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Abstract. Establishing a healthy lifestyle has become a very important aspect in people’s lives. The latter requires maintaining a 

healthy nutrition by considering the nature and quantity of foods being consumed, allowing to regulate one’s intake and consumption 

of calories and nutrients. As a result, people reach out for nutrition experts which services are costly, time consuming, and not readily 

available. While various e-solutions have been developed to perform meal planning, yet most of them lack a completely automated 

process and require domain expert intervention at different stages of the recommendation process (e.g., identifying macronutrient 

distribution, providing pre-defined meal plans, or combining recommended foods into meal structures). In addition, most solutions 

focus on fulfilling the patients’ nutrition requirements (in terms of caloric intake and macronutrients) while disregarding other relevant 

factors such as patient food preferences, food variety, food-meal compatibility, and inter-food compatibility. Hence, there is a need 

for an automated solution to produce a full-fledged meal plan from scratch, based on a recommended caloric intake and considering 

multiple factors. In this study, we introduce a novel solution titled MPG for automated Meal Plan Generation recommendations, 

designed based on an adaptation of the transportation optimization problem to simulate the “human thought process” involved in 

generating daily meal plans. MPG allows to: (i) generate plans which fulfill a recommended caloric intake, given a set of available 

foods, while (ii) personalizing the plans following patient chosen factors (e.g., food preferences, variety, and compatibility), and (iii) 

evaluating the relevance of the produced plans following patient preferences. We have conducted various experiments involving 9 

human testers and 124 meal plans to test the performance of MPG. Results highlight MPG’s effectiveness in producing “healthy” and 

personalized meal plans while complying with the testers’ preferences. 
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1. Introduction 

Nowadays, establishing a healthy lifestyle has become a very important aspect in people’s lives. The latter requires maintaining a 

healthy nutrition by considering the nature and quantity of foods being consumed, allowing to regulate one’s intake and 

consumption of calories and nutrients. Poor nutrition has been shown to increase the risks of dangerous complications such as 

obesity, diabetes, and other health issues (Ayoub J. et al. 2015, Mattar L. et al. 2015). As a result, people reach out for nutrition 

experts to help them achieve healthy lifestyles. In this context, a few obstacles come to play: (i) the cost of seeking an expert’s help 

which is recurring and non-trivial, (ii) the need to regularly meet with the expert which might not be always practical, and (iii) the 

need for readily accessible health services which might be difficult to provide by a human expert. An alternative popular approach 

is the use of electronic solutions, such as mobile applications and websites that are highly available and provide basic health and 

nutrition services (cf. literature review in Section 3). Yet most of these solutions share major weaknesses, namely: (i) lack of a 

complete automated process either requiring expert intervention, e.g., (Khan A. S. and Hoffmann A. 2003a, Khan A. S. and 

Hoffmann A. 2003b, Suksom N. and Buranarach M. 2010), or requiring the patient (user) to have some technical knowledge about 

nutrition health in order to utilize (and tune the parameters of) the e-solution, e.g., (Evans D. 2017, Livestrong Foundation 2020),  

(iii) performing meal planning or meal plan evaluation based on a combination of pre-fixed plans or pre-defined inputs set by the 

e-solution designer, e.g., (Khan A. S. and Hoffmann A. 2003a, Khan A. S. and Hoffmann A. 2003b, Suksom N. and Buranarach 

M. 2010), and (iii) allowing limited adaptability to the patient’s preferences in terms of food affinity, variety, and compatibility, 

e.g., (MakeMyPlate Inc. 2020, Noor S. et al. 2018, Petot G. J. et al. 1998). Hence, there is a need for an automated solution to 

produce a full-fledged meal plan from scratch, based on a recommended caloric intake and considering multiple patient preference 

factors. 

The main goal of this study is to create an intelligent agent that offers the same meal planning services offered by a human 

nutrition expert albeit doing it through a readily available, fully automated, and cheap e-solution. We aim to automate the process 

of producing personalized meal plans allowing patients to reach their target weight and BFP1, while closely catering to their 

preferences. To achieve the latter services, we introduce a new solution for automated Meal Plan Generation titled MPG, designed 

based on an adaptation of the transportation optimization problem to simulate the “human thought process” involved in generating 

daily meal plans. MPG allows to: (i) generate meal plans which fulfil a recommended caloric intake (e.g., nutrition demand) given 

a set of available foods (e.g., nutrition supply), while (ii) personalizing the plans following patient chosen factors (e.g., assigning 

different weights for food preferences, variety, and compatibility), and (iii) evaluating their relevance following the patients’ 

 

 
 

1   The Body Fat Percentage (BFP) is computed as the ratio of the patient’s body fat weight over the total body weight. It is a common and expressive metric used 

in nutrition health practice (cf. Section 2). 
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preferences. It consists of five main components: (i) macronutrients calculator: computes the amount of macronutrients (i.e., 

carbohydrates, protein, and fat) to fulfil the required caloric intake, (ii) servings calculator: computes the daily amount of servings 

for each of the six primary food categories (i.e., starch, fruits, milk, vegetables, lean meat, and fats) to fulfil the required 

macronutrients, (iii) servings assignor: splits the servings for each of the six primary food categories over the five daily meals (i.e., 

breakfast, snack one, lunch, snack two, dinner)2 based on sample meal plan serving assignments, (iv) food assignor: allocates the 

foods to the five daily meals while meeting all the serving requirements and considering the patient’s preferences, and (v) meal 

plan evaluator: computes the relevance score for every generated meal plan highlighting its compliance with patient preferences. 

We have conducted various experiments involving 9 human testers and 124 meal plans to test the performance of MPG. Results 

highlight MPG’s effectiveness in generating healthy and personalized meal plans, producing recommendations that are on a par 

with those of human nutritionists, while complying with the testers’ preferences. 

The remainder of this paper is organized as follows. Section 2 introduces background notions on nutrition health. Section 3 

briefly reviews the literature and existing e-solutions revolving around meal planning. Section 4 describes our MPG agent, its 

components, and functionalities. Section 5 describes our experimental evaluation and results. Finally, Section 6 concludes with 

future directions. 

 

2. Background 
 

2.1.  Nutrition Health Preliminaries 
 

A preliminary step to generating a meal plan is performing nutrition health assessment, where the human nutritionist collects input 

information regarding the patient, including gender, age, height, and weight. Next, the body mass index (BMI) and the body fat 

percentage (BFP) can be identified as follows (Mahan L. et al. 2012): 
 

𝐵𝑀𝐼= 
𝑊𝑒𝑖𝑔ℎ𝑡(𝐾𝑔)

𝐻𝑒𝑖𝑔ℎ𝑡2(𝑚2)
 (1) 𝐵𝐹𝑃= 

𝐵𝑜𝑑𝑦 𝐹𝑎𝑡 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐾𝑔)×100

𝑇𝑜𝑡𝑎𝑙 𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐾𝑔)
 (2) 

                        
While BMI is an indication of the weight status of a person, yet it is not significant by itself since it disregards the patient’s body 

fat composition. For instance, the author in (Khan A. S. and Hoffmann A. 2003b) demonstrated in a study of 486 subjects that 

about 87% of the patients classified as normal and overweight following BMI were actually obese according to their BFP. Hence, 

the combination of BMI and BFP is usually adopted and allows for a better assessment.  

Once the patient’s BFP is identified (through a simple test that can be performed at a specialized clinic or pharmacy), the expert 

nutritionist can decide on the target BFP and weight of the patient, and the daily caloric intake (CI) required to reach the latter. 

Weight change comes down to the gap between the caloric intake (CI) and the caloric expenditure (CE), meaning the difference 

between the amount of energy acquired from food and the energy consumed by the human body, both measured in Kilocalories 

(Kcal). If the daily CI is larger than the daily CE, the patient will gain weight in the long run, and vice versa (Hall K. D. et al. 2011). 

Once the daily CI has been determined, the expert nutritionist can produce a daily meal plan for the patient.  

In this study, we automate the process of meal plan generation, assuming that nutrition health assessment (i.e., identifying the 

target BFP/weight and the required CI) has already been conducted (either by a human nutritionist or by an automated agent). We 

address the task of automating nutrition health assessment in a dedicated study (Salloum G. and Tekli J. 2021). 

 

2.2. Meal Plan Recommendation 
 

A major service provided by a nutrition expert is translating the daily CI recommendation into an actual daily meal plan, where 

foods can be selected based on many factors, including: macronutrient composition, energy density, patient food preferences, food 

variety, and food compatibility, among others. This can be performed in three main steps: 
 

i. Determining the amount of macronutrients: based on the daily CI, the expert determines in grams (g) the needed amount of 

daily macronutrients, which fall into three categories: carbohydrates, protein, and fat. The latter are the basic constituents of 

any food (Rolls B. 2009). The relationship between macronutrients and energy density can be described as follows: 1 gram 

of carbohydrates or protein contains 4 Kcals, and 1 gram of fat contains 9 Kcals (Rolls B. 2009). Based on the latter, CI can 

be transformed into grams of macronutrients using a set of mathematical formulas (Kathleen M. and Janice R. 2017).  

ii. Determining the number of food servings: based on the needed amount of macronutrients, the expert determines the number 

of servings from five well-defined food categories3 (starch, fruits, milk, vegetables, lean meat, and fats), where each food 

category contains food items sharing similar macronutrient contents based on adjusted serving sizes (Kathleen M. and Janice 

R. 2017). Each serving of a food has about the same amount of macronutrients and calories as the other foods in the same 

category. This allows  selecting multiple alternative options from the list of foods in a certain category by determining the 

number of servings from the category as a whole (Valdez-Pena H. and Martinez-Alfaro H. 2003). Converting the grams of 

macronutrients into food servings can also be computed using a set of well-defined mathematical formulas (Kathleen M. and 

Janice R. 2017). 

 
2  Our solution supports any number of daily meals. In the current study, we adopt a 5-meal plan which is typically adopted in health nutrition literature. 
3  Adopted based on the Diabetic Exchange List suggested by the American Dietetic Association (Kathleen M. and Janice R., 2017). 



iii. Selecting the food items: The final step in meal planning is to transform the number of servings from each category into an 

actual meal plan. Here, meal planning goes beyond providing the correct numbers of servings and macronutrients. Several 

factors can be considered by the human nutrition expert: (i) food preferences of the patient, (ii) compatibility between meal 

and foods (e.g., eggs are compatible with breakfast, whereas meat is compatible with lunch), (iii) inner compatibility between 

foods assigned to the same meal, to make sure that they go well together (e.g., eggs and milk are compatible together, versus 

eggs and fish which might be less compatible), and (iv) variety of foods from day to day. Different from the previous tasks, 

there are no mathematical formulas to perform food item selection. This multi-factor process is intuitively resolved by human 

experts who rely on “common sense” reasoning and expertise to assign the necessary amount of food servings over the five 

meals of the plan, while attempting to respect the factors mentioned above.  

 

While various computerized solutions (cf. Section 3) have attempted to solve the different aspects of the meal planning problem, 

yet, to our knowledge, there is no well-established process to produce a full-fledged meal plan from scratch: based on a 

recommended CI, and performing food selection considering the different factors mentioned above. 

 

3. Related Works 
 

This section briefly describes computerized solutions related to nutrition health and meal planning, organized following their 

computational techniques: (i) linear optimization, (ii) meta-heuristics, (iii) case-based reasoning, and (iv) fuzzy reasoning. We also 

briefly describe (v) existing e-solutions.  

 

3.1. Linear Optimization Methods 
 

One of the earliest approaches to solve the meal planning problem was put forward in 1945 in an attempt to find the least cost meal 

by modeling the problem as a mathematical model and adopting a trial-and-error based approach (Stigler G. 1945). The approach 

produced a list of unstructured foods that meet standard nutrition requirements while optimizing food price. The latter solution was 

later extended and formalized into the so-called Stigler diet problem model (Lancaster L. 1992), which comes down to a linear 

programming problem aiming to minimize  
 

J

1j

 j jc x  subject to 
 

J

1j

   i j j in x b
 

for i=1, 2, …, n, with xj  0 for all j, where cj is the 

cost of the jth food, xj is the quantity of the jth food, nij is the ith nutrient content of the jth food, and bi is the ith nutrient requirement. 

