
Upgraded SemIndex Prototype supporting Intelligent Database Keyword Queries through
Disambiguation, Query As You Type, and Parallel Search Algorithms

Joe Tekli1, Richard Chbeir2, Agma J.M. Traina3, Caetano Traina Jr.3,
Kokou Yetongnon4, Carlos Raymundo Ibanez5, and Christian Kallas1

1 Lebanese American University (LAU), ECE Dept., Byblos, Lebanon
2 University of Pau and Adour Countries (UPPA), LIUPPA Lab., Anglet, France

3 University of Sao Paulo (USP), ICMC, Sao Carlos, Brazil
4 University of Bourgogne (UB), LE2I Lab. UMR-CNRS, Dijon, France

5 Peruvian University of Applied Sciences, Lima, Peru

Abstract—This paper describes an upgraded version of the
SemIndex prototype system for semantic-aware search in textual
SQL databases. Semantic-aware querying has emerged as a
required extension of the standard containment keyword-based
query to meet user needs in textual databases and IR
applications. Here, we build on top of SemIndex, a semantic-
aware inverted index previously developed by our team, to allow
semantic-aware search, result selection, and result ranking
functionality. Various weighting functions and intelligent search
algorithms have been developed for that purpose and will be
presented here. A graphical interface was also added to help end-
users write and execute queries. Preliminary experiments
highlight SemIndex querying effectiveness and efficiency,
considering different querying algorithms, different semantic
coverages, and a varying number of query keywords.

Keywords—Semantic Queries, Inverted Index, Semantic
Network, Textual Database, Semantic Search, Disambiguation.

I. INTRODUCTION
A. Context

Processing keyword-based queries is a fundamental problem in the
domain of Information Retrieval (IR) [3, 5, 16]. A standard
containment keyword-based query, which retrieves textual identities
that contain a set of keywords, is generally supported by a full-text
index. Inverted index is considered as one of the most useful full-text
indexing techniques for very large textual collections [3], supported
by many relational DBMSs, and then extended toward semi-
structured and unstructured data to support keyword-based queries.

In a previous study [12], we proposed SemIndex: a semantic-
aware inverted index model designed to process semantic-aware
queries. An extended query model with different levels of semantic
awareness was defined, so that both semantic-aware queries and
standard containment queries can be processed within the same
framework. Fig. 1 illustrates the overall framework of the SemIndex
approach and its main components. Briefly, the Indexer manages the
index generation and maintenance, while the Query Processor
processes and answers semantic-aware (or standard) queries issued
by the user using SemIndex component.

B. Goal and Contributions

While the study in [12] introduced the core logical design of
SemIndex, the goal of our current paper is to shed the light on
upgrades to the SemIndex framework and components. At the indexer
level, we add: i) dedicated weight functions, associated with the
different elements of the SemIndex graph, allowing more
sophisticated semantic query result selection and ranking, coupled
with ii) a dedicated relevance scoring measure, required in the query
evaluation process in order to retrieve and rank relevant query
answers. At the query processing level, we develop iii) different
alternative query processing algorithms (in addition to the main
algorithm), and iv) a dedicated GUI interface allowing user to easily
manipulate the prototype system.

Fig. 1. SemIndex Framework

The remainder of the paper is organized as follows: Section II
provides a literature review. Section III briefly reminds SemIndex’s
logical design model. Section IV describes SemIndex’s weight
functions and relevance scoring measure. Section V develops the
newly introduced querying algorithms. Section VI highlights added
prototype functionality and describes the experimental evaluation,
before concluding in Section VII with ongoing works.

II. LITERATURE REVIEW
Early approaches on keyword search queries for RDBs uses
traditional IR scores (e.g., TF-IDF) to find ways to join tuples from
different tables in order to answer a given keyword query [2, 7, 17].
The proposed search algorithms focus on enumeration of join
networks called candidate networks, to connect relevant tuples by
joining different relational tables. The result for a given query comes
down to a sequence of candidate networks, each made of a set of
tuples containing the query keywords in their text attributes, and
connected through their primary-foreign key references, ranked based
on candidate network size and coverage. More recent methods on
RDB full-text search in [22, 23] focus on more meaningful scoring
functions and generation of top-k candidate networks of tuples,
allowing to group and/or expand candidate networks based on certain
weighting functions in order to produce more relevant results. The
authors in [24] tackle the issue of keyword search on streams of
relational data, whereas the approach in [35] introduces keyword
search for RDBs with star-schemas found in OLAP applications.
Other approaches introduced natural language interfaces providing
alternate access to a RDB using text-to-SQL transformations [20,
30], or extracting structured information (e.g., identifying entities)
from text (e.g., Web documents) and storing it in a DBMS to
simplify querying [14, 15]. Keyword-based search for other data
models, such as XML [1, 5] and RDF [6, 8] have also been studied.

More recent approaches, e.g., [25, 29, 31, 34], have developing
so-called semantic-aware or knowledge-aware (keyword) query
systems, which have emerged since the past decade as a natural
extension to traditional containment queries, encouraged by (non-
expert) user demands. Most existing works in this area have
incorporated semantic knowledge at the query processing level, to: i)
pre-process queries using query rewriting/relaxation and query
expansion [9, 25, 33], ii) disambiguate queries using semantic
disambiguation and entity recognition techniques [9, 21, 29], and/or

Disambiguated Search

Query As You Type Search

Parallel Semantic Search

iii) post-process query results using semantic result organization and
re-ranking [29, 31, 34]. Yet, various challenges remain unsolved,
namely: i) time latencies when involving query pre-processing and
post-processing [25, 33], ii) complexity of query rewriting/relaxation
and query disambiguation requiring context information (e.g., user
profiles or query logs) which is not always available [10, 28], and iii)
limited user involvement, where the user is usually constrained to
providing feedback and/or performing query refinement after the first
round of results has been provided by the system [11, 28].

