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Abstract—This paper describes an upgraded version of the 
SemIndex prototype system for semantic-aware search in textual 
SQL databases. Semantic-aware querying has emerged as a 
required extension of the standard containment keyword-based 
query to meet user needs in textual databases and IR 
applications. Here, we build on top of SemIndex, a semantic-
aware inverted index previously developed by our team, to allow 
semantic-aware search, result selection, and result ranking 
functionality. Various weighting functions and intelligent search 
algorithms have been developed for that purpose and will be 
presented here. A graphical interface was also added to help end-
users write and execute queries. Preliminary experiments 
highlight SemIndex querying effectiveness and efficiency, 
considering different querying algorithms, different semantic 
coverages, and a varying number of query keywords. 

Keywords—Semantic Queries, Inverted Index, Semantic 
Network, Textual Database, Semantic Search, Disambiguation. 

I. INTRODUCTION 
A. Context 
 

Processing keyword-based queries is a fundamental problem in the 
domain of Information Retrieval (IR) [3, 5, 16]. A standard 
containment keyword-based query, which retrieves textual identities 
that contain a set of keywords, is generally supported by a full-text 
index. Inverted index is considered as one of the most useful full-text 
indexing techniques for very large textual collections [3], supported 
by many relational DBMSs, and then extended toward semi-
structured and unstructured data to support keyword-based queries. 

In a previous study [12], we proposed SemIndex: a semantic-
aware inverted index model designed to process semantic-aware 
queries. An extended query model with different levels of semantic 
awareness was defined, so that both semantic-aware queries and 
standard containment queries can be processed within the same 
framework.  Fig. 1 illustrates the overall framework of the SemIndex 
approach and its main components. Briefly, the Indexer manages the 
index generation and maintenance, while the Query Processor 
processes and answers semantic-aware (or standard) queries issued 
by the user using SemIndex component. 
 

B. Goal and Contributions 
 

While the study in [12] introduced the core logical design of 
SemIndex, the goal of our current paper is to shed the light on 
upgrades to the SemIndex framework and components. At the indexer 
level, we add: i) dedicated weight functions, associated with the 
different elements of the SemIndex graph, allowing more 
sophisticated semantic query result selection and ranking, coupled 
with ii) a dedicated relevance scoring measure, required in the query 
evaluation process in order to retrieve and rank relevant query 
answers. At the query processing level, we develop iii) different 
alternative query processing algorithms (in addition to the main 
algorithm), and iv) a dedicated GUI interface allowing user to easily 
manipulate the prototype system.  

 

 
Fig. 1. SemIndex Framework 

 
 

The remainder of the paper is organized as follows: Section II 
provides a literature review. Section III briefly reminds SemIndex’s 
logical design model. Section IV describes SemIndex’s weight 
functions and relevance scoring measure. Section V develops the 
newly introduced querying algorithms. Section VI highlights added 
prototype functionality and describes the experimental evaluation, 
before concluding in Section VII with ongoing works.  

 

II.  LITERATURE REVIEW 
Early approaches on keyword search queries for RDBs uses 
traditional IR scores (e.g., TF-IDF) to find ways to join tuples from 
different tables in order to answer a given keyword query [2, 7, 17]. 
The proposed search algorithms focus on enumeration of join 
networks called candidate networks, to connect relevant tuples by 
joining different relational tables. The result for a given query comes 
down to a sequence of candidate networks, each made of a set of 
tuples containing the query keywords in their text attributes, and 
connected through their primary-foreign key references, ranked based 
on candidate network size and coverage. More recent methods on 
RDB full-text search in [22, 23] focus on more meaningful scoring 
functions and generation of top-k candidate networks of tuples, 
allowing to group and/or expand candidate networks based on certain 
weighting functions in order to produce more relevant results. The 
authors in [24] tackle the issue of keyword search on streams of 
relational data, whereas the approach in [35] introduces keyword 
search for RDBs with star-schemas found in OLAP applications. 
Other approaches introduced natural language interfaces providing 
alternate access to a RDB using text-to-SQL transformations [20, 
30], or extracting structured information (e.g., identifying entities) 
from text (e.g., Web documents) and storing it in a DBMS to 
simplify querying [14, 15]. Keyword-based search for other data 
models, such as XML [1, 5] and RDF [6, 8] have also been studied. 

