

reviews the related works. Section 3 describes our proposal and the suggested 

conversation preprocessing methods. Section 4 describes our experimental 

evaluation and results, before concluding with future work in Section 5. 

 

 

 

 



2 Related Works 
 

2.1. Conversational Systems 
 

The main functionality of a spoken dialogue system consists in decoding text utterances 

to extract semantic information through spoken language understanding techniques 

[34]. The semantic representation of every utterance is then processed by a dialogue 

state tracker, which estimates the dialogue state in order to decide what action to take, 

according to a pre-defined dialogue policy. Such modular architectures depend to a 

large extent on a series of hierarchical handcrafted rules to adapt the dialogue policy 

according to the detected entities and to the utterance intent. This may work, with much 

effort, for restricted domains where the number of intents is generally limited. However, 

the extraction of semantic information becomes much more intricate when shifting to a 

more general domain environment, or when the dialogue is required to cover more 

features during the conversation. Providing an exhaustive list of references for such 

traditional dialogue systems is out of the scope of the current work. However, recent 

advances in end-to-end training of neural networks, along with the availability of large-

scale conversation datasets [23] has permitted to directly infer dialogue policy from 

conversational data. Notably, recurrent neural networks (RNNs) have been successfully 

adapted to dialogue systems through encoder-decoder architectures [31]. While the 

main advantage of (deep) RNN learning is its reduced feature engineering, yet it often 

requires large amounts of labeled data (which are not always available), and the purely 

data-driven learning can lead to unexpected results (depending on the quality of the 

training data) [20, 29]. However, integrating domain knowledge, in the form of an 

external knowledge base (KB) semantic linking approach – which we refer to as KB 

Integration (KBI) – has many advantages, including: i) resolving ambiguity in 

language, ii) performing semantic-aware data integration, and iii) linking conversations 

with relevant documents and meta-data through semantic search and semantic 

similarity evaluation. KBI does introduce an increase in training time and computation, 

which might not be a major concern since the training is done offline, prior to system 

run-time. 

 

2.2. Generative Sequence-to-Sequence Deep Learning Models 
 

Generative sequence-to-sequence (seq2seq) models follow the line initiated by Ritter 

et al. [22] who treats the generation of conversational dialogue as a statistical machine 

translation problem. Seq2seq models have recently shown promising results, mapping 

complicated structures together. This has direct applications in natural language 

understanding [28], and in dialogue response generation by mapping queries with 

responses [26], such as in recent works [25, 26] where RNNs have been used to model 

dialogue in short conversations. Seq2seq models have also been used for neural 

machine translation [2, 15, 28], and have achieved remarkable results in syntactic 

constituency parsing [30], and in image captioning [32]. As it is the case for most deep 

learning models, seq2seq requires little feature engineering and domain specificity 

whilst matching or surpassing state-of-the-art results. However, these models, being 

based on recurrent neural networks (RNNs), suffer from the vanishing gradient 

problem, that’s why variants of Long Short-Term Memory (LSTM) RNNs [11] are 

mostly used. Yet it is often very hard to control the output of such models, primarily 

determined by statistical co-occurrences in the used training data with limited synthesis 

of additional external knowledge (cf. Section 2.3). Furthermore, such approaches are 



still unable to generate coherent responses [17] which remains a major drawback for 

conversational dialogue applications. 

 

2.3. Deep Neural Models with External Knowledge 
 

Incorporating external knowledge within deep neural models has been of increasing 

interest recently, promising to enhance generalization, increase interpretability, and 

control network output. Recent works in  [12, 13], have focused on transferring logical 

knowledge into diverse neural network architectures by imposing posterior constraints 

on the network. Also, the authors in [5] have used a structured label relation graph to 

improve object classification. Other approaches integrate domain knowledge on 

training time, consist in integrating first order logic with Bayesian models [6], or 

deriving probabilistic graphical models for Markov logic networks from a set of rules. 