Our work is complementary to most existing DB search
algorithms in that our approach extends syntactic keyword-term
matching: where only tuples containing exact occurrences of the
query keywords are identified as results, toward semantic based
keyword matching: where tuples containing terms which are lexically
and semantically related to query terms are also identified as
potential results, a functionality which - to our knowledge - remains
unaddressed in most existing DB search algorithms. We build on an
adapted index structure able to integrate and extend textual
information with domain knowledge (not only at the querying level,
but rather) at the most basic data indexing level, providing a
semantic-aware inverted index capable of supporting semantic-based
querying, and allowing to answer most challenges identified above.

III. SEMINDEX DESIGN MODEL
SemIndex’s logical design consists of a semantic knowledge graph
structure, combining two graph representations for each of the input
resources: i) textual data collection (e.g., IMDB) and ii) reference
knowledge base (e.g., WordNet) into a single graph structure.
Consider for instance the sample data collection in Table 1. Fig. 2
shows an extract from an inverted index built on the sample movie
database in Table 1, where data objects O1, O2, and O3 have been
indexed using index terms extracted from the database, sorted in
alphabetic order. It is important to note that this simple index is
typically used to answer containment queries [3], aiming at finding
data objects that contain one or more terms.

Table 1. Sample Movie data collection extracted from IMDB.

ID Textual content

O1
When a Stranger Calls (2006): A young high school student babysits for
a very rich family. She begins to receive strange phone calls threatening
the children...

O2
Days of Thunder (1990): Cole Trickle is a young racer from California
with years of experience in open-wheel racing winning championships in
Sprint car racing…

O3
Sound of Music, The (1965): Maria had longed to be a nun since she was
a young girl, yet when she became old enough discovered that it wasn’t
at all what she thought...

When a keyword query mapping two or more index terms must

be processed, the corresponding posting lists are read and merged.
The index terms and their mappings with the data objects can be
generated using classical Natural Language Processing (NLP)
techniques (including stemming, lemmatization, and stop-words
removal) [27], which could be either embedded in the DBMS or
supplied by a third-party provider.

An extract from the WordNet knowledge graph is shown in Fig.
3, where S1, S2 and S3 represent senses/concepts (i.e., synsets in
WordNet), and their string values (i.e., the synsets’
glosses/definitions), and T1, T2, …, T11 represent terms, and their
string values (i.e., literal words/expressions) shown alongside the
corresponding nodes.

Term Object IDs[]
“car” �O1, O2�
“light” �O1�

“sound” �O3�
“zen” �O1�

… …

a. Inverted index InvIndex(Δ).

b. SemIndex graph representing InvIndex(Δ).

Fig. 2. Sample inverted index (a) and corresponding SemIndex graph (b),
based on the textual collection in Table 1.

a. Sample GKB graph representing a KB extract from WordNet.

Term Sense IDs[]
“acid” �S1, S3�
“clean” �S2�
“light” �S2�
“lsd” �S3�

“lysergic” �S1, S3�
… …

b. Extract of inverted index InvIndex(GKB) connecting terms in GKB
with corresponding senses (to speed up term/synset lookup)

Fig. 3. Extract from the knowledge graph of WordNet, with corresponding
inverted index.

Following [12], a SemIndex graph consists of an extended knowledge
graph made of data nodes to represent data objects (e.g., movies),
index nodes to represent senses/concepts (e.g., synsets) and terms
(e.g., words/expressions), as well as corresponding data and index
relations represented as graph edges. For instance, a sample
SemIndex graph is shown in Fig. 4 built based on the textual
collection from Table 1 and the KB extract in Fig. 3. It comprises 3
data nodes (O1 – O3), 3 index sense nodes (S1 – S3), and 11 index
term nodes (T1 – T11), along with corresponding data edges and index
edges.

Data node Index node Contained relationship

a. SemIndex graph before removing edge labels and string values.

b. Final SemIndex graph representation, trimmed by removing edge
labels and string values which will not be used in query evaluation.

Fig. 4. Extract of SemIndex graph obtained after coupling the data
collection and the knowledge base graphs in Fig. 2 and 3.

IV. INDEX WEIGHT FUNCTIONS
After indexing and coupling the textual resource and the semantic
resource into a unified SemIndex graph, we introduce a set of
weighting functions to assign weight scores to SemIndex’ entries,
including: data nodes, index nodes, data edges and index edges.
Other weight functions could be later added to cater to the index
designer’s needs.

A. Index Node Weight
Considering an index node ni in the SemIndex graph, the weight of ni
is computed according to the below formula where we consider “Fan-
in” to be the number of nodes connected with the target index node:

WIndexNode(ni) =

() [0,1](())
j index

i

jv V

Fan in n
Max Fan in n

� �

�
�

�
 (1)

The rational here is that an index node is more important if it receives
more links from other indexing nodes.

B. Index Edge Weight
Given an index edge

j
ie incoming from index node ni and outgoing

toward index node nj in the SemIndex graph, we define the weight of

j
ie as follows:

WIndexEdge (

j
ie)= 1]0,1]()Label iFan out n �

�
 (2)

The weight of an index edge inversely proportional to the number of
outgoing links from a certain index node to another, taking into
account the semantic relation type of the index link at hand. The
rationale here is that an index edge designates a stronger connection
between two index nodes when it carries most of the descriptive
power from the source node to the destination node, such that the
source node has few other out-going connections.