In the past two decades, the Stigler model has been adopted and extended using different variations of the linear programming 

paradigm (e.g., integer programming (Lenstra H. 1983), mixed integer-linear programming (Schniederjans M. 1995), and goal 

programming (McCann-Rugg M. et al. 1983)) to solve the meal planning problem, e.g.,(Bassi L. 1976, Foytik J. 1981, Silberberg 

E. Nutrition and the Demand for Tastes, Valdez-Pena H. and Martinez-Alfaro H. 2003). In (Valdez-Pena H. and Martinez-Alfaro 

H. 2003), the authors use an exchange system for menu planning, offering the option of serving food substitutions from the same 

food group (e.g., for instance substituting 1/2 a cup of pasta with 1/3 cup of white rice, since they both represent a serving from the 

starch food category). The problem is modeled using mixed integer-linear programming with special focus on preference 

maximization. Yet, the approach in (Valdez-Pena H. and Martinez-Alfaro H. 2003) does not consider food-meal compatibility and 

inter-food compatibility, and does not compute food portion sizes. In (McCann-Rugg M., White G. et al. 1983), the authors place 

more emphasis on user food preferences while considering nutrition requirements (e.g., calories and macronutrients) and disregard 

other factors (e.g., inter-food compatibility and food-meal compatibility). The proposed approach does not associate foods into 

meal structures (e.g., breakfast, lunch, dinner), and rather presents a set of recommended foods in the form of an unstructured list 

of suggestions.  

A common problem with linear optimization approaches is that adding more variable constraints (i.e., more restrictions) to the 

problem significantly reduces its feasibility/solvability (Schniederjans M. 1995). This makes it difficult to consider multiple factors 

(e.g., nutrition requirements, food preferences, variety, and compatibility) using this family of approaches. 

 

3.2. Meta-heuristic Methods 
 

A few meta-heuristic approaches, using genetic algorithms or particle swarm optimization techniques, have been developed to 

produce personalized meal plans, e.g., (Ainsworth B. et al. 2011, Fister D. and Fister I. 2016, Noor S., Mohd A. et al. 2018, Seljak 

B. 2009). Compared with linear optimization algorithms, meta-heuristics do not guarantee a globally optimal solution, but rather 

provide a sufficiently good solution to the problem (Bianchi L. et al. 2009, El-Ghazi T. 2009).  

In (Noor S., Mohd A. et al. 2018), the authors introduce a self-adaptive hybrid genetic algorithm to perform menu planning 

for Malaysian adolescent school students aged between 13 and 18. The approach aims at producing daily structured meal plans to 

meet nutrient intake requirements while optimizing meal budget and food variety. Integer encoding is used to map the foods from 

each food category (e.g., fruits, vegetables, starch, etc.) to a chromosome associated with one of six meals (e.g., breakfast, first 

snack, lunch, etc.). The fitness function is evaluated to meet the budget constraint, where the total cost of the candidate solutions 

in the meal should not surpass the budget and the recommended nutrient intake. The produced meal plans were not empirically 

evaluated by nutrition experts. In (Gaál B. et al. 2005), the authors introduce a divide-and-conquer multi-level genetic algorithm to 

produce personalized weekly meal plans, aiming to satisfy macronutrient, user preference, and inter-food compatibility constraints. 

A global fitness function is defined as the sum of multiple individual functions evaluating each criterion. Empirical results show 

that the proposed solution can produce near-optimal meal plans after around 1000 iterations, requiring 10-to-15 minutes of 



processing time. A similar multi-level genetic algorithm is introduced in (Seljak B. 2009), considering economic cost and various 

aesthetic parameters (e.g., taste, color, temperature, and preparation method) to produce an n-day meal plan. Empirical results show 

that 250 iterations are needed to produce feasible solutions, requiring between several minutes and a couple of hours of processing 

time to generate a set of 21-day meal plans. In (Kaldirim E. and Kose Z. 2006), the authors introduce another multi-level genetic 

approach to generate meal plans by optimizing macronutrient fulfillment, user preferences, and food price. The proposed approach 

produces lists of recommended foods as feasible solutions, rather than producing a structured meal plan. In (Fister D. and Fister I. 

2016), the authors introduce a particle swarm optimization solution to produce structured meal plans that can enhance an athlete’s 

performance according to her/his exercise program. It accepts as input: (i) a description of the three-day exercise program of the 

athlete represented by the average heart rate and the duration of each exercise, which can be mathematically converted into the 

amount of burned calories, and (ii) the potential foods that can be assigned to each meal as well as the amount of calories in each 

food. The fitness function attempts to match the amount of calories burned with and the amount of calories contained in the meal. 

Caloric requirements are the only factor considered in the meal planning process, where other factors such as macronutrients, food 

preferences, variety, and compatibility are not considered.  In a recent study in (Türkmenoglu C. et al., 2021), the authors model 

the diet problem as a many-objective multi-dimensional knapsack optimization problem. Given a set of available food items, the 

proposed solution aims at selecting a subset of the items allowing to optimize all objectives simultaneously, without exceeding the 

knapsack capacities. The authors utilize an existing popular many-objective evolutionary algorithm to solve the problem, i.e., non-

dominated sorting genetic algorithm III (NSGA-III) (Deb K. and Jain H., 2014). They consider three objectives in their experiments: 

cost, preference, and preparation time, taking into account both upper-level and lower-level daily nutrient constraints for every 

meal. Experimental results highlight the quality of the recommended foods in evaluating energy and protein satisfaction, and the 

contribution of each food item to the objective functions. Note that the study in (Türkmenoglu C. et al., 2021) focuses on food-

meal recommendation, and does not address the issues of producing meal plan structures and considering composite foods. 
 

3.3. Case-based Reasoning Methods 
 

Case-based reasoning methods, e.g., (Husain W. et al. 2011, Khan A. S. and Hoffmann A. 2003a, Khan A. S. and Hoffmann A. 

2003b, Petot G. J., Marling C. et al. 1998), attempt to recommend meal plans by (i) identifying the best meal plan from a set of 

existing ones and then (ii) adapting and revising the plan to serve the target patient’s needs.  

In (Petot G. J., Marling C. et al. 1998), the authors consider minimum and maximum nutrient constraints and user food 

preferences to select the best meals from a pool of existing meal plans for similar patients. A rule-based pattern regulator mechanism 

is used to refine the selected meals when they do not properly fit their nutrient requirements. Nonetheless, the authors state that 

some of their generated plans contain odd food combinations and lack the human common sense factor. A similar approach is 

introduced in (Khan A. S. and Hoffmann A. 2003a, Khan A. S. and Hoffmann A. 2003b), combining case-based reasoning with a 

rule-based feedback mechanism to produce expert-tailored meal plans. The system accepts as input as a set of patient requirements 

(namely nutrient requirements, and special medical cases such as: liver mal function, constipation, etc.) and a set of possible 

solutions (i.e., candidate meal plans). A fuzzy scoring mechanism is used to score and rank the candidate meal plans based on the 

nutrient requirements of the patient. A domain expert is then tasked with selecting and modifying the “best” meal plan to better 

adapt to the patient’s requirements, while providing an explanation for every modification. The explanations are represented as if-

else rules, which are incrementally acquired and later used to generate meal plans for similar future patients. The study evaluates 

factors such as the number of actions needed and the number of rules needed to produce improved meal plans. For instance, 330 

rules were added by the domain expert before the tool was able to produce its own meal plans, considering only two groups of 

similar patients (Khan A. S. and Hoffmann A. 2003a, Khan A. S. and Hoffmann A. 2003b). Furthermore, expert intervention is 

required to evaluate and determine the nutrient goals for every patient. In (Husain W., Wei L. et al. 2011), the authors combine 

case-based reasoning with a genetic algorithm. A database is set-up to acquire patient health information and their previously 

recommended meal plans. A meal plan generator mechanism is built using a typical genetic algorithm, where: (i) crossover is 

applied on the meal plans to exchange some of their foods, (ii) mutation is performed by stochastically altering the meal plan’s 

food items, and (iii) selection is performed to identify the meals that fit best the user’s nutrition requirements. The patient can 

choose to either accept or alter the suggested meal plan by substituting the recommended foods. Initial experiments show that the 

produced meal plans do not always meet the required nutrition constraints due to the fast convergence of the genetic algorithm. 

The authors suggest increasing the size of the patient database as a potential solution to the convergence problem. The proposed 

solution is mainly focused on fulfilling the patients’ nutrition requirements and does not consider other factors such as food 

preferences, food variety, food-meal compatibility and inter-food compatibility. 

 

3.4. Fuzzy Reasoning Methods 
 

Various methods have been developed to infer the healthiness of meals and meal plans by combining fuzzy reasoning with food 

and patient profile ontologies, e.g., (Lee C. et al. 2009, Lee C.S. et al. 2010, Wang M. H. 2009). Most methods in this category 

address meal plan assessment of existing manually generated meal plans, rather than automated meal plan generation. They make 

use of the Fuzzy Logic (FL) paradigm (Lee C.S., Wang M.H. et al. 2010), as a robust solution designed to deal with uncertainties 

in real-life applications. For instance, the approach in (Wang M. H. 2009) receives as input: a meal suggested or consumed by a 

patient, and provides as output: a fuzzy score highlighting the likelihood of the meal being healthy or not (e.g., a meal plan can be 

considered as 0.3 healthy and 0.7 unhealthy simultaneously, instead of fully belonging to one single category solely). The authors 



in (Wang M. H. 2009) target Taiwanese foods, and utilize a dedicated food ontology describing meals, meal courses, and foods 

with their nutrition information. The latter feed into the fuzzy set definitions that are used in the FL inference mechanism. 

Experimental results on 20 recorded meals show high correlation ( 90%) between human expert and system generated scores. The 

agent requires domain expert intervention to determine the caloric and nutrient requirements of each patient before the fuzzy 

decision making process can take place. The approach in (Wang M. H. 2009) is extended to include a type-2 fuzzy system4 in a 

subsequent study (Lee C., Wang M. et al. 2009), without however showing major improvement over the type-1 fuzzy system 

approach, as stated by the authors. A similar study is introduced in (Lee C.S., Wang M.H. et al. 2010) to perform meal plan 

assessment for patients suffering from diabetes. It produces as output a fuzzy membership score associated with a linguistic variable 

(e.g., “healthy”, “very healthy”, “not healthy”, etc.) to assess the healthiness of a given input meal w.r.t.5 a target patient. 

Nonetheless, the proposed solution does not provide any decision making regarding the ideal energy requirements that patients 

should aspire to: promoting either weight loss or weight gain based on their needs. In (Lee C. et al. 2012, Lee C. and Lan S. 2015), 

the authors integrate evolutionary computation with fuzzy processing, attempting to learn the food ontology’s fuzzy sets and fuzzy 

inference rules by mapping them into a chromosome representation and then applying genetic evolution (via dedicated crossing, 

mutation, and selection operators) to determine the desired output for each case. While the genetic process allows to automate part 

of the fuzzy model generation process, yet domain expert involvement is required in the selection phase, and in determining the 

caloric and nutrient requirements of the participants, as stated by the authors.  

Different from previous fuzzy methods which only perform meal plan assessment, the authors in (Lee C. et al. 2010, Lee C. et 

al. 2008) introduce a solution that accepts as input the foods consumed in the breakfast and lunch meals of a diabetes patient, and 

infers as output the remaining caloric allowance and the needed food servings for the dinner meal. Using the fuzzy food and personal 

profile ontologies from (Lee C., Wang M. et al. 2012), the solution suggests multiple food options from each food category to fit 

the servings’ requirements for dinner, without however producing a complete dinner meal. In other words, it does not combine 

foods to form a complete meal, but rather suggests food options to help the patient manually produce the final dinner meal. 