Also, in [1] a novel neural knowledge language model was developed, bringing 

symbolic knowledge from a knowledge graph into the expressive power of RNN 

language models. In a related study, the authors in [17] improve generative models by 

learning external knowledge, represented as distributed embeddings, and refined during 

training time to increase model consistency and infer speaker-specific characteristics. 

External knowledge integration approaches have also been investigated with neural 

networks using external memory [4, 14, 27], where a long-term memory structure acts 

as a (dynamic) knowledge base. However, the latter approaches focus on learning 

attention models over unstructured data, whereas we aim to link to entities using a 

structured knowledge base (KB). 
 

3 Proposal: Preprocessing Techniques for Conversational RNN 
 

We process the dialogue as a seq2seq learning problem within a neural encoder-decoder 

architecture. The overall architecture of our approach is shown in Fig. 1.  

 

 

 

Fig. 1. Simplified activity diagram describing our approach 

 

3.1. Data Representation 
 

We adopt a typical data representation model where dialogue utterances are represented 

as a sequence of user requests u and system responses s: (u1, s1), (u2, s2), …, (uk, sk), and 

k represents the number of turns in the dialogue [33]. More specifically, we first parse 

the raw text, split it into conversations, and then split every conversation into turns, 

where every turn consists of a pair of user utterance and the corresponding system 

response. In order to easily process the dialogue within a seq2seq learning problem, we 



represent each word in every utterance and reply as a one-hot vector1. Additionally, we use 

a unique index per word to represent the input and targets of the network.  

Note that the different preprocessing techniques considered in this study will 

produce different variations of the above-mentioned data representation, which we 

present and discussion in the following sections. 

 

3.2. Context and History 
 

We define the context of a dialogue training pair (ui, si) as ([u1, u2,…, ui-1, ui], si), where 

the network is fed: a concatenation of all previous user utterances (i.e., the user request 

history) up until the current one ui, as well as the current system response si. 

Accordingly, we define the history of a dialogue as the context of the dialogue starting 

from the present utterance, by specifying the percentage of the previous utterance that 

will be included in the following one. For instance, ([u1
50%, u2

50%,…, ui-1
50%, ui], si) 

represents 50% of (ui, si)’s dialogue history where ui-1
50% represents half of ui-1’s textual 

tokens, and so forth. Similarly, ([u1
100%, u2

100%,…, ui-1
100%, ui], si) represents 100% of 

the dialogue history, and is equivalent to the complete context of training pair (ui, si), 

i.e., ([u1, u2,…, ui-1, ui], si). 
 

3.3. RNN Set-up 
 

We utilize a typical seq2seq network where two RNNs work together in order to 

transform one sequence into another. The first network, i.e., the encoder, reads the input 

sequence and condenses it into a vector using typical one-hot-encoding. The decoder 

network reads the vector and its context and transforms it into an output sequence. More 

specifically, the decoder network accepts as input the context vector which includes the 

history of the entire sequence. At every decoding stage, the decoder is given an input 

token and a hidden state where the context vector serves as an initial hidden state. A 

problem with typical decoders is that they process the complete context vectors which 

carry the dialogue’s entire sequence (100% history). For this reason, and in order to 

improve our model, we add an attention mechanism which teaches the decoder to focus 

on a particular part of the input sequence. To do so, we compute a set of attention 

weights, and multiply them by the encoder output vectors to create a weighted 

combination which contains information about the specific part of the input sequence 

that helps the decoder produce the right output sequence. The attention weights are 

calculated using an additional feed-forward layer, which accepts as input the decoder’s 

input and hidden states and produces the weights accordingly.  
 

3.4. Knowledge Representation 
 

We represent domain knowledge in the form of a machine readable knowledge base 

(KB), consisting of nodes and edges, where nodes represent groups of 

words/expressions and edges represent the semantic links connecting the nodes 

(synonymy, hyponymy (Is-A), meronymy (Part-Of), etc. [19]). The latter can also be 

represented as sets of triplets: concept1-relationship-concept2, or as more commonly 

known: subject-predicate-object triplets [10] (cf. Fig. 2). 
 