C. Data Node Weight
The weight of a data node nd in the SemIndex graph is defined as:

WDataNode (nd) = () [0,1]Max(())
d

q SI

Fan - In n
Fan - In n G �

�
 (3)

where Fan-In(nd) designates the number of foreign key/primary key
data links (joins) outgoing from data nodes (tuples) �

nq � GSI

where the foreign keys reside, toward data node (tuple) nd where the
primary key resides. Here, similarly to index node weight, the
rational is that a data node is more important if it receives more links
from other data nodes.

D. Data Edge Weight

Given a data edge
d
ie connecting an index node ni with a data node nd

(e.g., data edge connecting index node T1 with data node O2 since the
term “car” occurs in the textual description of O2, likewise for T1-O2,
T4-O1, T5-O1 and T10-O3 in Fig. 4), we compute the weight of

d
ie as a

typical TF-IDF (Term Frequency Inverse Document Frequency)
score where TF underlines the frequency (number of occurrences) of
the index node string literal within a given data node, connected via
the data edge in question, and IDF underlines the number of data
edges connecting the same index node with other data nodes (i.e., the
fan-out of the index node in question). Hence, given a data edge

d
ie

incoming from index node ni toward data node nd, we define:

WDataEdge (d
ie) = TF(ni.l, nd) � IDF(ni.l) (4)

TF and IDF are calculated as follows:

� 	
 kn e

NbOcc()TF . , [0, 1](NbOcc())
i

i d
k

d
k

n .ln l n Max n .l
�

 �
 (5)

TF is normalized w.r.t.1 the maximum number occurrences of any
index node string literal nk.l within the target data node nd:

IDF(ni.l, GSI) = (. ,)1 [0, 1]i SIDF n l G
N� �

)), ,,) (6)

where N is the total number of data nodes in the SemIndex graph, and
DF(ni.l, GSI) is the number of data nodes in the graph containing at
least one occurrence of ni.l.

1 with respect to

E. Relevance Scoring Measure
The scores of index/data nodes/edges returned as query answers are
computed using typical Diskstra-style shortest distance
computations. Yet, instead of identifying the shortest (smallest)
distance, we identify as answers data objects having the maximum
similarity (similarity being the inverse function of distance) w.r.t. the
starting index nodes (mapping to keyword queries). In other words,
given the sample node linkage in Fig. 5, with data node nd and
starting index node ni, we define the relevance score of nd w.r.t. ni as
follows:

DataNode DataEdge

IndexNode IndexEdge

IndexNode IndexEdge

 score(,)

1W () W () (,)
1 W () W () (,)

1 W () W () (,)
(,

d

p

j
i

d i

d p
p d

p j
j d

j
i d

i d

 n n

n e d n n

n e d n n

n e d n n
d n n

� �� �
� �
� �
� �� �

� �
� �
� �� �
� � [0,1]) �

(7)

where d(ni, nj) is the distance in number of edges between two nodes.
In other words, in the following example, d(np, nd) =1, d(nj, nd) =2,
and d(ni, nd) =3.

Fig. 5. Sample node linkage in the SemIndex graph

V. QUERYING ALGORITHMS
Our upgraded prototype includes four query processing algorithms: i)
the core algorithm and three other variants designed to improve: ii)
query performance, iii) user involvement, and iv) query efficiency:

i. Core algorithm: titled SemIndex Semantic Search (SI_SS)
originally developed in [12], performs semantic-aware search
using shortest path navigation in the SemIndex graph,

ii. Query performance: SemIndex Disambiguated Search (SI_DS),
integrates semantic disambiguation within the semantic search
process, aiming to improve querying result quality,

iii. User involvement: SemIndex Query-As-You-Type Search
(SI_QAYTS), allows users to manually choose the meanings of
query keywords before performing semantic search, aiming to
involve the user in improving search result quality,

iv. Query Efficiency: SemIndex Parallel Semantic Search
(SI_PSS) is a parallel processing (multithreading) version of
SI_SS, aiming to reduce query execution time.

A. SemIndex Semantic Search (SI_SS)
This is the original data search algorithm developed for SemIndex.
The algorithm’s pseudo-code is provided in Fig. 6, and consists of
the following main steps:

1- Identify the index (searchable term) nodes mapping to each
query term (lines 1-4),

2- Identify, for each of the selected index nodes, the minimum
distance paths at distance �, i.e., using Dijkstra’s shortest path
algorithm (lines 5-7)

3- Identify the shortest paths which contain data edges linking to
data nodes, and then add the resulting data nodes to the list of
output data nodes (line 8)

4- Merge the resulting data nodes with the list of existing answer
data nodes. Each answer node is then assigned a score by
adding its distance from every query term index node. The
algorithm finally returns the list of answer data nodes ranked
by order of path scores in ascending order (lines 9-12).