 

3.5. Existing E-Solutions 
 

Various nutrition and health related mobile and Web applications have been developed recently and are becoming increasingly 

available online. Calorie tracking tools, e.g., (Evans D. 2017, Livestrong Foundation 2020, MyNetDiary Inc. 2020, SparkPeople 

Inc. 2020), assist patients in monitoring their daily caloric intake (CI) and consumed macronutrients by accepting as input the 

patient’s consumed foods, and producing/calculating as output the amount of calories and macronutrients contained in the 

consumed foods. Meal planning tools, e.g., (EatThisMuch Inc. 2020, Fitness Meal Planner 2020, MakeMyPlate Inc. 2020, Yang 

L. et al. 2017), generate daily meal plans based on patient provided CI requirements. One such tool is MakeMyPlate (MakeMyPlate 

Inc. 2020), a mobile application that provides patients with daily pre-defined meal plans fulfilling user specified CI levels. It allows 

the patient to replace a meal with an existing meal stored in the database, without verifying whether the replacement meal is 

calorically equivalent to the original one (which might result in surpassing or dropping below the recommended CI and 

macronutrient amounts). The tool does not consider the patient’s food preferences. Another solution is EatThisMuch (EatThisMuch 

Inc. 2020), which accepts as input the patient’s basic health state information (e.g., gender, age, height, weight, and level of activity) 

in addition to the BFP. It also accepts as input the user’s destination weight in textual from (i.e., maintain weight, lose weight, gain 

weight, and gain muscle), the user’s preferred diet type (e.g., mediterranean, vegetarian), as well as her food preferences (i.e., 

whether the user wants a food item to appear or not in the daily mean plans). The application then produces as output daily meal 

plans. While powerful, yet this solution has a few limitations, namely: (i) allowing the user to generate meal plans for the current 

day only (planning ahead required premium subscription), and (ii) considering user preferences in an “include” or “do not include” 

crisp fashion (rather than allowing a gradient rating of food preferences, e.g., [0, 1] from “not preferable”–to–“highly preferable”, 

which would be more useful in producing adapted meal plans). Fitness Meal Planner (Fitness Meal Planner 2020) is yet another 

online application sharing most of the functionality and limitations of the latter solution. The authors in (Yang L., Hsieh C.K. et al. 

2017) describe an online framework to monitor foods consumed by the patient to help perform personalized meal planning, using 

food image recognition through machine learning. The system learns patient preferences by allowing them to select their favorite 

foods by uploading pictures of them. Then, image analysis is performed through a dedicated convolutional neural network to 

recognize the foods in the picture, allowing the system to later recommend similar foods from a pre-defined food database. The 

aim of the study is to improve the recommendations of survey-based systems (where food preferences are learned through manual 

patient surveys) by using image analysis-based preference learning. Nonetheless, the study in (Yang L., Hsieh C.K. et al. 2017) 

does not produce full-fledged meal plans that meet the CI requirements of a patient. 

 

3.6. Discussion 
 
 

To sum up, most meal planning solutions lack a completely automated process and require domain expert intervention at different 

stages of the recommendation process (e.g., identifying macronutrient distribution, providing pre-defined meal plans for case-based 

reasoning, or combining recommended foods into meal structures). Also, most solutions focus on fulfilling the patients’ nutrition 

 
4   Type-2 FL is an extension of the original FL paradigm, referred to as type-1 FL, where every truth degree has an uncertainty degree associated with it (e.g., a 

person is considered 0.3 underweight with 0.9 certainty, i.e., we are 90% certain that the person is 30% overweight).  If there is no uncertainty, then a type-2 

fuzzy set is reduced to a type-1 fuzzy set (Karnik N. and Mendel J., 2001). 
5   With respect to 



requirements (in terms of caloric intake (CI) and macronutrients) while disregarding other relevant factors such as patient food 

preferences, food variety, food-meal compatibility, as well as inter-food compatibility. A most recent study in (Türkmenoglu C. et 

al., 2021) does consider many factors including food item cost, preference, and preparation time, by modelling the diet problem as 

a many-objective optimization problem, yet the authors focus on food-meal recommendation and do not address the issues of 

producing meal plan structures and considering composite foods. (Karnik N. and Mendel J. 2001) 

 
 

4.  Proposal 
 

In this study, we introduce an intelligent agent titled Meal Plan Generator (MPG) which aims at automating the meal plan 

recommendation services offered by a nutrition expert while addressing the limitations of existing e-solutions mentioned above. 

MPG’s overall architecture in shown in Figure 1, and consists of five main components. First, the Macronutrients Calculator 

computes the amount of macronutrients (i.e., carbohydrates, protein, and fat) in grams, based on the daily CI recommendation 

(provided by a human nutritionist or a dedicated automated agent (Salloum G. and Tekli J, 2021)). Second, the Servings Calculator 

computes the daily amount of servings for each of the six primary food categories (i.e., starch, fruits, milk, vegetables, lean meat, 

and fats)6 based on the amounts of macronutrients produced by the macronutrient calculator. Third, the Servings Assignor splits 

the servings for each of the six primary food categories over the five daily meals (i.e., breakfast, snack one, lunch, snack two, 

dinner) based on sample meal plan serving assignments. Fourth, the Food Assignor allocates the foods to the five daily meals while 

meeting all the serving requirements and considering the patient’s preferences. Finally, the Meal Plan Evaluator computes the 

relevance scores for the generated meal plans highlighting their compliance with the patient chosen factors (e.g., assigning different 

weights for food preferences, variety, and compatibility). While the first two components (performing macronutrient and serving 

calculation) are evaluated mathematically following well-established procedures from nutrition health literature (cf. Section 2), 

nonetheless, there is a lack of automated solutions to handle the last three components (performing servings assignment, food 

assignment, and relevance scoring). We solve the latter by introducing an adapted version of the transportation optimization 

problem, along with a set of relevance scoring functions specifically designed to solve and evaluate the meal planning task. We 

further describe each of the above components in the following sub-sections. 

 

 
 

 

Figure 1.  Simplified diagram describing MPG’s overall architecture 

 

Note that MPG is developed as part of a comprehensive framework titled Personal Intelligent Nutritionist (PIN) (Salloum G. and 

Tekli J, 2021) which aims at automating the full nutrition heal assessment and recommendation pipeline, including: (i) weight 

assessment and recommendation based on various inputs (age, gender, height, weight, and BFP), and then recommending a target 

weight and BFP for the patient; (ii) CI and exercise recommendation based on the level of activity as well as the target weight and 

BFP of the patient; (iii) progress evaluation and recommendation adjustment, especially when the patient is not making the 

expected progress; leading to (iv) meal plan generation through MPG. This paper describes MPG, while PIN’s remaining modules 

are developed in (Salloum G. and Tekli J., 2021). 

 

4.1. Macronutrients Calculator component 
 

A normal diet translates the caloric intake (CI) into grams of macronutrients as follows. First, the CI’s calories are distributed 

among the three macronutrient categories: (i) 45% to 55% to carbohydrates, 15% to 20% to protein, and 20% to 30% to fat (Kathleen 

M. and Janice R. 2017). In this study, we adopt the following commonly used percentage classification based on nutrition expert 

recommendations: 50% carbohydrates, 20% protein, and 30% fat. Second, the required amount of grams of each macronutrient is 

computed as follows (Kathleen M. and Janice R. 2017): 
 

𝑔𝑟𝑎𝑚𝑠𝑐𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒𝑠 =
𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠 ×  50

100 × 4
 𝑔𝑟𝑎𝑚𝑠𝑝𝑟𝑜𝑡𝑒𝑖𝑛 =

𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠 ×  20

100 × 4
 𝑔𝑟𝑎𝑚𝑠𝑓𝑎𝑡 =

𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠 ×  30

100 × 9
 (3) 

 
6   Adopted based on the Diabetic Exchange List suggested by the American Dietetic Association (Kathleen M. and Janice R., 2017). 



 

Example: Consider for instance a recommendation of CI=2107 Kcals. Following the above described process and formulas, the 

Macronutrients Calculator component produces the following macronutrient gram distribution: 

 

𝑔𝑟𝑎𝑚𝑠𝑐𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒𝑠 =
2107 ∗  50

100 ∗ 4
= 263 𝑔𝑟𝑎𝑚𝑠 

 

𝑔𝑟𝑎𝑚𝑠𝑝𝑟𝑜𝑡𝑒𝑖𝑛 =
2107 ∗  20

100 ∗ 4
= 105 𝑔𝑟𝑎𝑚𝑠 

 

𝑔𝑟𝑎𝑚𝑠𝑓𝑎𝑡 =
2107 ∗  30

100 ∗ 9
= 70 𝑔𝑟𝑎𝑚𝑠 

 
 

4.2. Servings Calculator component 
 

In this study, we adopt a widely utilized approach for servings calculation based on the exchange list system for diabetic meal 

planning (Kathleen M. and Janice R. 2017, Valdez-Pena H. and Martinez-Alfaro H. 2003). The exchange list organizes foods in 

categories, where each category groups food items which share similar nutrient contents based on adjusted serving sizes. Each 

serving of a food has about the same amount of carbohydrates, protein, fat, and calories as the other foods in the same category. 

Here, we adopt the six basic food categories shown in Table 1. By determining the number of servings from a specific category, 

multiple options can be selected from the list of foods available for that category. 
 

Table 1.  Food exchange categories adopted in MPG and their calorific and macronutrient properties per serving 

Food Categories 
Carbohydrates 

(grams) 
Protein  

(grams) 
Fat  

(grams) 
Calories  

(Kcals) 

cat1 Starch (Bread, cereals, etc.) 15 0-3 0-1 80 

cat2 Fruits 15 - - 60 

cat3 Milk (low-fat) 12 8 0-3 100 

cat4 Non-starchy Vegetables 5 2 - 25 

cat5 Meat (lean) - 7 0-3 45 

cat6 Fats - - 5 45 

 

In addition to basic foods (e.g., bread, beans, milk), we consider composite foods (e.g., grilled chicken, pizza, burger sandwich), 

consisting of dishes defined as combinations of different servings from different categories. For example, a grilled chicken 

sandwich is the equivalent of 3 servings of carbohydrates (starch) and 4 servings of lean meat. 

The second step of the meal planning process consists in converting the grams of macronutrients into servings from each 

category. We compute the amount of servings using a process adapted from (Valdez-Pena H. and Martinez-Alfaro H. 2003): 
 

i. Select one serving of milk. 

ii. For CI below or equal to 2200 Kcals, select 3 servings of fruits and 3 servings of vegetables.  

For CI above 2200 Kcals, fruit servings are increased from 3 to 4 and vegetable servings are increased from 3 to 5.  

iii. Calculate the number of starch servings by subtracting the amount of carbohydrates obtained from milk, vegetables, and 

fruits, from the total required amount of carbohydrates. The amount of carbohydrates calculated is divided by 15 since 

each serving of starch contains 15 grams of carbohydrates (cf. Formula 4). 

iv. Calculate the number of meat servings by subtracting the amount of protein from milk, vegetables, fruits, and starch 

servings, from the total required amount of protein. Fruits contain zero grams of protein. The amount of protein calculated 

is divided by 7 since each serving of meat contains 7 grams of protein (cf. Formula 5). 

v. Finally, calculate the number of fat servings in the same fashion: based on the number of grams of fat in the pre-selected 

servings. Note that fruits and vegetables contain zero servings of fat. The amount of fat calculated is divided by 5 since 

each serving from the fat food category contains 5 grams of fat (cf. Formula 6). 

 

𝑠𝑠𝑡𝑎𝑟𝑐ℎ = 
𝑔𝑐𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒𝑠−(12×𝑠𝑚𝑖𝑙𝑘 + 5×𝑠𝑣𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒 + 15×𝑠𝑓𝑟𝑢𝑖𝑡 )

15
 (4) 

𝑠𝑚𝑒𝑎𝑡 = 
𝑔𝑝𝑟𝑜𝑡𝑒𝑖𝑛−(8×𝑠𝑚𝑖𝑙𝑘 + 5×𝑠𝑣𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒 + 3×𝑠𝑠𝑡𝑎𝑟𝑐ℎ )

7
 (5) 

𝑠𝑓𝑎𝑡 = 
𝑔𝑓𝑎𝑡−(1×𝑠𝑚𝑖𝑙𝑘 + 2×𝑠𝑚𝑒𝑎𝑡 + 2×𝑠𝑠𝑡𝑎𝑟𝑐ℎ )

5
 (6) 

where s is the number of servings from a food category and g the amount of grams of a macronutrient. 

 



Running example: Consider the same example from the previous section, where CI = 2107 Kcals was provided as input to the 

Macronutrient Calculator, resulting in the following macronutrient assignments: 263 grams of carbohydrates, 105 grams of protein, 

and 70 grams of fat. The latter are provided as input to the Servings Calculator, which produces the following numbers of servings 

per food category: smilk= 1m sfruit = 3, svegetable = 3, sstarch = 
263−12∗1+5∗3+15∗3 

15
 = 12.73=13, smeat = 

105−8∗1+5∗3+3∗13 

7
 = 7.42 = 7, and sfat 

=  
70−1∗1+2∗7+2∗13 

5
 = 6. 