More recent approaches, e.g., [25, 29, 31, 34],  have developing 
so-called semantic-aware or knowledge-aware (keyword) query 
systems, which have emerged since the past decade as a natural 
extension to traditional containment queries, encouraged by (non-
expert) user demands. Most existing works in this area have 
incorporated semantic knowledge at the query processing level, to: i) 
pre-process queries using query rewriting/relaxation and query 
expansion [9, 25, 33], ii) disambiguate queries using semantic 
disambiguation and entity recognition techniques [9, 21, 29], and/or 
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iii) post-process query results using semantic result organization and 
re-ranking [29, 31, 34]. Yet, various challenges remain unsolved, 
namely: i) time latencies when involving query pre-processing and 
post-processing [25, 33], ii) complexity of query rewriting/relaxation 
and query disambiguation requiring context information (e.g., user 
profiles or query logs) which is not always available [10, 28], and iii) 
limited user involvement, where the user is usually constrained to 
providing feedback and/or performing query refinement after the first 
round of results has been provided by the system [11, 28]. 

Our work is complementary to most existing DB search 
algorithms in that our approach extends syntactic keyword-term 
matching: where only tuples containing exact occurrences of the 
query keywords are identified as results, toward semantic based 
keyword matching: where tuples containing terms which are lexically 
and semantically related to query terms are also identified as 
potential results, a functionality which - to our knowledge - remains 
unaddressed in most existing DB search algorithms. We build on an 
adapted index structure able to integrate and extend textual 
information with domain knowledge (not only at the querying level, 
but rather) at the most basic data indexing level, providing a 
semantic-aware inverted index capable of supporting semantic-based 
querying, and allowing to answer most challenges identified above.  
 

 

III. SEMINDEX DESIGN MODEL 
SemIndex’s logical design consists of a semantic knowledge graph 
structure, combining two graph representations for each of the input 
resources: i) textual data collection (e.g., IMDB) and ii) reference 
knowledge base (e.g., WordNet) into a single graph structure. 
Consider for instance the sample data collection in Table 1.  Fig. 2 
shows an extract from an inverted index built on the sample movie 
database in Table 1, where data objects O1, O2, and O3 have been 
indexed using index terms extracted from the database, sorted in 
alphabetic order. It is important to note that this simple index is 
typically used to answer containment queries [3], aiming at finding 
data objects that contain one or more terms.  

 
 

Table 1. Sample Movie data collection extracted from IMDB. 

ID Textual content 

O1 
When a Stranger Calls (2006): A young high school student babysits for 
a very rich family. She begins to receive strange phone calls threatening 
the children... 

O2 
Days of Thunder (1990): Cole Trickle is a young racer from California 
with years of experience in open-wheel racing winning championships in 
Sprint car racing…  

O3 
Sound of Music, The (1965): Maria had longed to be a nun since she was 
a young girl, yet when she became old enough discovered that it wasn’t 
at all what she thought... 

 
When a keyword query mapping two or more index terms must 

be processed, the corresponding posting lists are read and merged. 
The index terms and their mappings with the data objects can be 
generated using classical Natural Language Processing (NLP) 
techniques (including stemming, lemmatization, and stop-words 
removal) [27], which could be either embedded in the DBMS or 
supplied by a third-party provider. 

An extract from the WordNet knowledge graph is shown in  Fig. 
3, where S1, S2 and S3 represent senses/concepts (i.e., synsets in 
WordNet), and their string values (i.e., the synsets’ 
glosses/definitions), and T1, T2, …, T11 represent terms, and their 
string values (i.e., literal words/expressions) shown alongside the 
corresponding nodes.  

 

Term  Object IDs[ ] 
“car”  �O1, O2� 
“light”  �O1� 

“sound”  �O3� 
“zen”  �O1� 

…  …  
 

 

a. Inverted index InvIndex(Δ). 
 

 

 
b. SemIndex graph representing InvIndex(Δ). 

 
 

Fig. 2.  Sample inverted index (a) and corresponding SemIndex graph (b), 
based on the textual collection in Table 1. 

 
 
 

 
a. Sample GKB graph representing a KB extract from WordNet. 

 
 

Term Sense IDs[] 
“acid” �S1, S3� 
“clean” �S2� 
“light” �S2� 
“lsd” �S3� 

“lysergic” �S1, S3� 
… … 

 

b. Extract of inverted index InvIndex(GKB) connecting terms in GKB        
with corresponding senses (to speed up term/synset lookup) 

 

 

Fig. 3.  Extract from the knowledge graph of WordNet, with corresponding 
inverted index. 

 
Following [12], a SemIndex graph consists of an extended knowledge 
graph made of data nodes to represent data objects (e.g., movies), 
index nodes to represent senses/concepts (e.g., synsets) and terms 
(e.g., words/expressions), as well as corresponding data and index 
relations represented as graph edges. For instance, a sample 
SemIndex graph is shown in  Fig. 4 built based on the textual 
collection from Table 1 and the KB extract in  Fig. 3. It comprises 3 
data nodes (O1 – O3), 3 index sense nodes (S1 – S3), and 11 index 
term nodes (T1 – T11), along with corresponding data edges and index 
edges. 