Algorithm SI_SS // SemIndex Semantic Search

Input: GSI // SemIndex graph
 T // Set of query selection terms
 � // Link distance value, designating semantic coverage
 {r, k} // Range and k-nearest neighbor selection operators

Ouput: Nd_Out // List of query answers

Begin

Nd_Out = �
For each query term Ti � T
{

Step 1: Ni_In = getNodeIDs(Ti, GSI) 4
For each searchable node ni � Ni_In
{
 Step 2: SP = findShortestPaths(ni, �, GSI)

 Step 3: Nd_ni = getDataNodeIDs(SP, GSI)

 Step 4: Nd_Out = mergeAndRank(Nd_ni , Nd_Out)
} 7

}
8

 Step 5: Nd_Out = select(Nd_Out, {range, kNN})

Return Nd_Out
9

End

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 6. Pseudo-code of algorithm SemIndex Semantic Search (SI_SS)

B. SemIndex Disambiguated Search (SI_DS)
This algorithm consists in disambiguating query keywords, to
pinpoint the corresponding indexing nodes (synsets) in the SemIndex
graph GSI, before applying semantic search, in an attempt to reduce
SemIndex graph navigation time.

On one hand, the core SI_SS algorithm considers all occurrences
of each query keyword as starting nodes for query processing. For
instance, query q = {“pane”, “clean”} consisting of two keywords:
“pane” and “clean”, would result in 4 starting index nodes: 3 index
term nodes corresponding to the three possible meanings of “pane”
(following the WordNet semantic reference [26], used as reference
KB in creating our current GSI) and one index term node
corresponding to the single meaning of term “clean” (following
WordNet). Hence, applying SI_SS in this case requires navigating GSI
from 4 starting points, until reaching potential answers (i.e., data
nodes reachable from both terms within the user specified link
distance �).

On the other hand, SI_DS aims to reduce the number of starting
nodes, in order to navigate GSI and reach potential query answers
faster. Its pseudo-code is shown in Fig. 7, and consists of the
following main steps:

1- Perform WSD on query terms using the Adapted LESK
algorithm [4] (lines 1-4),

2- Identify in the SemIndex graph the index nodes of
disambiguated senses (line 5),

3- Run the resulting query, starting from the identified index
nodes, as a typical keyword containment query on SemIndex
(similarly to SI_SS, lines 6-11).

nd np nj ni

Data node Index nodes

d
pe p

je j
ie

Algorithm SI_DS // SemIndex Disambiguated Search

Input: GSI // SemIndex graph
 TA // Set of query selection terms
 � // Link distance value, designating semantic cover
 {r, k} // Range and k-nearest neighbor selection operators

Ouput: Nd_Out // List of query answers

Begin

Nd_Out = �
For each query term Ti � T
{

Step 0: Si = SimpleLesk(Ti, T, GSI)
Step 1: ni = getNodeID(Si, GSI) 4
Step 2: SP = findShortestPaths(ni, �, GSI)
Step 3: Nd_ni = getDataNodeIDs(SP, GSI, Ai)
Step 4: Nd_Out = mergeAndRank(Nd_ni , Nd_Out)

}

 Step 5: Nd_Out = select(Nd_Out, {range, kNN})
8

Return Nd_Out
End

1

2
3

4

5

6

7

8

9

10

11

Fig. 7. Pseudo-code of SemIndex Disambiguated Search (SI_DS)

C. SemIndex Query As You TypeSearch (SI_QAYTS)
This algorihtm allows the user to choose the proper meaning for
every query keyword, by allowing her to choose the intended sense
from the set of all possible senses provided by WordNet. Once the
senses have been chosen, the algorithm pinpoints in the SemIndex
graph the indexing nodes corresponding to the chosen senses, and
then runs typical shortest patth search starting from the chosen index
nodes. The pseudo-code of SI_QAYTS is basically the same as that of
SI_DS, except for step 0 which becomes: Si = Manual(Ti, T, GSI),
i.e., allowing the user to manually choose the proper meaning of
every query term, among the list of possible meanings presented to
the user through the system’s GUI (cf. Fig. 10). Then, SI_DS resumes
by identifying and only processing the starting index nodes
corresponding to the term senses (synsets) chosen by the user. The
algorithm’s main steps can be described as follows:

1- Allow the user to choose the sense of each term in the query
according to WordNet,

2- Identify in the SemIndex graph the index nodes corresponding to
the chosen senses,

3- Run the resulting query, starting from the identified index nodes,
as a typical SI_SS keyword containment query on SemIndex.

D. SemIndex Parallel Semantic Search (SI_PSS)
We have also introduced a parallelized version of algorithm SI_SS
(cf. Fig. 8), which preserves (more or less) the same workflow of the
original algorithm except that it processes query terms and starting
index nodes using multiple threads running in parallel. The
algorithm’s main steps are described as follows:

1- Every query term is assigned a dedicated thread, and is thus
processed independently from other threads (lines 1-2).

2- After identifying the starting nodes for a query term (line 4),
every starting node is then assigned its own dedicated thread
(line 5), allowing to: compute the shortest paths from the
starting node to data nodes in the SemIndex graph (line 7), and
then identify the reached data nodes designating potential query
answers (line 8).

3- Results are gradually merged (line 9) as they are produced by
each thread, to rank and select (lines 10-12) query answers.

The physical implementation of algorithm SI_PSS is configured to
run as many threads as there are terms in the user query, where thread
scheduling and parallel execution is left to the operating system.