                                                 
1 It is called one-hot because only one bit is “hot” or TRUE at any time. For example, a 3-bit one-hot encoding would 

have three states: 001, 010, and 100, compared with 23 binary combinations obtained with binary encoding. Note 

that other encodings such as word2vec and GloVe vetor representations can be used. 



 

 

 
Subject Predicate Object 

Liza hasPrice Expensive 

Il_Sorrentino hasPrice Expensive 

Chez_Pippo hasPrice Expensive 

Roadsters hasPrice Moderate 

Il_Sorrentino hasLocation Paris 

Chez_Pippo hasLocation Paris 

Liza hasLocation Paris 

Roadsters hasLocation Beirut 

Il_Sorrentino hasCuisine Italian 

Napoli hasCuisine Italian 

Chez_Pippo hasCuisine French 

Liza hasCuisine Lebanese 

Roadsters hasCuisine Lebanese 
 

 

Fig. 2. Sample KB tailored base on DSRC2 [7] 

 

In the following, we evaluate the impact of performing KB integration (KBI) at the data 

preprocessing stage, to regulate the dialogue output of a conversational system. 

 

3.5. Data Preprocessing Techniques 
 

As motivated previously, data preprocessing in conversational systems is of central 

importance in building an end-to-end RNN approach. For this reason, we propose and 

evaluate three methods for KBI at the input and output of the encoder and decoder 

networks: i) No KBI, ii) All Predicates KBI, and iii) Intersecting Predicates KBI. These 

methods can be applied to preprocess the training, the validation, and the testing data 

sets. 
 

3.5.1. No Knowledge Base Integration (No KBI) 
 

This is the elementary approach where the dialogue exchange is represented in its most 

basic form: (u1, s1), (u2, s2), . . . (uk, sk), i.e., as a sequence of pairs of user utterance u 

and system reply s tokens. We do not consider any external knowledge here and vary 

dialogue history to include more or less of the previous user utterances following our 

context model: ([u1, u2,, . . . , ui], si) where the system is fed an amount of previous user 

utterances following user-specified history percentage (cf. Section 3.2).  

Consider for instance the examples in Table 1: 0% history in considered in Table 

1.a where no previous user utterances are included in the training pairs, 50% history 

is considered in Table 1.b where the first half of the previous user utterances is 

included in the training pair, and 100% history is considered in Table 1.c where all the 

previous user utterances are included in the training pair. By observing this 

representation, one can notice that the size of the training data increases significantly 

with the increase in the percentage of history. This will impact both training speed and 

quality as we will observe in the experimental evaluation section. 

 

 

 

 

 
 



Table 1. Sample examples for No KBI preprocessing approach1 
 

Text in red represents the additions from previous user utterance history 
 

a. 0% history 
 

Pair User Utterance System Response 

1 Hello Hi, how can I help you? 

2 
I would like to book a reservation at an expensive 

restaurant in Paris 

Sure, I will look one up 

3 
<Silence> Do you have a cuisine 

in mind? 

4 
Italian would be great Okay, how about Il 

Sorrentino? 
 

b. 50% history 
 

Pair User Utterance System Response 

1 Hello Hi, how can I help you? 

2 
I would like to book a reservation at an expensive 

restaurant in Paris 

Sure, I will look one up 

3 
<Silence> I would like to book Do you have a cuisine in 

mind? 

4 
Italian would be great <Silence> I would Okay, how about Il 

Sorrentino? 
 

c. 100% history  No KBI 
 

Pair User Utterance System Response 

1 Hello Hi, how can I help you? 

2 
I would like to book a reservation at an expensive 

restaurant in Paris Hello 

Sure, I will look one up 

3 
<Silence> I would like to book a reservation at an 

expensive restaurant in Paris Hello 

Do you have a cuisine in 

mind? 

4 
Italian would be great <Silence> I would like to book a 

reservation at an expensive restaurant in Paris Hello 

Okay, how about Il 

Sorrentino? 