 
 

Data node Index node Contained relationship 



 

a. SemIndex graph before removing edge labels and string values. 

 

b. Final SemIndex graph representation, trimmed by removing edge 
labels and string values which will not be used in query evaluation. 

 

Fig. 4. Extract of SemIndex graph obtained after coupling the data 
collection and the knowledge base graphs in Fig. 2 and 3. 

 

IV. INDEX WEIGHT FUNCTIONS 
After indexing and coupling the textual resource and the semantic 
resource into a unified SemIndex graph, we introduce a set of 
weighting functions to assign weight scores to SemIndex’ entries, 
including: data nodes, index nodes, data edges and index edges. 
Other weight functions could be later added to cater to the index 
designer’s needs. 

A. Index Node Weight 
Considering an index node ni in the SemIndex graph, the weight of ni 
is computed according to the below formula where we consider “Fan-
in” to be the number of nodes connected with the target index node: 
 

WIndexNode(ni) = 
 

( )     [0,1]( ( ))
j index

i

jv V
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� �

�
�

�
  (1) 

 
The rational here is that an index node is more important if it receives 
more links from other indexing nodes. 
 

B. Index Edge Weight
Given an index edge  

j
ie  incoming from index node ni and outgoing 

toward index node nj in the SemIndex graph, we define the weight of 
 

j
ie as follows:  

WIndexEdge (  

j
ie )= 1       ]0,1]( )Label iFan out n �

�
 (2) 

 

The weight of an index edge inversely proportional to the number of 
outgoing links from a certain index node to another, taking into 
account the semantic relation type of the index link at hand. The 
rationale here is that an index edge designates a stronger connection 
between two index nodes when it carries most of the descriptive 
power from the source node to the destination node, such that the 
source node has few other out-going connections. 
 

C. Data Node Weight 
The weight of a data node nd in the SemIndex graph is defined as: 
 

WDataNode (nd) = ( )    [0,1]Max( ( ))
d

q SI

Fan - In n
Fan - In n G �

�
  (3) 

 

where Fan-In(nd) designates the number of foreign key/primary key 
data links (joins) outgoing from data nodes (tuples) �

 
nq � GSI  

where the foreign keys reside, toward data node (tuple) nd where the 
primary key resides. Here, similarly to index node weight, the 
rational is that a data node is more important if it receives more links 
from other data nodes. 

D. Data Edge Weight 

Given a data edge  
d
ie connecting an index node ni with a data node nd 

(e.g., data edge connecting index node T1 with data node O2 since the 
term “car” occurs in the textual description of O2, likewise for T1-O2, 
T4-O1, T5-O1 and T10-O3 in  Fig. 4), we compute the weight of  

d
ie as a 

typical TF-IDF (Term Frequency Inverse Document Frequency) 
score where TF underlines the frequency (number of occurrences) of 
the index node string literal within a given data node, connected via 
the data edge in question, and IDF underlines the number of data 
edges connecting the same index node with other data nodes (i.e., the 
fan-out of the index node in question). Hence, given a data edge  

d
ie  

incoming from index node ni toward data node nd, we define:  
 

WDataEdge ( d
ie ) = TF(ni.l, nd) � IDF(ni.l) (4) 

 

TF and IDF are calculated as follows: 
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TF is normalized w.r.t.1 the maximum number occurrences of any 
index node string literal nk.l within the target data node nd: 

 

IDF(ni.l, GSI) = ( . , )1    [0, 1]i SIDF n l G
N� �

)), ,, )  (6) 

 

where N is the total number of data nodes in the SemIndex graph, and 
DF(ni.l, GSI) is the number of data nodes in the graph containing at 
least one occurrence of ni.l.  

                                                           
1 with respect to 



E. Relevance Scoring Measure 
The scores of index/data nodes/edges returned as query answers are 
computed using typical Diskstra-style shortest distance 
computations. Yet, instead of identifying the shortest (smallest) 
distance, we identify as answers data objects having the maximum 
similarity (similarity being the inverse function of distance) w.r.t. the 
starting index nodes (mapping to keyword queries). In other words, 
given the sample node linkage in  Fig. 5, with data node nd and 
starting index node ni, we define the relevance score of nd w.r.t. ni as 
follows:  
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IndexNode IndexEdge

IndexNode IndexEdge
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where d(ni, nj) is the distance in number of edges between two nodes. 
In other words, in the following example, d(np, nd) =1, d(nj, nd) =2, 
and d(ni, nd) =3. 
 