Algorithm SI_PSS // Parallel_Semantic_Search

Input: GSI // SemIndex graph
 TA // Set of query selection terms
 � // Link distance value, designating semantic coverage

 {r, k} // Range and k-nearest neighbor selection operators

Ouput: Nd_Out // List of query answers

Begin

Nd_Out = �
Create Thread for each query term Ti � T
{

Step 1: Ni_In = getNodeIDs(Ti, GSI) 4
Create Thread for each ni �Ni_In
{

Step 2: SP = findShortestPaths(ni, �, GSI)
Step 3: Nd_ni = getDataNodeIDs(SP, GSI, Ai)

Step 4: Nd_Out = mergeAndRank(Nd_ni , Nd_Out)
}

 Step 5: Nd_Out = select(Nd_Out, {range, kNN})

 Return Nd_Out
End

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 8. Pseudo-code of SemIndex Parallel Semantic Search (SI_DS)

Fig. 9. Main querying interface in upgraded SemIndex prototype

VI. EXPERIMENTAL EVALUATION

A. Prototype System
We have implemented our new SemIndex algorithms and
functionality using Java, and have used MySQL 5.6 as an RDBMS to
store the data collection. The prototype’s GUI has also been
upgraded to handle multiple options (launching multiple queries
simultaneously) for customized search. Data sheets (in the form of
Excel files) are automatically generated after every run of the system,
storing all statistical and experimental data pertaining to the queries
executed, including: CPU and SQL execution times, memory
consumption, number of nodes visited in the SemIndex graph,
number of retrieved results, as well as a various experimental metrics

including precision, recall, f-value, and mean average precision
(MAP). The main querying interface is shown in Fig. 9, where one
can see multiple querying options such as: Query Types, Link
Distance, among others. New interfaces have also been developed to
allow additional functionality such as: a dedicated interface allowing
the user to choose proper meanings (synsets) for query keywords
when running the Query-As-You-Type algorithm (Fig. 10), as well as
an interface to select relevant (versus non-relevant) data objects (Fig.
11) to be used as reference for computing experimental metrics (e.g.,
precision, recall, cf. Section VI.B).

Fig. 10. Query-As-You-Type sub-interface

B. Experimental Scenario
We evaluated the performance of our SemIndex querying algorithms
by assessing their: i) query processing time, and ii) the quality of
returned results. We used IMBD movies dataset2 as an average-scale3
input textual collection, including attribute movie_id and the
combined textual contents of attributes title, year, plot, and info, with
a total size of around 75 MBytes including more than 143k data
(movie) objects, and more than 7 million index terms. We used
WordNet 3.0 as our reference knowledge base, with a total size of
around 26 Mbytes, including more than 117k synsets (senses).
Detailed descriptions of both the textual collection and the
knowledge base are provided in a technical report [32].

We formulated different queries organized in two categories: i)
unrelated queries and ii) expanded queries.

Table 2. Sample test queries used in our experiments.

Query group Q1 – Unrelated queries Query group Q2 – Expanded queries

ID Terms ID Terms
Q1_1 “time” Q2_1 “car”
Q1_2 “love”, “date” Q2_2 “car”, “muscle”
Q1_3 “fly”, “power”, “man” Q2_3 “car”, “muscle”, “classic”
Q1_4 “robot”, “human”, “war”, “world” Q2_4 “car”, “muscle”, “classic”, “speed”
Q1_5 “west”,“cowboy”,“peacekeeper”,“sheriff”, “law” Q2_5 “car”,“muscle”,“classic”,“speed”,“thrills”

The first category consists of queries with varying numbers of

selection terms (keywords), e.g., from 1 (single term query) to 5,
where all terms are different and all queries are unrelated (i.e.,
queries with no common selection terms, cf. sample query group Q1
in Table 2). The second category consists of queries with varying
numbers of selection terms, where terms are different yet queries are
related: such that each query expands its predecessor by adding an
additional selection term to the latter (cf. sample query group Q2).

Tests were carried out on a PC with an Intel I7 system with 2.9
GHz CPU, 8GB RAM memory, and a 500 GB built-in NTFS disk

2 Internet Movie DataBase raw files are available from online

http://www.imdb.com/. We used a dedicated data extraction tool (at
http://imdbpy.sourceforge.net/) to transform IMDB files into a RDB.

3 Tests using large-scale TREC data collections and the Yago ontology as a
reference KB are underway within a dedicated study.

drive. The database (IMDB), knowledge graph (WordNet), and index
files were stored on the disk drive’s main partition.

Fig. 11. Relevant data objects generator interface

C. Query Processing Time
We ran the same queries through the four SemIndex querying
algorithms: SI_SS, SI_DS, SI_QAYTS, and SI_PSS. Fig. 12 provides
average processing time results for all queries, plotted by varying the
number of query terms k and SemIndex link distance threshold �.
Note that when considering ��=1, algorithm SI_SS comes down to
performing traditional keyword containment search using a
traditional inverted index (cf. Fig. 2).

First, results of all four algorithms show that query execution
time increases almost linearly with the number of query terms k
(when fixing link distance �), and increases linearly with ��(when
fixing k), highlighting the algorithms quadratic complexity levels.
Second, results show that all four algorithms have very close query
time levels when both k and � are small (=1 and 2), such that time
difference increases as both k and � increase. This is due to the fact
increasing either k or�� means increasing the number of nodes to be
navigated in the SemIndex graph: increasing k means navigating the
SemIndex graph starting from a larger number of initial nodes, and
increasing�� means reaching deeper into the SemIndex graph structure
to identify more semantically relevant results. Third, one can clearly
realize that the most time consuming algorithm is SI_DS due to the
overhead it adds to process the different possible meanings of every
query term (for disambiguation) before navigating the SemIndex
graph. Algorithms SI_SS and SI_QAYTS produced almost identical
time levels (disregarding the manual effort required in SI_QAYTS4),
whereas our parallel processing SI_PSS algorithm is clearly the most
efficient of its counterparts, requiring almost 50% less time than
SI_DS and almost 33.34% less time than SI_SS/SI_QAYTS with
maximum k=5 and �=5.