 

4.3. Servings Assignor component 
 

This component distributes the number of servings from each food category over the daily meals. In this study, we adopt a five-

meal approach: three main meals (i.e., breakfast, lunch, dinner) and two snacks in between (i.e., morning snack referred to as snack 

one, and afternoon snack referred to as snack two). Given the lack of well-established processes for assigning food category servings 

to daily meal servings, we adopt a template-based approach: where a food category | daily meal mapping template is automatically 

generated by aggregating a set of representative sample assignments provided by nutrition experts. The number of servings can be 

aggregated in several ways, using for instance the maximum, minimum, average or weighted sum aggregation functions. In our 

study, we make use of the weighted sum function since it enables the user to choose the weight of each sample mapping in 

accordance with her/his notion of mapping relevance (and comes down to the average function when no user preferences are 

provided). For each of the N samples provided by the nutrition expert, the aggregate number of servings 
j

Cati

Meal

s  for each food 

category cati and daily meal mealj is computed as follows: 
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  (7) 

 

       where =  
n N

nw
=1...

1  and wn=1…N [0, 1] 

 

Consequently, the template’s values are proportionally scaled to the CI at hand producing the corresponding food category | daily 

meal servings matrix. 
 

Running example: Consider the same example from the previous sections, where an input CI = 2107 kcals resulted in 1, 3, 3, 

13, 7, and 6 servings of milk, fruits, vegetables, starch, meat, and fat respectively (cf. Section 4.2). By considering the food category 

| daily meal template provided in Table 2.a and after scaling it to the current example, the Servings Assignor component produces 

the servings plan shown in Table 2.b. We adopt linear scaling by multiplying the template’s serving distribution percentages by the 

total number of required servings and rounding the fractions. For instance, following the 2000 Kcal template in Table 2.a, the 

serving distribution for starch over the five meals (i.e., breakfast, snack one, lunch, snack two, and dinner) is 3, 2, 3, 2, and 2 

respectively, amounting to a total number of 12 starch servings. This results in the following serving distribution percentages over 

the five meals: 25%, 16%, 25%, 16%, and 16%. These percentages are multiplied by the total number of required starch servings 

=13 for the CI = 2107 kcals example, resulting in the following serving distribution for the five meals: 3.25, 2.08. 3.25, 2.08, and 

2.08. These serving numbers are rounded to 3, 2, 3, 2, and 2, and a post calculation correction is performed to supply the remaining 

required serving fractions: 0.25+0.08+0.08+0.25+0.08=0.74, rounded to 1, by randomly sorting the meals and adding one serving 

per meal until the additional serving fractions are supplied. In this example, the additional 1 serving is added to the snack two meal, 

resulting in the final 3, 2, 3, 3, 2 serving distribution for starch. 

 
Table 2.  Food category | Daily Meal mapping example 

 

                                   a. Template for 2000 Kcal CI servings plan                                          b. Scaled servings plan for running example with CI = 2107 Kcals 
 

Food Category 
Total 

Servings 
Breakfast  

Snack  

one  
Lunch  

Snack  

two  
Dinner  

 Total 

Servings 
Breakfast 

Snack 

one 
Lunch 

Snack 

two 

Dinner 

cat1 Milk 1 1 0 0 0 0  1 1 0 0 0 0 

cat2 Fruit 3 0 1 0 2 0  3 0 1 0 2 0 

cat3 Vegetable 3 1 0 1 0 1  3 1 0 1 0 1 

cat4 Starch 12 3 2 3 2 2  13 3 2 3 3 2 

cat5 Meat 7 1 0 4 0 2  7 1 0 4 0 2 

cat6 Fat 5 1 1 2 0 1  6 2 1 2 0 1 

 
4.4. Food Assignor component 
 

The final and central step in meal planning is to transform the number of servings into an actual meal plan, by assigning them actual 

foods based on the required servings. Meal planning however goes beyond providing the numbers correctly. Important “logical” 

factors need to be considered, including: (i) the patient’s food preferences (regarding what foods are preferred and what foods are 

not pleasurable), (ii) the food’s compatibility with the meal (e.g., eggs and milk are compatible with breakfast, whereas fish is more 

compatible with lunch), (iii) the inter compatibility between foods assigned to the same meal (what foods go well with each other 

based on taste and appearance), and (iv) the variety of the foods recommended from day to day. Other factors could be considered 



based on the patient or on the nutrition expert’s needs. Given the lack of well-established processes to solve this problem, we model 

the food assignment process as an adapted transportation optimization problem that fits all mentioned requirements, while 

accounting for multiple supply and demand types (i.e., the different food categories) as well as the different factors that play into 

the meal planning task. (Salloum G. et al. 2018) 
 

4.4.1. Adapted Transportation Problem 
 

In this sub-section, we present a modification of the transportation problem that fits the requirements of our meal plan generation 

problem7. The transportation problem is concerned with finding the minimum cost of transporting a single commodity from a given 

number of sources to a given number of destinations. The data required by the model include: (i) the amount of supply at each 

source and the amount of demand at each destination, as well as (ii) the unit transportation cost of the commodity from each source 

to each destination (Hira D. and Gupta P. 2014, Winston W. and Venkataramanan M. 2003). In our study, we model our adaptation 

of the transportation problem as follows (cf. Table 3): 
 

i. We consider m different supply centers (sources) labeled with foodi= 1..m, where every supply center designates an available 

food from the food categories.  
ii. We consider n=5 different demand centers (destinations) labeled mealj=1..n, where every demand center designates one of 

the 5 meals considered in our study (i.e., breakfast, snack one, lunch, snack two, and dinner).   

iii. The demand required at each demand center mealj represents the number of servings form each food category required in 

the meal. This is modelled as a 6-dimentional vector, noted 𝐷𝑗⃗⃗  ⃗ corresponding to each of the 6 categories of basic foods 

considered in our study (i.e., starch, fruits, milk, vegetables, lean meat, and fat)8. 
iv. The supply capacity of each supply center foodi represents the available amount of servings from the corresponding food. 

Since demand is modeled as a vector of serving requirements, supply is also modeled as a 6-dimensional vector representing 

the number of servings from each food category that foodi is composed from, noted 𝑆𝑖⃗⃗⃗  , multiplied by the available amount 

of servings of that food, noted si. We represent by x(i, j) the number of servings supplied from supply center foodi to demand 

center mealj. 

v. The cost function, associating a cost value with every transportation operation, is defined as an extensible aggregation 

function that combines the different cost factors considered in our meal planning scenario (including, patient preferences, 

meal-food compatibility, inter-food compatibility, food variety, and price). We represent by c(i, j) the cost associated with 

delivering the servings from supply center foodi to demand center mealj.  
 

Table 3.  Food assignment transportation matrix 

 

Cost per Food Distributed 
Supply 

Meal 

1 2 … n  

Food 

1 c(1,1) c(1,2) … c(1,n) 𝑠1 × 𝑆1⃗⃗  ⃗ 

2 c(2,1) c2,2 … c(2,n) 𝑠2 × 𝑆2⃗⃗  ⃗ 
… … … … …. … 

m c(n,1) … …. c(m,n) 𝑠𝑚 × 𝑆𝑚⃗⃗⃗⃗  ⃗ 

Demand 𝐷1
→ 

𝐷2
→ … 

𝐷𝑛
→   

 

4.4.2. Demand and Supply Vectors 
 

As previously described, each meal in our adapted transportation problem serves as a demand center. Following the food exchange 

list system adopted in our study (cf. Section 4.2), a meal has separate requirements for each of the six basic food categories noted 

cat1-to-cat6. In order to account for this multi-dimensional requirement9, we model demand as a vector of serving requirements:   

�⃗⃗� = (𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6) (8) 

where d1-to-d6 represent the requirements of the six food categories cat1-to-cat6 respectively10.  

 

 
7   An early version of MPG’s transportation optimization solution is mentioned in (Salloum G. et al., 2018), where the authors consider: i) basic food items only (the current study 

introduces a new model integrating both basic and composite foods, cf. Section 4.4), ii) the traditional transportation problem only (the present paper introduces a new multi-factor 

adaptation of the transportation problem, specifically designed to handle composite foods, cf. Section 4), iii) pre-defined static food-meal cost values defined by experts (the present 

paper introduces a dynamic approach consisting of a battery of novel mathematical cost functions – cf. Section 4.4.3 – and meal plan evaluation functions – cf. Section 4.5). 
8    Compared with typical transportation problem formulations where demands are represented as 1-dimentional scalar values.   
9    Compared with traditional transportation problem formulations where every demand center has one single requirement from a given supply center. 
10   In the formula, we represent the vector as its transpose for ease of presentation. 



Running example: Considering the serving plan presented in Table 2, the corresponding demand vectors for every meal are defined 

as follows: 𝐷𝐵𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =   (1, 0, 1, 3, 1, 2), 𝐷𝑆𝑛𝑎𝑐𝑘𝑂𝑛𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =   (0,1,0,2,0,1), 𝐷𝐿𝑢𝑛𝑐ℎ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =   (0,0,1,3,4,2), 𝐷𝑆𝑛𝑎𝑐𝑘𝑇𝑤𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =   (0,2,0,3,0,0), and 

𝐷𝐷𝑖𝑛𝑛𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =   (0, 0, 1, 2, 2, 1). A demand is considered met once all the requirements in the demand vector are met. 

 

In addition, each food serves as a supply center. Here, we distinguish between: (i) basic foods which can be mapped 1-to-1 with 

the six food categories (cat1-to-cat6) mentioned above, and (ii) composite foods which consist of combinations of basic foods. 

Foods, both basic and composite, will serve as supply centers aiming to fulfill the servings of each meal. Hence, we model supply 

as a vector of available servings as follows: 

𝑆 =   (𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6) (9) 

where s1-to- s6 represent the supply from each of the food categories, cat1-to-cat6, respectively.  Note that a basic food will only 

supply the category it belongs to, whereas a composite food can supply many categories simultaneously (based on the nature of the 

food and its constituents). For example, considering basic foods on the one hand: one serving of yogurt will supply category milk 

(i.e., cat1), and one serving of chicken will supply category meat (i.e., cat5), with the following supply vectors:  𝑆𝑚𝑖𝑙𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

  (1,0,0,0,0,0) and 𝑆𝑐ℎ𝑖𝑐𝑘𝑒𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =   (0,0,0,0,1,0) respectively. On the other hand, chicken sandwich, which is a composite food, is 

equivalent to 3 servings of starch (i.e., cat4) and 4 servings of meat (i.e., cat5) and is represented as: 𝑆𝐶ℎ𝑖𝑘𝑒𝑛𝑆𝑎𝑛𝑑𝑤𝑖𝑐ℎ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =
  (0,0,0,3,4,0). 

As for the supply amount, it is determined based on two factors: (i) the recommended amount of servings to be consumed per 

day, and (ii) the available food stock. We define supply as follows: 
 

𝑠 =  {
 𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑             if   𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 < 𝐼𝑛𝑆𝑡𝑜𝑐𝑘

𝐼𝑛𝑆𝑡𝑜𝑐𝑘                                    otherwise               
} 

 

(10) 

 

This is necessary to make sure that we select the amount of servings from the available stock without surpassing the recommended 

amounts. Hence, the supply vector is weighted by supply amount s as follows: 

𝑆 =   𝑠 × (𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6) (11) 

4.4.3. Cost Function 
 

The transportation matrix is a cost-based matrix, where each supply center (food) is related to each demand center (meal) through 

the cost of supplying the demand center (meal) from the supply center (food). Here, we define cost as the inverse of the likelihood 

of a food being associated with a meal; meaning the lower the cost the more likely the food will be assigned to a meal, and vice 

versa. This is inspired from human experts’ thought process, who tend to consider foods that are more likely to be assigned to a 

meal, based on an overall likelihood estimation considering different factors. More formally, we define the cost function for 

delivering servings from supply center foodi to demand center mealj as an extensible weighted sum of multiple cost factors: 
 

𝑐𝑇𝑜𝑡𝑎𝑙(i, j) =  ∑𝑤𝑟 × 𝑐𝑟(i, j)     ∈ [0, 1] 

4

𝑟=1

 

 

(12) 

where i and j respectively represent foodi and mealj’s indices in the transportation matrix, cr is the cost associated with each of the 

following 5 factors considered in our current study (more factors can be later added following the user’s needs): (i) food preference, 

(ii) food occurrence, (iii) food-meal compatibility, and (iv) inter-food compatibility; and wr is the weight assigned to each cost 

factor, such thatwr ∈ [0, 1] and

 

4

1

1r
r

w


  . We describe each of the cost factors below. 

 

Food preference cost: This cost simulates the human decision-making process in choosing foods based on patient preferences. 