 

3.5.2. All Predicates KBI 
 

Our ambition is to integrate knowledge at the level of the preprocessing step. As such, 

we introduce the All predicates KBI representation, which scans each word token in 

the current user utterance to identify matching objects in the reference KB. Then, it 

intersects the subjects connected with the matching object predicates and appends 

them to the user utterance. It  also allows appending a varying amount of dialogue 

history to include more or less of the previous user utterances with their augmented 

KB subjects. 

Consider in Table 2 an extension of the examples from Table 1: 10% history in 

Table 1.a where no previous user utterances are included in the training pairs, 50% 

history in Table 1.b where the first half of the previous user utterances is included in 

the training pair, and 100% history in Table 1.c where all the previous user utterances 

are included in the training pair. 
 

 

 

 

                                                 
1   All examples presented in the paper are prepared based on the real dialogues from the restaurant reservation 

system dataset: DSTC2 [9], using the dataset’s reference KB (cf. Fig. 2). 



Table 2. Sample examples extended from Table 1, to represent All Predicates KBI 

preprocessing approach 
 

Text in red represents the additions from previous user utterance history 

Text in blue represents the additions of subject tokens from the knowledge base 

Test underlined represents a matching user utternance with an object from the knowledge base 
 

a. 0% history 
 

Pair User Utterance System Response 

1 Hello Hi, how can I help you? 

2 
I would like to book a reservation at an expensive 

restaurant in Paris Liza Chez_Pippo il_Sorrentino 
Sure, I will look one up 

3 <Silence> 
Do you have a cuisine in 

mind? 

4 Italian would be great Il_Sorrentino Napoli 
Okay, how about 

Il_Sorrentino? 
 

b. 50% history 
 

Pair User Utterance System Response 

1 Hello Hi, how can I help you? 

2 
I would like to book a reservation at an expensive 

restaurant in Paris Liza Chez_Pippo il_Sorrentino 
Sure, I will look one up 

3 <Silence> I would like to book a reservation at an 
Do you have a cuisine in 

mind? 

4 
Italian would be great Il_Sorrentino Napoli <Silence> I 

would like to 

Okay, how about 

Il_Sorrentino? 
 

c. 100% history 
 

Pair User Utterance System Response 

1 Hello Hi, how can I help you? 

2 
I would like to book a reservation at an expensive 

restaurant in Paris Liza Chez_Pippo il_Sorrentino Hello 
Sure, I will look one up 

3 

<Silence> I would like to book a reservation at an 

expensive restaurant in Paris Liza Chez_Pippo 

il_Sorrentino Hello 

Do you have a cuisine in 

mind? 

4 

Italian would be great Il_Sorrentino Napoli <Silence> I 

would like to book a reservation at an expensive restaurant 

in Paris Liza Chez_Pippo il_Sorrentino Hello 

Okay, how about 

Il_Sorrentino? 

 

While the All Predicates KBI approach seems promising, it presents a major drawback: 

for every single matching object token between a training pair and the reference KB, 

this approach will retrieve all matching subjects whose number might be significantly 

large, depending on the size of the KB. Consider for instance the example in Table 3, 

where certain pairs contain hundreds of matching entries, while other pairs contain 

only a few. This makes the dialogue unbalanced in terms of the number of terms per 

sequence. While Table 3 presents a case for 0% history, the problem will be further 

exacerbated when including more of the conversation history, as shown in Table 4.  

Note that in the last pair of Table 4, we have thousands of entries, which will 

probably make the training model overfitted, and will thus reflect badly on the results. 

In other words, a single training pair with only one matching object token might end 

up encompassing a huge number of subject tokens, resulting in crowded (oversized) 

training pairs which would negatively affect both training time and quality (including 

potentially noisy data entries). 

 

 

 



Table 3. Crowded data example for All Predicates KBI with 0% history 
 

Pair User Utterance System Response 

1 Hello Hi, how can I help you? 

2 
I would like to book a reservation at an expensive 

restaurant in Paris Liza Chez_Pippo il_Sorrentino 
Sure, I will look one up 

3 <Silence> 
Do you have a cuisine in 

mind? 

4 
Italian would be great (250 italian restaurants augmented 

here…) 

Okay, how about 

Il_Sorrentino? 