D. Query Result Quality
Table 3 shows the precision, recall, f-value and MAP results obtained
with the four SemIndex querying algorithms, averaged over all test

4 SI_QAYTS’s time shown in Fig. 12 does not encompass the time it took the

testers to manually choose the meanings of query terms (which we did not
consider to be part of the algorithm itself), but only considers actual algorithm
(CPU and SQL) execution time.

queries. Note that SI_SS and SI_PSS produce exactly the same query
answers (recall that SI_PSS is a parallelized version of SI_SS), and
hence their results are fused together in the below graphs. Results
averaged per link distance � and number of query terms k are
provided in Table 1. These highlight several observations.

1) Precision and recall: One can realize that precision levels
with all SemIndex algorithms, while fluctuating, generally increase
with link distance (�) until reaching �=3 or �=4 where precision starts
to decrease toward �=5. However, one can realize that recall levels
steadily increase with � (with reduced fluctuation compared with
precision). On one hand, this shows that the number of correct (i.e.,
user expected) results increases as more semantically related terms
are covered in the querying process (with � > 1). On the other hand,
this also shows that over-navigating the SemIndex graph to link terms
with semantically related ones located as far as � � 3 hops away
might include results which: i) are somehow semantically related to
the original query terms, but which ii) are not necessarily interesting
for the users. For instance, term “congo” (meaning: black tea grown
in China) is linked to term “time” through �=5 hops in SemIndex
(“time” >> “snap” >> “reception” >> “tea” >> “congo”). Yet, results
(movie objects) containing term “congo” (e.g., movies about the
country Congo, or its continent Africa) were not judged to be relevant
by human testers when applying query “time” (testers were probably
expecting movies about the passage of time or time travel instead,
etc.)5. Many such examples occurred when running multiple term
queries such as Q1_4 (consisting of terms “robot”, “human”, “war”,
“world”)6, where movies like The Taking of Pelham One Two Three7
and Showtime 8 (among others) where returned as results by
SemIndex’s SI_SS when reaching �=5. Such results were deemed not
relevant by the testers since they do not correspond to the semantics
of the query. Note that returning noisy (incorrect) results along with
correct ones does not affect recall, but rather affects precision.

2) F-value and MAP: levels clearly increase with the increase of
link distance �, whereas they show the same fluctuating behavior

5 Even though testers had difficulty agreeing on the results of single keyword queries as

mentioned previously, yet such cases occurring at link distance �=4 or 5 were clearly
deemed irrelevant by all testers.

6 Query Q1_4 = { “robot”, “human”, “war”, “world”}
7 2009 movie starring Denzel Washington and John Travolta, about a train hijacking in

New York city.
8 2002 comedy movie starring Eddy Murphy and Robert De Niro, about police officers

starring in a reality TV show.

with the increase of the number of keywords k. First, f-value levels
confirm the precision and recall levels obtained above, where the
determining factor affecting retrieval quality remains link distance �,
whereas an increase in the number of keywords k tends to reduce
system recall with lower values of � and increase recall with higher
values of �. Second, MAP levels seem to concur with those of f-value,
such that the ranking of relevant results compared with non-relevant
ones in the queries’ result lists seems to increase with the increase of
��and fluctuate (based on the values of �) with the increase of k. In
other words, increasing � not only allowed retrieving more relevant
results, but also allowed dropping non-relevant ones (from the
selected top 100 results of the query result list), and consequently
improved the ranking of relevant results w.r.t. non-relevant ones in
the query result list.

Table 3. Precision, recall, f-value, and MAP results obtained with
SemIndex query processing algorithms, averaged per link distance (�) and
per number of terms (k) (graphs are provided in the technical report [32]).

a. Average precision (PR) results

 �=1 �=2 �=3 �=4 �=5 k=2 k=3 k=4 k=5 Avg.
SI_(P)SS 0.2758 0.3234 0.5193 0.3805 0.3189 0.4226 0.3632 0.2502 0.4184 0.3636

SI_DS 0.0833 0.4259 0.4487 0.3563 0.2866 0.3595 0.1941 0.2218 0.5053 0.3202
SI_QAYST 0.2758 0.2758 0.3762 0.1687 0.1678 0.7882 0.5268 0.1760 0.1946 0.2528

b. Average recall (R) results

SI_(P)SS 0.0327 0.0570 0.1487 0.3358 0.4684 0.2570 0.2219 0.1656 0.1895 0.2085
SI_DS 0.0063 0.0288 0.1191 0.3551 0.5026 0.1632 0.1651 0.2586 0.2227 0.2024

SI_QAYST 0.0327 0.0327 0.0508 0.0801 0.1192 0.1769 0.1448 0.0629 0.0361 0.0631

c. Average f-Value results

SI_(P)SS 0.1543 0.1902 0.3340 0.3581 0.3711 0.3398 0.2888 0.1937 0.3038 0.2815
SI_DS 0.0448 0.2274 0.2839 0.3507 0.3403 0.2614 0.1725 0.2000 0.3637 0.2494

SI_QAYST 0.1543 0.1543 0.2135 0.1225 0.1327 0.2896 0.1958 0.0672 0.0692 0.1554

c. Average mean average precision (MAP) results

SI_(P)SS 0.0273 0.0443 0.0982 0.2264 0.3002 0.1708 0.1222 0.1377 0.1264 0.1393
SI_DS 0.0045 0.0226 0.0711 0.2488 0.3195 0.0829 0.0781 0.1864 0.1856 0.1333