Each food is associated with a preference cost determined by the patient, using linguistic qualifies: e.g., likes, extremely likes, or 

dislikes (which are easier for the patient to provide, rather than providing scalar inputs). Here, we adopt five linguistic qualifiers 

(more qualifiers can be added to increase cost granularity) and heuristically convert them to normalized numeric values ∈ [0, 1]: 
 

 

c1(𝑖, 𝑗) =  cFoodPref(𝑓𝑜𝑜𝑑𝑖)  =

{
 
 

 
 
0       if  patient 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑙𝑖𝑘𝑒𝑠 food    
0.25   if  patient 𝑙𝑖𝑘𝑒𝑠 food                          
0.5     if  patient is 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 toward food
0.75   if  patient 𝑑𝑖𝑠𝑙𝑖𝑘𝑒𝑠 food                   
     1     if  patient 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑑𝑖𝑠𝑙𝑖𝑘𝑒𝑠 food}

 
 

 
 

    ∈ [0, 1] (13) 

 

Note that we use the same numerical scale/granularity {0, 0.25, 0.5, 0.75, 1} in defining all cost factors for fairness of 

comparison. Yet any other numerical scale can be adopted as needed.  



Food occurrence cost: The occurrence cost factor is included to avoid repetitive occurrences of foods, which is one of the 

main factors required for healthy meal planning. This is achieved by increasing the costs of foods that are repetitively selected 

using a certain scaling factor. After reaching high enough cost values (or the maximum cost =1) such that the food item is no longer 

selected, the cost is reset to 0 to favor its re-selection in the following iteration. More formally: 
 
 

c2(𝑖, 𝑗) = cFoodOcc(𝑓𝑜𝑜𝑑𝑖)  = 𝑁𝑏𝑜𝑐𝑐(𝑓𝑜𝑜𝑑𝑖) × 𝛼 =

{
 
 

 
 
0      if  occurrence is 𝑣𝑒𝑟𝑦 𝑙𝑖𝑘𝑒𝑙𝑦       

0.25   if  occurrence is 𝑙𝑖𝑘𝑒𝑙𝑦                    

0.5      if  occurrence is 𝑠𝑜𝑚𝑒ℎ𝑜𝑤 𝑙𝑖𝑘𝑒𝑙𝑦

0.75   if  occurrence is 𝑢𝑛𝑙𝑖𝑘𝑒𝑙𝑦               

1       if  occurrence is 𝑣𝑒𝑟𝑦 𝑢𝑛𝑙𝑖𝑘𝑒𝑙𝑦  }
 
 

 
 

   ∈ [0, 1] (14) 

 

where Nbocc represents the number of consecutive daily occurrences of foodi, and α its scaling factor. We heuristically choose α’s 

initial value to be = 0.25 and bound the maximum number of consecutive occurrences at 4, in order to produce occurrence costs 

{0, 0.25, 0.5, 0.75, 1} such that Nbocc=1 produces cost = 0.25, Nbocc=2 produces cost =0.5, Nbocc=3 produces cost =0.75 and 

Nbocc=4 produces maximum cost =1, following the same numerical scale adopted in defining the other cost factors. Users can 

choose to increase/decrease the scaling factor and the maximum bound following their preferences. 

 

Food-meal compatibility cost: Each food is associated a food-meal compatibility cost, determined by expert nutritionists to 

express the food’s best fit in the meal planning task. Similar to the food preference cost, we adopt common sense linguistic qualifiers 

in describing food-meal compatibility as follows: 
 

c3(𝑖, 𝑗) =  cFoodMeal(𝑓𝑜𝑜𝑑𝑖 , 𝑚𝑒𝑎𝑙𝑗)  =

{
 
 

 
 
0      if  compatibility is 𝑣𝑒𝑟𝑦 𝑙𝑖𝑘𝑒𝑙𝑦       
0.25   if  compatibility is 𝑙𝑖𝑘𝑒𝑙𝑦                    
0.5      if  compatibility is 𝑠𝑜𝑚𝑒ℎ𝑜𝑤 𝑙𝑖𝑘𝑒𝑙𝑦
0.75   if  compatibility is 𝑢𝑛𝑙𝑖𝑘𝑒𝑙𝑦               
1       if  compatibility is 𝑣𝑒𝑟𝑦 𝑢𝑛𝑙𝑖𝑘𝑒𝑙𝑦  }

 
 

 
 

    ∈ [0, 1] (15) 

 

Numerical values are heuristically defined in accord with the previous two cost scores defined above, and are normalized  [0, 1]. 
 

Inter-food compatibility cost: This cost parameter designates the compatibility between foods assigned to the same meal. Given 

a food item foodi that is considered for inclusion in mealj, we define the inter-food compatibility cost of foodi in mealj as the average 

compatibility cost relating foodi with all food items foodi’=1, 2, 3, …, k already assigned to mealj: 
 

𝑐4(𝑖, 𝑗) = 𝑐𝐼𝑛𝑡𝑒𝑟𝐹𝑜𝑜𝑑(𝑓𝑜𝑜𝑑𝑖 , 𝑚𝑒𝑎𝑙𝑗) =  ∑
𝑐𝐼𝑛𝑡𝑒𝑟𝐹𝑜𝑜𝑑(𝑓𝑜𝑜𝑑𝑖 , 𝑓𝑜𝑜𝑑𝑖′)

𝑘

𝑘

𝑖′=1

 

 

 

 [0, 1] 
(16) 

Here, the compatibility cost factor between two individual food items, cInter-Food(foodi, foodi’), represents the distance separating 

the foods in a certain referential space. To compute the latter, we build a dedicated food graph connecting foods following their 

direct compatibility relationship identified by nutrition experts11 (cf. Figure 2). If food items are directly connected in the graph 

(inter-distance =1 edge), it means they are directly compatible together. And if the foods are not directly connected, we navigate 

the graph to identify the shortest distance between them highlighting their (indirect) compatibility. 

 
 

 
 

 

Figure 2.  Extract of our food compatibility graph (the complete graph is provided in (Salloum G. and Tekli J. 2020)) 

 
11  The food compatibility graph was developed with the help of Dr. Maya Bassil (Associate Professor of Human Nutrition in the Department of Natural Sciences 

at LAU) and Ms. Eva-Maria Kahwaji (M.Sc. in Sports and Exercise Nutrition at Loughborough University). 



The distance between two food nodes in the graph is identified using an adaptation of the Dijskstra shortest path computation 

algorithm (Cormen T.H. et al. 2009). We multiply distance by a scaling factor  to reduce it to the same scale adopted by the other 

cost factors. More formally, the inter-food compatibility cost between two individual food items is defined as: 
 

𝑐𝐼𝑛𝑡𝑒𝑟−𝐹𝑜𝑜𝑑(𝑓𝑜𝑜𝑑𝑖, 𝑓𝑜𝑜𝑑𝑖′)  = (𝐷𝑖𝑠𝑡(𝑖, 𝑖′)− 1) × 𝛽 =

{
 
 

 
 
0      if compatibility is 𝑣𝑒𝑟𝑦 𝑙𝑖𝑘𝑒𝑙𝑦       

0.25   if compatibility is 𝑙𝑖𝑘𝑒𝑙𝑦                    

0.5      if  compatibility is 𝑠𝑜𝑚𝑒ℎ𝑜𝑤 𝑙𝑖𝑘𝑒𝑙𝑦

0.75   if  compatibility is 𝑢𝑛𝑙𝑖𝑘𝑒𝑙𝑦               

1       if  compatibility is 𝑣𝑒𝑟𝑦 𝑢𝑛𝑙𝑖𝑘𝑒𝑙𝑦  }
 
 

 
 

     ∈ [0, 1] (17) 

 

where i and i’ represent the graph node identifiers of the two food items being compared, and  is the distance scaling factor. We 

heuristically choose ’s initial value to be = 0.25 and bound the maximum distance at 5 (i.e., any distance >5 is reduced to 5), in 

order to produce occurrence costs {0, 0.25, 0.5, 0.75, 1} such that Dist(i, i’)=1 (comparing a food with its direct neighbor12) 

produces minimal cost 0, Dist(i, i’)=2 produces cost =0.25, Dist(i, i’)=3 produces cost =0.5, Dist(i, i’)=4 produces cost =0.75, and 

Dist(i, i’) 5 produces maximum cost =1, following the same numerical scale adopted in defining the other cost factors. Users can 

choose to increase/decrease the scaling factor and the maximum bound following their preferences. 

Note that every time a food is assigned to a meal, the corresponding cost values in the transportation matrix are updated 

automatically based on the already assigned foods. In other words, the cost values are updated at each iteration of the transportation 

problem13. This simulates the human expert’s thought process: assigning foods while trying to match the next selected food with 

the already assigned ones. 

Example: Consider two food items from the meat category: cottage cheese and poultry chicken; and two meals: breakfast and 

lunch. Also, consider that the carrot food item from category vegetable is already assigned to the lunch meal while no foods are 

assigned to breakfast yet. The detailed and total cost factor values for both cottage cheese and poultry chicken are shown in Table 

4, and are described below. Consider the cottage cheese food item with: 

c1 = cFoodPref(cottage cheese) = 0.5 (i.e., patient is neutral toward cottage cheese) 

c2 = cFoodOcc (cottage cheese) = 0 × 0.25 (i.e., no previous occurrence the day before) 

c3 = cFood-Meal(cottage cheese, breakfast) = 0.25 (i.e., likely) and cFood-Meal(cottage cheese, lunch) = 0.5 (i.e., somehow likely) 

c4 = cInter-Food(cottage cheese, breakfast) = 1 (i.e., breakfast does not include any foods yet) and cInter-Food(cottage cheese, lunch) = 

cInter-Food(cottage cheese, carrot) = (3-1)*0.25 = 0.5 (i.e., somehow likely – since cottage cheese has a distance of 3 from carrot 

following our food compatibility graph, cf. Figure 2)   

 

Consider the poultry chicken food item with: 

c1 = cFoodPref(poultry chicken) = 0.25 (i.e., patient likes poultry chicken) 

c2 = cFoodOcc (poultry chicken) = 1 × 0.25 (i.e., one previous occurrence) 

c3 = cFood-Meal(poultry chicken, breakfast) = 1 (i.e., very unlikely) and cFood-Meal(poultry chicken, lunch) = 0 (i.e., very likely) 

c4 = cInter-Food(poultry chicken, breakfast) = 1 (i.e., since breakfast does not include any foods yet) and cInter-Food(poultry chicken, 

lunch) = cInter-Food(poultry chicken, carrot) = (1-1)*0.25= 0 (i.e., very likely – since lunch includes carrots already, and poultry 

chicken is at distance of 1 from carrots following our food compatibility graph, cf. Figure 2)  

 
Table 4.  Food assignment example 

 Costs of Breakfast Meal Costs Of Lunch Meal 

c1 c2 c3 c4 Average c1 c2 c3 c4 Average 

Cottage Cheese 0.5 0 0.25 1 0.4375 0.5 0 0.5 0.5  0.375 

Poultry Chicken 0.25 0.25 1 1 0.625 0.25 0.25 0 0 0.125 

 

Following the above cost computations, and considering equal cost factor weights when computing cAverage, poultry chicken 

will be assigned to lunch in the next iteration since it produces the lowest cost. After each selection, the inter-food compatibles will 

be updated dynamically for foods that can still supply before performing the next selection. The weights assigned to each cost 

factor can be modified to favor certain factors among others, and thus modify the decision making process accordingly. For 

example, by increasing the weight factor for food-occurrence (c2) and reducing other weight factors, cottage cheese could be 

assigned to lunch instead of poultry chicken. This alteration of weight factors allows determining multiple approaches for meal 

planning following the user’s needs. 

 

4.4.4. Solving the Transportation Matrix 
 

Solving the transportation matrix comes down to finding the number of supply units (i.e., number of servings) to be transported 

from supply center (source) foodi to demand center (destination) mealj such that the total transportation cost is minimum: 
 

 
12   Note that Dist(i, i’) =0 will never occur in our computations since it amounts to comparing a food with itself. 
13  This is different from having static cost values that remain unchanged throughout the whole computation process of typical transportation problem solutions. 