5 
I think I will go for Lebanese instead 

(250 Lebanese restaurants augmented here…) 

Sure, I have found ten in 

Paris 

6 <Silence> Anything else? 

7 
I would rather have them in madrid (300 restaurants in 

madrid augmented here…) 

I will look for restaurants 

in madrid 

8 

Please make sure the restaurants are in a moderate price 

range (1500 moderately priced restaurants augmented 

here…) 

I will have them ready in 

no time 

 
Table 4. Crowded data example for All Predicates KBI with 100% history 

 

Pair User Utterance System Response 

1 Hello Hi, how can I help you? 

2 
I would like to book a reservation at an expensive 

restaurant in Paris Liza Chez_Pippo il_Sorrentino Hello 
Sure, I will look one up 

3 

<Silence> I would like to book a reservation at an 

expensive restaurant in Paris Liza Chez_Pippo 

il_Sorrentino Hello 

Do you have a cuisine 

in mind? 

4 
Italian would be great (250 Italian restaurants augmented 

here…) + (18 terms from pair 3) 

Okay, how about 

Il_Sorrentino? 

5 

I think I will go for Lebanese instead  

(250 Lebanese restaurants augmented here…) + (~250 

from pair 4) 

Sure, I have found ten 

in Paris 

6 <Silence> + (~500 from pair 5) Anything else? 

7 
I would rather have them in madrid (300 restaurants in 

madrid augmented here…) + (~500 from pair 6) 

I will look for 

restaurants in madrid 

8 

Please make sure they are in moderate price range (1500 

moderately priced restaurants augmented here…) + (~800 

from pair 5) 

I will have them ready 

in no time 

  

3.5.3. Intersecting Predicates KBI 
 

By closely analyzing the example in Table 4, one can realize that the All Predicates 

KBI approach does not accumulate the user’s choices on every new request. For 

instance, if the user asks for “Italian” in pair #3, and then “expensive” in pair #4, we 

would expect to have in pair #4 restaurants that intersect both descriptions, i.e., 

“expensive Italian” restaurants,  instead of retrieving restaurants of each description 

separately. To solve this problem, as well as the data crowding issue discussed in the 

previous sub-section, we introduce a dedicated data structure that maps two entries: 

one storing keys as the KB predicates, and the other storing values as the KB objects. 

The contents of this map are updated with new values as the system iterates over each 

user-system pair. At each pair, we return the intersection of the subjects corresponding 

to these predicates if the pair contains a predicate itself. We refer to this enhanced 

approach as the Intersection Predicated KBI solution. 

Using the same examples from Tables 3 and 4, we showcase the following three 

samples using the Intersecting Predicates KBI approach. In Table 5.b (50% history), 

we update the map at each pair with the new objects, and then insert the intersection 



of the corresponding subjects at the end of the same pair. If the pair does not contain 

an object, then we insert 50% of the previous objects. The same goes for Table 5.c 

(100% history).  
 

Table 5. Applying Intersecting Predicates KBI on the example from Tables 3 and 4. 
 

a. 0% history 
 

Pair User Utterance Map System Response 

1 Hello 
{ hasPrice: “”, hasLocation: “”, 

hasCuisine : “” } 

Hi, how can I help 

you? 

2 

I would like to book a 

reservation at an expensive 

restaurant in Paris Liza 

Chez_Pippo il_Sorrentino 

{ hasPrice: “expensive”, hasLocation: 

“Paris”, hasCuisine : “” } 

Sure, I will look one 

up 

3 <Silence> 
{ Price: “expensive”, hasLocation: 

“Paris”, hasCuisine : “” } 

Do you have a 

cuisine in mind? 

4 
Italian would be great 

Il_Sorrentino 

{ hasPrice: “expensive”, hasLocation: 

“Paris”, hasCuisine : “Italian” } 

Okay, how about 

Il_Sorrentino? 
 

b. 50% history  
 

Pair User Utterance Map System Response 

1 Hello 
{ hasPrice: “”, hasLocation: “”, 

hasCuisine : “” } 

Hi, how can I help 

you? 