SI_QAYST 0.0275 0.0275 0.0394 0.0482 0.0605 0.0768 0.0456 0.0289 0.0111 0.0406

3) Comparing SemIndex algorithms: results show that SI_SS

(same for SI_PSS) surpasses its SI_DS and SI_QAYTS algorithms in
all four precision, recall, f-value, and MAP metrics (cf. Table 3).
Concerning SI_SS (SI_PSS) versus SI_DS, results indicate that i)
navigating the SemIndex graph considering all possible meanings
(senses) of every query keyword (as done by SI_SS and SI_PSS)
produced more relevant and better ranked results, whereas ii)
disambiguating query terms first, and then navigating the graph

a. N# of query terms k = 1

b. N# of query terms k = 2

c. N# of query terms k = 3

d. N# of terms k = 4

e. N# of terms k = 5

0

4

8

12

16

20

0 1 2 3 4 5

Ti
m

e
(in

 s
ec

po
nd

s)

Link distance � = 1

SI_SS
SI_DS
SI_QAYTS
SI_PSS

0

4

8

12

16

20

0 1 2 3 4 5

Link distance ��= 2

SI_SS
SI_DS
SI_QAYTS
SI_PSS

0

4

8

12

16

20

0 1 2 3 4 5

Link distance � = 3

SI_SS
SI_DS
SI_QAYTS
SI_PSS

0

4

8

12

16

20

0 1 2 3 4 5

Link distance � = 4

SI_SS
SI_DS
SI_QAYTS
SI_PSS

0

4

8

12

16

20

0 1 2 3 4 5

Link distance � = 5

SI_SS
Si_DS
SI_QAYTS
SI_PSS

Fig. 12. Comparing average query execution time of SI_SS with its three variants: SI_DS, SI_QAYTS, and SI_PSS, while varying link
distance threshold �, and fixing the number of query terms k.

starting from the disambiguated senses’ nodes (as done by SI_DS),
produced less relevant and worse ranked results. However, the worst
results (in terms of both relevance and ranking) were obtained with
SI_QAYTS. In fact, in designing SI_QAYTS, we intuitively thought
that allowing the user to choose the proper meanings (senses) for
query terms before processing (before SemIndex navigation) would
be the most promising approach, especially when the user considers
that she/he knows the exact meanings of the terms utilized to
formulate the query. Yet, it turns out that choosing the meanings of
terms can be a very delicate task in most cases. First, the user might
be confused when trying to choose among a large number of very
close or semantically related meanings for a given term (e.g.,
choosing the right meaning for query Q1_4’s term “world” in
WordNet: sense#1 - everything that exists, sense#2 – reality as in
how things appear, sense#3 – people in general, sense#4 – Planet
earth, sense#5 – the human race, and three more other senses).
Second, the user chosen meaning could be very different from the
one intended by the data creator (e.g., when processing query Q1_59
through SI_QAYTS, most users chose for term “peacekeeper” its
sense#1 in WordNet: someone who keeps peace. Yet, we realized that
the meaning of “peacekeeper” that was more closely related to
Q1_5’s intended (golden truth) results (i.e., western movies) was
sense#3: the pistol of a law officer in the old West.

To sum up, SI_SS (SI_PSS) seem(s) more effective than the
other alternative algorithms.

VII. CONCLUSION
The main goal of our study was to complete the design and
development of SemIndex’s query evaluation engine. To this end, we
upgraded SemIndex by designing and implementing new components
and functionality, including: i) dedicated weight functions, associated
with the different elements of SemIndex, allowing semantic query
result selection and ranking, coupled with iii) a dedicated relevance
scoring measure, required in the query evaluation process in order to
retrieve and rank relevant query answers, iii) various alternative
query processing algorithms (in addition to the main algorithm), as
well as iv) a dedicated GUI interface allowing user to easily
manipulate the prototype system. Preliminary experiments highlight
SemIndex’s effectiveness and efficiency, considering different
querying algorithms, different semantic coverages, and a varying
number of query keywords.

We are currently conducting an extended experimental study to
evaluate SemIndex’s properties in terms of i) genericity: to support
different types of textual (structured, semi-structured, NoSQL) data
collections, and different semantic knowledge sources (general
purpose like Yago [18] and Google [19]), ii) effectiveness: evaluating
the interestingness of semantic-aware query answers considering
different query answer weighting and ranking (result ordering)
schemes, in comparison with IR-based indexing, query expansion,
and query refinement methods, and iii) efficiency: to reduce the
index’s building and query processing costs, using customozed
multithreading, index fragmentation, and sub-graph mining
techniques [13].

ACKNOWLEDGMENTS

This study is partly funded by the National Council for Scientific
Research (CNRS-L) – Lebanon, the Lebanese American Unviersity
(LAU), and the Research Support Foundation of the State of Sao
Paulo (FAPESP), project: MIVisBD_2017.

9 Query Q1_5 = {“west”, “cowboy”, “peacekeeper”, “sheriff”, “law”}

REFERENCES

[1] Agarwal M.K. et al.., Generic Keyword Search over XML Data. International
Conference on Extended DataBase Technology (EDBT'16), 2016. pp. 149-160.

[2] Agrawal S. et al., Exploiting Web Search Engines to Search Structured Databases.
World Wide Web Conference (WWW'09), 2009. pp. 501-510.

[3] Baeza-Yates R. and Ribeiro-Neto B., Modern Information Retrieval: The Concepts
& Technology behind Search. Addison-Wesley Professional, 2nd Ed., 2011. p. 944.

[4] Banerjee S. and Pedersen T., An adapted Lesk algorithm for word sense
disambiguation using WordNet. In Proc. of the International Conference on
Intelligent Text Processing and Computational Linguistics, 2002.