𝑚𝑖𝑛 ∑∑𝑥(𝑖,𝑗) × 𝑐(𝑖,𝑗)

𝑛

𝑗=1

 

𝑚

𝑖=1

 

 

(18) 

 

where xi, j represents the number of servings supplied from foodi to mealj, and ci, j the cost of delivering one serving from foodi to 

mealj. The latter should be achieved while satisfying the following constraints: (i) the total amount of food servings supplied from 

a supply center (food) must not exceed the available supply amount (cf. Formula 19), and (ii) the total amount of servings supplied 

to a demand center (meal) must not exceed the required demand (cf. Formula 20): 
 

∑𝑥(𝑖,𝑗)  𝑠𝑖

𝑛

𝑗=1 

 for all 𝑖 = 1,… ,𝑚 (19) 

∑𝑥(𝑖,𝑗)  𝐷𝑗⃗⃗ ⃗⃗  . 𝑑𝑖

𝑚

𝑖=1 

 for all 𝑗 = 1,… , 𝑛 (20) 

 

where si represents the supply (i.e., available number of servings) for supply center foodi, and 𝐷𝑗⃗⃗  ⃗.di the demand (i.e., number of 

required servings) for demand center mealj from foodi’s category14 cati. 

Following transportation problem literature, e.g., (Hira D. and Gupta P. 2014, Winston W. and Venkataramanan M. 2003), 

when the total demand is equal to the total supply, the transportation problem is said to be balanced. If the demand exceeds the 

supply, then the problem cannot be solved. If the supply exceeds the demand, then the problem can be solved by adding a dummy 

demand center where the demand of this center is equal to the total excess supply, thus making the transportation problem balanced. 

In our approach, we consider the supply constraint introduced in the adapted vector-based model presented in Section 4.4.2, which 

states that the supply center (i.e., food) is capable of supplying all the requirements of the demand center (i.e., meal). As for the 

computational process to solve the transportation problem, we use the minimum (least) cost method widely adopted in the literature, 

e.g., (Hira D. and Gupta P. 2014, Winston W. and Venkataramanan M. 2003). We briefly describe the process as follows: (i) assign 

as much supply units as possible to the cell with the smallest unit cost in the entire matrix, (ii) cross-out the row where the supply 

center has supplied all available supply centers, (iii) cross-out the column where the demand center’s demands were satisfied, (iv) 

adjust the supply and demand for those rows and columns which are not crossed based on the amount of units supplied, and (v) 

assign the remaining units to the feasible allocations when exactly one row or one column is left. Note that other approaches can 

be used to solve the transportation problem, such as penalty-based or correction-based methods (Hira D. and Gupta P. 2014). 
 

Running example: A sample meal plan produced for our CI = 2107 Kcals running example is presented in Figure 3. We assume 

equal cost factors wi = 0.2 i ∈ {1, 2, 3, 4, 5}, and consider that the patient preference toward all foods is neutral (i.e., c1 = cFoodPref 

= 0.5). Here, we explain the first iteration of the process considering an extract of the transportation matrix consisting of two meals 

and nine food items shown in Table 5, where the cost of assigning every food at every meal is computed based on the description 

of the running example provided in Table 2.  

 
Table 5. Extract transportation matrices highlighting the first iteration of the computation process 

 

                                            a. Input of Iteration #1                                                                   b. Output of Iteration #1 (used as input for Iteration #2) 
 

 
Snack Two Dinner Supply 

  

Snack Two Dinner Supply 

Demand �⃗⃗� =   (0, 0, 1, 3, 0, 0) �⃗⃗� =   (0, 1, 0, 1, 2, 2)   Demand 𝐷 0⃗⃗ ⃗⃗ ⃗⃗  =   (0, 0, 1, 𝟏, 0, 0) �⃗⃗� =   (0, 1, 0, 1, 2, 2)  

Bread, whole grain 0.9 0.75 2 * 𝑆 =   (0, 0, 0, 1, 0, 0)  Bread, whole grain 0.85 0.75 2 * 𝑆 =   (0, 0, 0, 1, 0, 0) 

Milk 0.75 0.75 2 * 𝑆 =   (0, 0, 0, 1, 0, 0)  Milk 0.7 0.75 2 * 𝑆 =   (0, 0, 0, 1, 0, 0) 

Biscuit 0.25 0.75 1 * 𝑆 =   (0, 0, 0, 1, 0, 0)  Biscuit 0.25 0.75 1 * 𝑆 =   (0, 0, 0, 1, 0, 0) 

Green peas 1 1 2 * 𝑆 =   (0, 0, 0, 1, 0, 0)  Green peas 1 1 2 * 𝑆 =   (0, 0, 0, 1, 0, 0) 

Carrot 0.75 0.5 2 * 𝑆 =   (0, 0, 0, 1, 0, 0)  Carrot 0.75 0.5 2 * 𝑆 =   (0, 0, 0, 1, 0, 0) 

White rice, cooked 1 0.5 5 * 𝑆 =   (0, 0, 0, 1, 0, 0)  White rice, cooked 0.925 0.5 5 * 𝑆 =   (0, 0, 0, 1, 0, 0) 

Lamb: chop, leg or 

roast 1 0.5 3 * 𝑆 =   (0, 0, 0, 1, 0, 0)  Lamb: chop, leg or roast 0.925 0.5 3 * 𝑆 =   (0, 0, 0, 1, 0, 0) 

Strawberries 0.75 1 5 * 𝑆 =   (0, 0, 0, 1, 0, 0)  Strawberries 0.7 1 5 * 𝑆 =   (0, 0, 0, 1, 0, 0) 

Blueberries 0.5 0.5 5 * 𝑆 =   (0, 0, 0, 1, 0, 0)  Blueberries 0.465 0.5 5 * 𝑆 =   (0, 0, 0, 1, 0, 0) 

Rice cake 0.25 0.75 2 * 𝑆 =   (0, 0, 0, 1, 0, 0)  Rice cake 0.25  2 supplied 0.75 2 * 𝑆 =   (0, 0, 0, 1, 0, 0) 

Olives 0.75 0.25 2 * 𝑆 =   (0, 0, 0, 1, 0, 0)  Olives 0.725 0.25 2 * 𝑆 =   (0, 0, 0, 1, 0, 0) 
 

 

 
14   Recall that that 𝐷𝑗⃗⃗  ⃗ = (d1, d2, d3, d4, d5, d6) represents a 6-dimentional vector where every dimension corresponds to one of the 6 categories of basic foods 

considered in our study, cat1-to-cat6 (i.e., starch, fruits, milk, vegetables, lean meat, and fat). 



Meal Food item # of Servings Serving size 

Breakfast 

Bread, whole grain 2 1 slice (28 grams) 

Oil: canola, olive, 1 1 tea spoon 

Cottage cheese 2 1/4 cup 

Peanuts 1 10 nuts 

Carrot 1 One piece (60 grams) 

Milk 1 1 cup 

Snack one 
Jam 1 1 table spoon 

Biscuit 1 1 piece 

Peanut Butter 1 1/2 table spoon 

Lunch 

Green peas 4 1/2 a cup 

Carrot 1 One piece (60 grams) 

White rice, cooked 1 1/3 cup 

Oil: canola, olive 2 1 tea spoon 

Lamb: chop, leg or roast 4 28 grams 

Strawberries 1 1.25 cup 

Snack two 
Blueberries 1 3/4 cup 

Rice cake 2 2 pieces 

Biscuit 1 1 piece 

Dinner 

White rice, cooked 2 1/3 a cup 

Lamb: chop, leg or roast 3 28 grams 

Olives 1 8 pieces 

Carrot 1 1 piece (60 grams) 
 

Figure 3. Sample meal plan obtained based on our running example 

 

In the first iteration, we find the minimal cost of supplying a demand center (meal) from a supply center (food) and we check if 

the provided supply vector meets the demand vector. Ties are broken randomly to insure variety. Consider that rice cake  snack 

two is selected in the first iteration (cf. Table 5.a). Since we need 3 servings of starch in snack two and given that rice cake 

includes 2 servings only, the latter 2 servings will be supplied from rice cake and then it will be marked as no longer having any 

supply. Subsequently, the demand vector will be updated in the second iteration to reflect that only 1 serving of starch is now 

needed (cf. Table 5.b). As a result of assigning rice cake to snack two, all food costs will be recomputed w.r.t. snack two based on 

the food graph connections between the food items and rice cake in this case. If a food is not connected to rice cake, its cost will 

remain the same and will not be reduced. The same process is repeated in the second iteration until all the demands are met (cf. 

Figure 3). 

 

4.5. Meal Plan Self-Evaluation component 
 

As described previously, MPG’s meal plan generation process is designed in a flexible manner that offers the patient a variety of 

healthy meal plans to choose from, similarly to a human nutritionist’s way of recommending multiple healthy solutions. Yet, 

providing various options could become confusing for the patient, if not presented properly. To address this issue, we introduce a 

relevance function to rank the generated meal plans w.r.t. the cost factors considered previously: 
 

𝑅𝑒𝑙𝑇𝑜𝑡𝑎𝑙(MP) =  ∑𝑤𝑖 × 𝑅𝑒𝑙𝑖(MP)     ∈ [0, 1] 

4

𝑖=1

 

 

(21) 

where MP is a generated meal plan being evaluated, Reli the relevance function of each cost factor, and wi the weight assigned to 

each cost factor such that wi ∈ [0, 1] and

 

4

1

1i
i

w


  . The weight factors are the same used in solving the transportation problem 

and can be fine-tuned following patient preferences.  

As for the individual relevance functions, we compute them as the inverse of an error rate comparing the actual meal plan 

score with the best possible meal plan score considering every individual factor: 

𝑅𝑒𝑙𝑖(𝑀𝑃) = 1 − 
 | 𝑠𝑐𝑜𝑟𝑒𝑖(𝑀𝑃)− 𝑠𝑐𝑜𝑟𝑒𝑖(𝑀𝑃𝑀𝑎𝑥)|

max(𝑠𝑐𝑜𝑟𝑒𝑖(𝑀𝑃), 𝑠𝑐𝑜𝑟𝑒𝑖(𝑀𝑃𝑚𝑎𝑥))
       [0, 1] (22) 

where scorei(MP) represents the score of meal plan MP w.r.t. cost factor i, and scorei(MPMax) the score of the “best” meal plan that 

can be generated following the considered factor i. The best meal plan MPMax following a certain factor i is generated by running 

the system while setting the weight of the considered factor wi = 1, with all other cost factor weights being set to 015. This insures 

that the system performs a relative and fair evaluation against the best meal plans that can be generated from the foods available in 

stock. Reli(MP) will reach its maximum (=1) value when the generated meal plan scores the same as the best possible meal plan, 

and will decrease (and tend to minimum =0) as the generated meal plan score deviates from the best possible score. We describe 

each of the individual relevance scores in the following subsections. 

 
15  MPG can generate multiple different MPMax solutions for the same cost factor, considering the nature of our computation process. Hence, we perform multiple 

runs for every individual factor separately, compute the score of each produced MPMax solution in each run, and then average them out to produce score(MPMax). 



4.5.1. Food Preference score 
 

This score evaluates how much the produced meal plan meets the patient food preferences, and is computed as the inverse of the 

overall average preference cost for every food item selected in the meal plan:  
 

𝑠𝑐𝑜𝑟𝑒1(𝑀𝑃) = 𝑠𝑐𝑜𝑟𝑒𝐹𝑜𝑜𝑑𝑃𝑟𝑒𝑓(𝑀𝑃) = 1 − ∑
𝑐𝐹𝑜𝑜𝑑𝑃𝑟𝑒𝑓(𝑓𝑜𝑜𝑑𝑖)

𝑚

𝑚

𝑖=1

  [0, 1] 
(23) 

 

where m is the total number of foods considered in the target meal plan MP, and cFoodPref(foodi) is the preference cost for food item 

foodi. The value of scoreFoodPref(MP) will increase/decrease in a manner which is inversely proportional to the average food 

preference cost, and will reach maximum (=1)/minimum (=0) values when the average cost is minimal/maximal respectively. 

 

4.5.2. Food Occurrence score 

This score evaluates the relevance of the generated meal plan in terms of food occurrence repetitions, and is computed as the inverse 

of the overall average occurrence cost for every food item selected in the meal plan, where the costs are produced at the time of the 

generation of the meal plan based on the previously selected foods: 
 

𝑠𝑐𝑜𝑟𝑒2(𝑀𝑃) = 𝑠𝑐𝑜𝑟𝑒𝐹𝑜𝑜𝑑𝑂𝑐𝑐(𝑀𝑃) = 1 − ∑
𝑐𝐹𝑜𝑜𝑑𝑂𝑐𝑐(𝑓𝑜𝑜𝑑𝑖)

𝑚

𝑚

𝑖=1

 
 

 [0, 1] 
(24) 

 

where m is the total number of foods considered in the target meal plan MP, and cFoodOcc(foodi) is the occurrence cost for food item 

foodi. The value of scoreFoodOcc(MP) will increase/decrease in a manner which is inversely proportional to the average food 

occurrence cost of the target meal plan, and will reach maximum (=1)/minimum (=0) values when the average cost is 

minimal/maximal respectively. 