2 

I would like to book a 

reservation at an expensive 

restaurant in Paris Liza 

Chez_Pippo il_Sorrentino 

{ hasPrice: “expensive”, hasLocation: 

“Paris”, hasCuisine : “” } 

Sure, I will look one 

up 

3 
<Silence> Liza 

Chez_Pippo 

{ hasPrice: “expensive”, hasLocation: 

“Paris”, hasCuisine : “” } 

Do you have a 

cuisine in mind? 

4 
Italian would be great 

Il_Sorrentino 

{ hasPrice: “expensive”, hasLocation: 

“Paris”, hasCuisine : “Italian” } 

Okay, how about 

Il_Sorrentino? 
 

c. 100% history 
 

Pair User Utterance Map System Utterance 

1 Hello 
{ hasPrice: “”, hasLocation: “”, 

hasCuisine : “” } 

Hi, how can I help 

you? 

2 

I would like to book a 

reservation at an expensive 

restaurant in Paris Liza 

Chez_Pippo il_Sorrentino 

{ hasPrice: “expensive”, hasLocation: 

“Paris”, hasCuisine : “” } 

Sure, I will look one 

up 

3 
<Silence> Liza 

Chez_Pippo Sorrentino 

{ hasPrice: “expensive”, hasLocation: 

“Paris”, hasCuisine : “” } 

Do you have a 

cuisine in mind? 

4 
Italian would be great 

Il_Sorrentino 

{ hasPrice: “expensive”, hasLocation: 

“Paris”, hasCuisine : “Italian” } 

Okay, how about 

Il_Sorrentino? 

 

One can realize that Intersecting Predicates KBI allows to gradually converge toward 

the subject tokens that match the user’s evolving requests, and thus significantly 

reduces the amount of knowledge added to the individual training pairs, compared with 

All Predicates KBI described previously. 

 

 
 



4 Experimental Evaluation 
 

4.1. Experimental Data 
 

To evaluate our approach, we utilize the Dialogue State Tracking Challenge 2 (DSTC2) 

dataset [9] consisting of restaurant reservation user-system conversation pairs. These 

dialogues are derived from a real-world system rendering the data raw and real, while 

training a task-oriented dialogue system. The dialogs come from 6 conditions consisting 

of the combinations of 3 dialog managers and 2 speech recognizers. There are roughly 

500 dialogs in each condition, of average length 7.88 turns from 184 unique users. In 

our current study, we use the raw version of dataset from [3] which only includes user 

and system utterances1. We also utilize DSTC2’s underlying KB2 (cf. Fig. 2) as the 

reference source of knowledge when performing KBI. It consists of 8400 subject-

predicate-object triplets where subjects represent restaurant names, predicates represent 

semantic relationships, e.g., hasPrice, hasLocation, or hasCuisine, and objects 

represent relationship properties, e.g., price could be cheap, moderate, or expensive. 

For better visualization and understanding of the results, data is pre-processed and 

cleaned such that all API calls are removed before using the data in any further steps. 

 

4.2. Experimental Results 
 

The evaluation of conversational dialogue systems remains an open problem. With the 

lack of structure in the dialogues, it remains unclear which attributes of the conversation 

are relevant to measure the response’s quality. Evaluations can be of two types: i) 

coarse-grained, which focus on the appropriateness (accuracy) of a response, and ii) 

fine-grained, which focus on the specific behaviors a dialogue system should manifest 

(such as perceived human likeness) [6]. In this study, we adopt the former approach 

(coarse-grained) and utilize k-fold cross validation applied on each of the three 

preprocessing variations: No KBI, All Predicates KBI, and Intersecting Predicates KBI. 

For each variation, we vary the amount of conversational history from 0%, 10%, 25%, 

50%, 75%, to 100%. Also, for each amount of history, we perform two degrees of k-

fold: k= 5 and k=10. This brings the total number of trained models to 3*6*(5+10) = 

270, requiring a total number of 2,845 hours to train. For every trained model, we 

compare the generated system response with the expected response obtained from the 

reference dataset, and then compute the number of matching responses (i.e., hits). We 

then evaluate accuracy as the sum of all the matching responses (hits) over the total 

number of compared responses. Fig. 3 shows the average accuracy levels for the 

different iterations of each k-fold degree. 