[5] Bao Z. et al., A Query Refinement Framework for XML Keyword Search. World
Wide Web 2017. 20(6):1469-1505.

[6] Bednar Peter et al., RDF vs. NoSQL databases for the Semantic Web applications.
Inter. Symp. on Applied Machine Intell. and Informatics (SAMI), 2014, 361-364.

[7] Bergamaschi S. et al., Combining User and Database Perspective for Solving
Keyword Queries over Relational Databases. Info. Systems, 2016. 55: 1-19.

[8] Blanco R. et al., Effective and Efficient Entity Search in RDF data. In International
Semantic Web Conference (ISWC'11), 2011. pp. 83–97.

[9] Burton-Jones A. et al., A Heuristic-Based Methodology for Semantic
Augmentation of User Queries on the Web. In Proc. of the Inter. Conference on
Conceptual Modeling (ER'03), 2003. pp. 476–489.

[10] Carpineto C. and Romano G., A Survey of Automatic Query Expansion in
Information Retrieval, . ACM Computing Survey, ACM, NY, USA, 2012. 44(1):1.

[11] Chandramouli K. et al., Query Refinement and user Relevance Feedback for
contextualized image retrieval. Inter. Conf. on Visual Information Engineering
(VIE), 2008. pp. 453 - 458.

[12] Chbeir R. et al., SemIndex: Semantic-Aware Inverted Index. East-European Conf.
on Advanced Databases and Information Systems (ADBIS'14), 2014. pp. 290-307.

[13] Cheng J. et al., Fast graph query processing with a low-cost index. VLDB Journal,
2011. 20(4): 521-539.

[14] Cheng T. et al., EntityRank: searching entities directly and holistically. 33rd inter.
conf. on Very Large Data Bases (VLDB'07), 2007. pp. 387-398.

[15] Chu E. et al., A relational approach to incrementally extracting and querying
structure in unstructured data. inter. conf. on Very Large Data Bases (VLDB '07),
2007. pp. 1045-1056

[16] Das S. et al., Making unstructured data sparql using semantic indexing in oracle
database. In Proceedings of 29th IEEE ICDE Conf., 2012. pp. 1405–1416

[17] Ding B. et al., Finding top-k min-cost connected trees in databases. Proceedings of
the Inter. Conf. on Data Engineering (ICDE'07), 2007.

[18] Hoffart J. et al., YAGO2: A spatially and temporally enhanced knowledge base
from Wikipedia. Artif. Intell., 2013. 194: 28-61.

[19] Klapaftis I. and Manandhar S., Evaluating Word Sense Induction and
Disamiguation Methods. Language Resources & Evaluation, 2013. 47(3):579-605.

[20] Li F. and J. H.V., Constructing an Interactive Natural Language Interface for
Relational Databases. Proceedings of the VLDB Endowment, 2014. pp. 73-84.

[21] Li Y. et al., Term Disambiguation in Natural Language Query for XML. Inter.
Conf. on Flexible Query Answering Systems (FQAS), 2006. LNAI 4027, 133–146.

[22] Liu F. et al., Effective keyword search in relational databases. Proc. of the 2006
ACM SIGMOD inter. conf. on Management of data, 2006. pp. 563-574

[23] Luo Y. et al., Spark: top-k keyword query in relational databases. Proc. of the
2007 ACM Inter. Conf. on Management of Data (SIGMOD-07), 2007, 115-126.

[24] Markowetz A. et al., Keyword search on relational data streams. Proc. of the
Inter. Conf. on Management of Data (SIGMOD'07), 2007. pp. 605–616.

[25] Martinenghi D. and Torlone R., Taxonomy-based relaxation of query answering in
relational databases. VLDB Journal, 2014. 23(5):747-769.

[26] Miller G.A. and Fellbaum C., WordNet Then and Now. Language Resources and
Evaluation, 2007. 41(2): 209-214.

[27] Miller S. et al., Hidden Understanding Models of Natural Language. 32nd annual
meeting on Ass. for Computational Linguistics, Stroudsburg, USA, 1994, 25–32.

[28] Mishra C. and Koudas N., Interactive Query Refinement International Conference
on Extending Database Technology (EDBT'09), 2009. pp. 862-873.

[29] Navigli R. and Crisafulli G., Inducing Word Senses to Improve Web Search Result
Clustering. Inter. Conf. on Empirical Methods in NLP, 2010. pp. 116–126.

[30] Nihalani N. et al., Natural language Interface for Database: A Brief review. Inter.
Journal of Computer Science Issues, 2011. 8(2):600-608.

[31] Nguyen S.H. et al., Semantic Evaluation of Search Result Clustering Methods.
Intelligent Tools for Building a Scientific Information Platform, Studies in
Computational Intelligence Volume 467, 2013. 467(393-414).

[32] Tekli J. et al., SemIndex Technical Report. Available at
http://sigappfr.acm.org/Projects/SemIndex/, 2018.

[33] Traina C. Jr. et al., Efficient Processing of Complex Similarity Queries in RDBMS
through Query Rewriting. Proc. of the 15th ACM International Conference on
Information and Knowledge Management (CIKM), 2006. pp. 4-13.

[34] Wen H. et al., Clustering web search results using semantic information
International Conference on Machine Learning and Cybernetics, 2009. 3:1504-
1509.

[35] Wu P. et al., Towards keyword-driven analytical processing. Proceedings of the
Inter. Conf. on Management of Data (SIGMOD'07), 2007. pp. 617–628.