 

4.5.3. Food-Meal Compatibility score 
 

This score evaluates how much the foods are compatible with their assigned meals in the generated meal plan, and is computed as 

the inverse of the overall average food-meal compatibility cost for every food item selected in the meal plan: 
 

𝑠𝑐𝑜𝑟𝑒3(𝑀𝑃) =  𝑠𝑐𝑜𝑟𝑒𝐹𝑜𝑜𝑑𝑀𝑒𝑎𝑙(𝑀𝑃) = 1 − ∑
𝑐𝐹𝑜𝑜𝑑𝑀𝑒𝑎𝑙(𝑓𝑜𝑜𝑑𝑖 , 𝑚𝑒𝑎𝑙𝑗)

𝑚

𝑚

𝑖=1

 
 

 [0, 1] 
(25) 

 

where m is the total number of foods considered in the target meal plan MP, and cFood-Meal(foodi, mealj) is the food-meal compatibility 

cost for food item foodi occurring in mealj of meal pan MP. The value of scoreFoodMeal(MP) will increase/decrease in a manner 

which is inversely proportional to the average food-meal compatibility cost of the target meal plan, and will reach maximum 

(=1)/minimum (=0) values when the average cost is minimal/maximal respectively. 

 

4.5.4. Inter-Food Compatibility score 
 

This score evaluates how much the foods are compatible with each other in the generated meal plan, and is computed as the inverse 

of the overall average inter-food compatibility cost for every pair of food items selected in the meal plan: 
 

𝑠𝑐𝑜𝑟𝑒4(𝑀𝑃) =  𝑠𝑐𝑜𝑟𝑒𝐼𝑛𝑡𝑒𝑟𝐹𝑜𝑜𝑑(𝑀𝑃) = 1 − ∑
𝑐𝐼𝑛𝑡𝑒𝑟𝐹𝑜𝑜𝑑(𝑓𝑜𝑜𝑑𝑖 , 𝑓𝑜𝑜𝑑𝑖′)

𝑝

𝑝

𝑖=1

 

 

 

 [0, 1] 
(26) 

where p is the total number of food item pairs considered in the target meal plan MP (p = 
𝑚×(𝑚−1)

2
 where m is the number of food 

items in MP), and cFood-Meal(foodi, foodi’) is the inter-food compatibility cost for food items foodi and foodi’ occurring in MP. The 

value of scoreInterFood(MP) will increase/decrease in a manner which is inversely proportional to the average inter-food compatibility 

cost of the target meal plan, and will reach maximum (=1)/minimum (=0) values when the average cost is minimal/maximal 

respectively. 

 

4.5.5. Running Example 
 

Consider in Figure 4 an extract of our running example meal plan from Figure 3, consisting of two meals: snack two and dinner, 

and their constituent food items. For clarity of presentation, we demonstrate how the different relevance scores for each of the cost 

factors are generated using this extract meal plan (computations for the complete running example are provided in (Salloum G. and 

Tekli J. 2020)).  

 



Meal Food item # of Servings Serving size 

Snack two 
Blueberries 1 3/4 cup 

Rice cake 2 2 pieces 

Biscuit 1 1 piece 

Dinner 

White rice, cooked 2 1/3 a cup 

Lamb: chop, leg or roast 3 28 grams 

Olives 1 8 pieces 

Carrot 1 1 piece (60 grams) 
 

Figure 4.  Extract meal plan MPExtract taken from our running example in Figure 3 

 
Table 6.  Sample transportation matrix considering meal plan MPExtract from Figure 4 

Food 
Food Preference 

Cost 

Food Occurrence 

cost 

Food-Meal Compatibility  

cost 

Inter-Food compatibility 

cost 

with snack two with dinner Cost 

Blueberries 0.25 0.5 (occ=2) 0.5 0.5 
Rice cake = 1 (dist=NA) 

Biscuit = 1 (dist=8) 

Rice Cake 0.25 0.25 (occ=1) 0 1 Biscuit = 1 (dist=NA) 

Biscuit 0.5 0  (occ=0) 0 1 - 

White Rice 0 0 (occ=0) 1 0 

Lamb = 0 (dist=1) 

Olives = 0.25 (dist=2) 

Carrot = 0.25 (dist=2) 

Lamb 0.5 0.5 (occ=2) 1 0 
Olives = 0.5 (dist=3) 

Carrot = 0.25 (dist=2) 

Olives 0.75 0 (occ=0) 1 0 Carrot = 0.25 (dist=2) 

Carrot 0 0 (occ=0) 0 0.5 - 

 

Considering the transportation matrix in Table 7, produced at meal plan generation time, the extract meal plan’s individual scores 

for each cost factor are computed as follows: 

- Food preference: 𝑠𝑐𝑜𝑟𝑒𝐹𝑜𝑜𝑑𝑃𝑟𝑒𝑓(𝑀𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡) =  1 − ∑
𝑐𝐹𝑜𝑜𝑑𝑃𝑟𝑒𝑓(𝑓𝑜𝑜𝑑𝑖)

𝑚

𝑚
𝑖=1 =  1 −

0.25+0.25+0.5+0+0.5+0.75+0

7
=  0.68  

- Food occurrence: 𝑠𝑐𝑜𝑟𝑒𝐹𝑜𝑜𝑑𝑂𝑐𝑐(𝑀𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡) =  1 − ∑
𝑐𝐹𝑜𝑜𝑑𝑂𝑐𝑐(𝑓𝑜𝑜𝑑𝑖)

𝑚

𝑚
𝑖=1 =  1 −

0.5+0.25+0+0+0.5+0+0

7
= 0.82 

- Food-meal compatibility: 𝑠𝑐𝑜𝑟𝑒𝐹𝑜𝑜𝑑𝑀𝑒𝑎𝑙(𝑀𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡) =  1 − ∑
𝑐𝐹𝑜𝑜𝑑𝑀𝑒𝑎𝑙(𝑓𝑜𝑜𝑑𝑖,   𝑚𝑒𝑎𝑙𝑗)

𝑚

𝑚
𝑖=1 =  1 −

0.5+0+0+0+0+0+ 0.5

7
= 0.86 

- Inter-food compatibility: 𝑠𝑐𝑜𝑟𝑒𝐼𝑛𝑡𝑒𝑟𝐹𝑜𝑜𝑑(𝑀𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡) =  1 − ∑
𝑐𝐼𝑛𝑡𝑒𝑟𝐹𝑜𝑜𝑑(𝑓𝑜𝑜𝑑𝑖, 𝑓𝑜𝑜𝑑𝑖′)

𝑝

𝑝
𝑖=1   

                                                                                             =  1 − 
1+1+1+0+0.25+0.25+0.5+0.25+0.25

9
 = 0.5 

 

Considering the following scores produced for the best possible meal plans for every individual cost factor 16 : 

scoreFoodPref(MPMax)=1, scoreFoodOccf(MPMax)=1, scoreFoodMeal(MPMax)=0.96, and scoreInterFood(MPMax)=82, we compute MPExtract’s 

relevance functions as follows: 

- Food preference: 𝑅𝑒𝑙𝐹𝑜𝑜𝑑𝑃𝑟𝑒𝑓(𝑀𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡) =  1 −
|0.68−1|

1
= 0.68  

- Food occurrence: 𝑅𝑒𝑙𝐹𝑜𝑜𝑑𝑂𝑐𝑐(𝑀𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡) =  1 − 
|0.82−1|

1
= 0.82 

- Food-meal compatibility: 𝑅𝑒𝑙𝐹𝑜𝑜𝑑𝑀𝑒𝑎𝑙(𝑀𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡) =  1 −
|0.86−0.96|

0.96
= 0.90 

- Inter-food compatibility: 𝑅𝑒𝑙𝐼𝑛𝑡𝑒𝑟𝐹𝑜𝑜𝑑(𝑀𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡) =  1 −
|0.5−0.82|

0.82
= 0.61 

 

The overall relevance function for MPExtract considering equal weights for all cost factors (w1-to-w4 = 0.25) is computed as: 
 

- Overall relevance: 𝑅𝑒𝑙𝑇𝑜𝑡𝑎𝑙(𝑀𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡) =  ∑ 𝑤𝑖 × 𝑅𝑒𝑙𝑖(𝑀𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡) = 
4
𝑖=1 0.7525 

To sum up, the self-evaluation results show that meal plan MPExtract is considered 0.68 % relevant in terms of food preferences, 

0.82 % relevant in terms of food occurrences, 0.90 % relevant in terms of food-meal compatibility, and 0.61 % relevant in terms 

of inter-food compatibility. All in all, the system considers MPExtract to be 0.75 % relevant considering all factors combined with 

equal weights. Recall that the latter are internal relevance scores produced by the MPG agent itself, allowing it to rate and rank the 

generated meal plans following their relevance w.r.t. patient  chosen factors. 

 
16 The scores for the best possible meal plans are computed experimentally, considering a pool of 15 experimental runs where the produced score for every individual 

cost factor is computed as the average of the maximum scores obtained in every experimental run (cf. Section 5). 



5. Experimental Evaluation  

We have implemented our MPG agent as part of the Personal Intelligent Nutritionist (PIN) framework (Salloum G. and Tekli J. 

2021), which aims at automating the full nutrition health recommendation process: starting from health assessment and caloric 

intake (CI) recommendations, to physical exercise recommendation and adjustment, leading to meal plan generation through 

MPG17. We have empirically tested MPG using three sets of experiments covering: (i) patient preference satisfaction: evaluating 

MPG’s ability to generate meal plans that satisfy patient food preferences and occurrence variety, (ii) meal plan quality: evaluating 

MPG’s ability to generate “healthy” meal plans following nutrition experts, and (iii) cost weight variation: evaluating the effect of 

changing the cost weight factors on the agent’s self-evaluation component. A total of 9 human testers: 4 nutrition experts and 5 

non-experts (patients) were involved in the experiments. Experimental results are described and discussed in the below sub-

sections. The system implementation, experimental data, and test results are available online18. 

 

5.1. Experiment 1: Patient Preference Satisfaction evaluation 

The objective of this experiment is to evaluate MPG’s ability to generate meal plans that satisfy patient preferences. To do so, we 

provide every non-expert tester (patient) with 4 sets of 3-day meal plans where every set targets the CI needs and cost factor 

preferences set by the testers themselves. The testers are then asked to evaluate and rate their satisfaction of the generated meal 

plans on an integer scale from 0 (strong disagreement) to 4 (strong agreement), by considering two criteria: (i) food preference 

satisfaction, i.e., if the foods selected meet the preferences set by the tester, and (ii)  food occurrence variety: if the daily meal plans 

have a variety of non-repetitive foods that satisfy the tester for every daily meal plan. Figure 5 shows the tester rating scores 

averaged for every evaluation criterion over the 3 days covered by the meal plans. 

Results show that MPG fairly satisfies tester food preference and food occurrence variety, producing an overall average rating 

of 3.27 with an average standard deviation of 0.49. MPG seems to perform slightly better in satisfying food occurrence variety 

with an average rating of 3.47, compared with food preference with an average rating of 3.07. The latter results can be further 

improved by increasing the size of the food graph considered in our study (it currently consists of 56 food items, cf. Figure 2), 

which would provide the testers with a larger selection of food items that meet their preferences.  

 
 

 
 

 

 

 

Figure 5. Average non-expert tester ratings evaluating their satisfaction with the generated meal plans 

 
5.2. Experiment 2: Meal Plan Quality evaluation 
 

The objective of this experiment is to evaluate MPG’s ability to generate healthy meal plans. To do so, we sought the participation 

of 4 nutrition experts who volunteered to participate in this experiment. Each expert is provided 4 sets of 3-day meal plans, where 

every set targets one of the following 4 typical patient caloric intake (CI) requirements: 1200, 1600, 2000, and 2400 Kcals19. Every 

set is divided in two equal groups (referred to as A and B) following the nature of the food items involved: i) group A: basic foods 

only (e.g., bread, milk, apples), and ii) group B: basic and composite foods (e.g., pizza, hamburger, lasagna). The latter is necessary 

to evaluated MPG’s ability of matching foods of different natures, especially when involving meal-food compatibility and inter-

food compatibility factors. The meal plans are generated using equal weights assigned to all cost factors. The expert testers are 

asked to evaluate the quality (i.e., healthiness) of the meal plans by considering three criteria: (i) food occurrence variety: if the 

meal plans have a variety of non-repetitive foods, (ii) food-meal compatibility: if the foods are correctly assigned to the meals, and 

(iii) inter-food compatibility: if the foods are matched well together within the same meal20. Testers are asked to rate every criterion 

on an integer scale from 0 (strong disagreement) to 4 (strong agreement). Figures 6, 7, and 8 show the quality ratings for meal plans 

including basic foods only (group A), basic and composite foods (group B), and all foods combined (group A and B). Rating scores 

are averaged for every evaluation criterion, considering expert tester scores produced over the 3 days covered by the meal plans. 