Comparing No KBI with All Predicates KBI: we notice that performing KBI 

generally improves overall accuracy, except at the boundaries: with 0% and 100% 

history. This is probably due to the following: i) at 100% history, many subject tokens 

are added to every training pair which leads to overfitting; ii) at 0% history, some user-

system pairs contain thousands of subjects from the KB while other pairs contain only 

a few or none at all, which renders the training data unbalanced and unpredictable; 

hence iii) an amount of history between the boundaries allows the training data to 

become more balanced which generally produces better results.  

 

                                                 
1 Available online at: https://github.com/HLTCHKUST/Mem2Seq/tree/master/data/dialog-bAbI-tasks 
2 https://github.com/HLTCHKUST/Mem2Seq/blob/master/data/dialog-bAbI-tasks/dialog-babi-kb-all.txt 



Comparing Intersecting Predicates KBI with alternatives: This approach yields the 

highest accuracy levels for every history %. This is because it keeps the dataset 

balanced while making most of the KB by converging to a handful of useful subject 

tokens as the dialogue evolves. One important observation is that the accuracy of 

Intersecting Predicates KBI peaks almost in the middle of the history % (at around 

50%). This concurs with the observations made in the previous paragraph regarding the 

need for a balanced training set to improve training quality.  

 

 
 

a. Results for k=5 

 
 

b. Results for k=10 
 

Fig. 3. Accuracy of conversation results applied on DSTC2 dataset, using k-fold cross 

validation with k=5 and k=10 

 

Concerning training time, results in Fig. 4 show that the All Predicates KBI approach 

introduces a significant increase in training time compared with its counterparts. This 

is due to the substantial increase in training data with the inclusion of all matching 

predicates in every training pair, resulting in oversized training pairs which require 

more time to process and train. While the Intersection Predicates KBI approach 
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requires more training time than its No KBI counterpart (cf. Fig. 4.b), yet the two 

approaches are almost undiscernible compared with All Predicated KBI (cf. Fig. 4.a). 

 

 
 

a. Comparing all three approaches   

 

 
 

b. Comparing No KBI and Interescting Predicates KBI only 
 

Fig. 4. Training time of conversation results applied on DSTC2 dataset, using k-fold cross 

validation with k=5 (similar results are obtained for k=10, with an average 5% increate in time)  

 

5  Conclusion 
 

Knowledge base integration (KBI) in the training of sequence-to-sequence (seq2seq) 

generative conversational approaches has not been widely explored so far. In this work, 

we evaluate and compare three approaches of conversational data preprocessing that 

involve knowledge integration: i) No KBI: considering dialogue pairs with no external 

knowledge integration, ii) All Predicates KBI: where all dialogue pairs  are augmented 

with their linked predicates from the KB, and iii) Intersecting Predicates KBI: where 

dialogue pairs are augmented only with their intersecting predicates from the KB. The 

latter are prerequisites to generating semantically structured text integrated at training 

time. Results show that KBI generally improves overall accuracy, except at the 

boundaries: with 0% and 100% history where the models tend to become either 

unbalanced due to discrepancies in the sizes of the training pairs (with 0%), or overfitted 
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(at 100%). Intersecting Predicates KBI produces the best accuracy levels since it tends 

to keep the training dataset balanced, compared with its All Predicates KBI alternative. 

Future work includes evaluating KBI with different conversational models such as 

BERT [21], XLNet [35], and RoBERTa [18], and comparing them with our seq2seq 

RNN-based solution. This also requires combining multiple conversational datasets 

from different domains, along with their reference KBs, to analyze how different 

models react accordingly. The latter is an important step towards creating a general 

purpose spoken dialogue system. Considering KBI with multilingual solutions, e.g., [7, 

8], is another future direction. 
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