 
17 This paper describes MPG, while PIN’s remaining modules are developed in (Salloum G. and Tekli J., 2020). 
18  http://sigappfr.acm.org/Projects/PIN/ 
19 The CI requirement cases considered in this experiment are chosen based on common practices in health nutrition literature (Kathleen M. and Janice R. 2017). 
20 Note that the food preference criterion does not reflect meal plan healthiness, and is evaluated by non-expert testers in Experiment 2 (Section 5.2). 
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Results show that MPG performs well, producing an overall quality rating of 2.67 by averaging the results of the four CI 

requirements (i.e., 1200, 1600, 2000, and 2400) and the three evaluation criteria (e.g., food occurrence variety, food-meal 

compatibility, and inner-food compatibility) for both basic foods only and basic and composite foods combined, with an average 

standard deviation of 0.57. More specifically, we make the following observations: 
 

- MPG seems to perform slightly better for meal plans consisting of basic foods only (group A, producing a higher average 

rating score of 2.73 considering all CI requirements and all evaluation criteria combined) compared with plans including 

basic and composite foods (group B, with avg. = 2.45). We also notice higher standard deviation levels for group B (std. dev. 

= 0.65 considering all CI requirements and all evaluation criteria combined, versus std. dev = 0.50 for group A), highlighting 

a wider diversity of opinions among testers when composite foods are included in the evaluation process. 

 
 

 
 

 

 

 

Figure 6. Average expert tester ratings evaluating the quality of meal plans including basic foods only (group A) 

 
 

 
 

 

 

 

Figure 7. Average expert tester ratings evaluating the quality of meal plans including basic and composite foods (group B) 

 
 

 
 

 

 

 

Figure 8. Average expert tester ratings evaluating the quality of meal plans considering both basic foods only (group A) and basic and 

composite foods (group B) combined 

 

- Considering both groups A and B (cf. Figure 8), MPG seems to perform best when evaluating food occurrence variety (avg. 

= 2.98 considering all CI requirements for both basic foods only and basic and composite foods combined), followed by meal-

food compatibility (avg. = 2.74) and then inter-food compatibility (avg. = 2.30). The lower scores for inter-food compatibility 
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can be attributed to the food compatibility graph used as reference for computing food compatibility scores (cf. Section 4.4.3). 

The graph was constructed with the help of two nutrition experts who are different from the ones who participated in the 

evaluation process. Here, subjectivity in matching food items could be a key factor affecting the results, especially since 

different experts might have different opinions concerning food compatibility. A possible approach would to allow the 

patients to define their own personal food matchings, instead of relying on a pre-defined food graph, which would produce 

more personalized inter-food compatibility results.  

 

5.3. Experiment 3: Cost Weight Variation evaluation 

In this experiment, we vary the weights of the cost factors considered in our approach, and evaluate their effect on MPG’s meal 

plan self-evaluation component (cf. Section 4.5). We consider 5 sets of meal plans generated using the following weight 

configurations: 
 

- Set 1: wFoodPref = 0.7 and wFoodOcc = wFoofMeal = wInterFood = 0.1, where the food preference factor is emphasized over the others, 

- Set 2: wFoodOcc = 0.7 and wFoodPref = wFoofMeal = wInterFood = 0.1, where the food occurrence factor is emphasized, 

- Set 3: wFoodMeal = 0.7 and wFoodPref = wFoodOcc = wInterFood = 0.1, where the food-meal compatibility factor is emphasized, 

- Set 4: wInterFood = 0.7 and wFoodPref = wFoodOcc = wFoofMeal = 0.1, where the inter-food compatibility factor is emphasized, 
- Set 5: wFoodPref = wFoodOcc = wFoodMeal = wInterFood = 0.25, where all factors are emphasized and assigned equal weights,  

 

Every set is made of 20 meal plans (i.e., totaling 100 meal plans all-in-all), generated for each of the typical CI requirements 

considered in the previous experiments: 1200, 1600, 2000, 2400 Kcals. We do not distinguish between basic foods only and basic 

and composite foods in this experiment since they do not make a difference in this evaluation: they both fit as supply vectors in the 

transportation problem where the same cost factors produce the same numerical results. Table 7 shows MPG’s meal plan self-

evaluation results for individual cost factors, and Figure 9 depicts the corresponding average and standard deviation results. 

 
Table 7. MPG’s self-evaluation results considering different CI requirements and cost factor configurations 

 

a. Set 1 (food preference factor is emphasized) 
  

b. Set 2 (food occurrence factor is emphasized) 
 

Caloric 

Intakes 

Food 

Preference 

Food 

Occurrence 

Meal-Food 

Compatibility 

Inter-food 

Compatibility  

Caloric 

Intakes 

Food 

Preference 

Food 

Occurrence 

Meal-Food 

Compatibility 

Inter-food 

Compatibility 

1200 1.00 0.55 0.83 0.85  1200 0.93 1.00 0.81 0.80 

1600 1.00 0.64 0.77 0.71  1600 0.87 1.00 0.88 0.72 

2000 1.00 0.63 0.76 0.82  2000 0.85 1.00 0.88 0.81 

2400 1.00 0.63 0.76 0.75  2400 0.90 1.00 0.86 0.76 

 
c. Set 3 (food-meal compatibility factor is emphasized) 

  
d. Set 4 (inter-food compatibility factor is emphasized) 

 

Caloric 

Intakes 

Food 

Preference 

Food 

Occurrence 

Meal-Food 

Compatibility 

Inter-food 

Compatibility  

Caloric 

Intakes 

Food 

Preference 

Food 

Occurrence 

Meal-Food 

Compatibility 

Inter-food 

Compatibility 

1200 0.83 0.65 1.00 0.81  1200 0.93 0.70 0.85 0.98 

1600 0.84 0.73 1.00 0.68  1600 0.90 0.61 0.90 0.80 

2000 0.82 0.73 1.00 0.77  2000 0.91 0.70 0.88 0.92 

2400 0.85 0.75 1.00 0.78  2400 0.88 0.68 0.92 0.86 

 
e. Set 5 (all factors are equally emphasized) 

 

Caloric 

Intakes 

Food 

Preference 

Food 

Occurrence 

Meal-Food 

Compatibility 

Inter-food 

Compatibility 

1200 0.90 0.86 0.91 0.86 

1600 0.90 0.87 0.92 0.75 

2000 0.90 0.88 0.90 0.86 

2400 0.90 0.85 0.90 0.79 

 
 

 
 

 

 

 

Figure 9.  MPG’s self-evaluation results averaged for each cost factor configuration 
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Relevance levels for most test sets show consistent and high quality results across all CI requirement categories and cost factor 

configurations, highlighting MPG’s self-evaluation performance. More specifically, we highlight the following observations:   
 

- Set 1 emphasizing food preference: MPG produces maximum relevance scores (=1) for the mentioned factor compared with 

the others, and this is achieved consistently throughout all four CI requirements (cf. Table 7.a).  
- Set 2 emphasizing food occurrence: MPG produces maximum relevance scores (=1) for the mentioned factor, compared 

with the other factors across all CI requirement categories. We also notice that relevance score for food preference is 

significantly improved with the smallest CI requirement of 1200 Kcals, compared with the other CI requirements (cf. Table 

7.b) This is because a small CI requirement produces a reduced number of foods per meal plan, which in turn increases the 

probability of choosing foods that match the patient preferences. In fact, choosing less foods from the food graph while 

limiting repetitive choices (e.g., the same food should not be selected in consecutive days) increases the probability of having 

more convenient foods (that the patient likes and which are compatible with the meals and with each other) allowing to fulfil 

the demands of the meal plan. However as CI requirements increase, so does the number of foods to be included per meal 

plan, which reduces the probability of finding non-repeating foods that satisfy the preference of the patient. In addition, we 

notice a significant increase in meal-food compatibility from Set 1 to Set 2 (cf. Figure 9). This can be attributed to the fact 

that the food occurrence factor is less restrictive on the foods being assigned to a certain meal, where any food can be 

assigned to a meal as long as it has not occurred enough times previously. In contrast, the food preference factor is stricter 

on food assignments, and might induce sub-optimal food assignments simply because the foods are highly preferred by the 

patient.   

- Set 3 emphasizing food-meal compatibility: MPG produces maximum relevance scores (=1) for the mentioned factor 

compared with the other factors across all CI requirement categories. Relevance scores for the other factors vary between 

0.71 for food occurrence and 0.84 for food preference, which we consider as fair scores given that these factors are not 

emphasized in this experimental run. 

- Set 4 emphasizing inter-food compatibility: MPG produces consistently high scores for the mentioned factor across all CI 

requirement categories. Yet, the produced scores are sometimes slightly surpassed by other factors (like food preference and  

food-meal compatibility for CI=1600 Kcals, and food preference for CI=2400 Kcals, cf. Table 7.d). Following our discussion 

with nutrition experts, this result resonates with manual meal planning where it is very unlikely to match all items in a meal 

– one-to-one – in an optimal way, especially when CI grows and the meal grows in size accordingly. We also notice relatively 

high relevance scores for food preference (average = 0.9) and meal-food compatibility (average = 0.89, cf. Figure 9). The 

former demonstrates that foods can be matched well together while meeting patient preferences, while the latter can be 

attributed to the fact that foods that go well together are more likely to go well in the same meal.  
- Set 5 emphasizing all factors equally: MPG produces consistent (almost equal) scores and relevance levels for each factor 

across all CI requirement categories. We also notice that the average relevance score for each factor are within the same 

range of the optimized results for that category. This shows that a balanced weight configuration combining all cost factors 

can result in meal plans where all factors are well satisfied without favoring one factor over the others. 

 

To sum up, this experiment provides a self-evaluation of MPG, showing that the system behaves as expected according to the 

weight factor choices made by the patient, where each factor can be individually emphasized, and all factors can be equally 

emphasized, following the patient’s weight factor preferences.  

6. Conclusion 

In this paper, we introduce a novel solution for Meal Plan Generation titled MPG, allowing to automate the meal plan generation 

service offered by a nutrition expert. MPG allows to: (i) generate meal plans which fulfil a recommended caloric intake (e.g., 

nutrition demand) given a set of available foods (e.g., nutrition supply), while (ii) personalizing the plans following patient chosen 

factors (e.g., food preferences, compatibility, variety, and price), and (iii) evaluating their relevance following the patients’ 

preferences. Experimental results reflect MPG’s effectiveness and quality in producing “healthy” and personalized meal plans 

which largely comply with human tester preferences. They also display MPG’s ability to accurately self-evaluate is own meal plans 

in order to provide the patients with a set of recommendations that fit their needs. 

We are currently completing an extended study, building on MPG’s meal plan generation process to perform nutrition health 

monitoring and meal plan adjustment: assessing the patient’s health state evolution over time and recommending adjusted meal 

plans accordingly (Salloum G. and Tekli J. 2021). In the near future, we aim to extend MPG to include exercise recommendations, 

providing patients with the choice to follow leaner or heavier meal plans following the amount of physical exercise they wish to 

undertake (e.g., patients who do not exercise, versus patients who regularly exercise), taking into account different age, gender, 

and food preference groups (e.g., vegetarian or vegan), and multiple health nutrition measurements including body mass index and 

body fat percentage. Integrating image analysis-based preference learning (Yang L., Hsieh C.K. et al. 2017, Salameh K., Tekli J., 

et al., 2014) in order to monitor foods consumed by the patient would help perform personalized and interactive meal planning. On 

the long run, we plan to develop a dedicated exercise planning mechanism that incorporates and schedules multiple exercise types 

(e.g., jogging, swimming) based on the patient’s time availability and exercise preferences. Using alternative computation 

techniques such as non-parametric and lazy machine learners (e.g., fuzzy k-nearest neighbors, or fuzzy support vector machines) 



(Abboud R. and Tekli J. 2018, Abboud R. and Tekli J. 2019, Fahmi A. et al. 2019) could be most useful in this context, in order to 

compensate for the lack of formal rules and lack of sizeable training data coining physical exercise fitness with meal plan 

recommendation.  
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