 
 

Fig. 5. Sample node linkage in the SemIndex graph 

V. QUERYING ALGORITHMS 
Our upgraded prototype includes four query processing algorithms: i) 
the core algorithm and three other variants designed to improve: ii) 
query performance, iii) user involvement, and iv) query efficiency: 
 

i. Core algorithm: titled SemIndex Semantic Search (SI_SS) 
originally developed in [12], performs semantic-aware search 
using shortest path navigation in the SemIndex graph, 

ii. Query performance: SemIndex Disambiguated Search (SI_DS), 
integrates semantic disambiguation within the semantic search 
process, aiming to improve querying result quality, 

iii. User involvement: SemIndex Query-As-You-Type Search 
(SI_QAYTS), allows users to manually choose the meanings of 
query keywords before performing semantic search, aiming to 
involve the user in improving search result quality, 

iv. Query Efficiency: SemIndex Parallel Semantic Search 
(SI_PSS) is a parallel processing (multithreading) version of 
SI_SS, aiming to reduce query execution time.  

 

A. SemIndex Semantic Search (SI_SS) 
This is the original data search algorithm developed for SemIndex. 
The algorithm’s pseudo-code is provided in  Fig. 6, and consists of 
the following main steps: 

 

1- Identify the index (searchable term) nodes mapping to each 
query term (lines 1-4), 

2- Identify, for each of the selected index nodes, the minimum 
distance paths at distance �, i.e., using Dijkstra’s shortest path 
algorithm (lines 5-7) 

3- Identify the shortest paths which contain data edges linking to 
data nodes, and then add the resulting data nodes to the list of 
output data nodes (line 8) 

4- Merge the resulting data nodes with the list of existing answer 
data nodes. Each answer node is then assigned a score by 
adding its distance from every query term index node. The 
algorithm finally returns the list of answer data nodes ranked 
by order of path scores in ascending order (lines 9-12). 

 
 

Algorithm SI_SS     // SemIndex Semantic Search 
 

Input:   GSI        // SemIndex graph  
             T              // Set of query selection terms 
                �               // Link distance value, designating semantic coverage 
           {r, k}         // Range and k-nearest neighbor selection operators 
 

Ouput: Nd_Out     // List of query answers  
 
Begin 
 

Nd_Out = �                                                                                      
For each query term Ti � T                                                           
{                                                                                                     

Step 1: Ni_In = getNodeIDs(Ti, GSI)                      4 
For each searchable node ni � Ni_In       
{ 
          Step 2: SP = findShortestPaths(ni, �, GSI)            

 Step 3: Nd_ni = getDataNodeIDs(SP, GSI)     
         

 Step 4: Nd_Out = mergeAndRank(Nd_ni , Nd_Out)     
}                                                     7 

}                                                                                                     
8    

      Step 5: Nd_Out = select(Nd_Out, {range, kNN})                          
 

Return Nd_Out                                                                                                   
9 

End 
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Fig. 6. Pseudo-code of algorithm SemIndex Semantic Search (SI_SS) 
 

B. SemIndex Disambiguated Search (SI_DS) 
This algorithm consists in disambiguating query keywords, to 
pinpoint the corresponding indexing nodes (synsets) in the SemIndex 
graph GSI, before applying semantic search, in an attempt to reduce 
SemIndex graph navigation time. 

On one hand, the core SI_SS algorithm considers all occurrences 
of each query keyword as starting nodes for query processing. For 
instance, query q = {“pane”, “clean”} consisting of two keywords: 
“pane” and “clean”, would result in 4 starting index nodes: 3 index 
term nodes corresponding to the three possible meanings of “pane” 
(following the WordNet semantic reference [26], used as reference 
KB in creating our current GSI) and one index term node 
corresponding to the single meaning of term “clean” (following 
WordNet). Hence, applying SI_SS in this case requires navigating GSI 
from 4 starting points, until reaching potential answers (i.e., data 
nodes reachable from both terms within the user specified link 
distance �).  

On the other hand, SI_DS aims to reduce the number of starting 
nodes, in order to navigate GSI and reach potential query answers 
faster. Its pseudo-code is shown in  Fig. 7, and consists of the 
following main steps: 

 

1- Perform WSD on query terms using the Adapted LESK 
algorithm  [4] (lines 1-4), 

2- Identify in the SemIndex graph the index nodes of 
disambiguated senses (line 5), 

3- Run the resulting query, starting from the identified index 
nodes, as a typical keyword containment query on SemIndex 
(similarly to SI_SS, lines 6-11). 

 

nd np nj ni 

Data node Index nodes 

d
pe p

je  j
ie



 

Algorithm SI_DS    // SemIndex Disambiguated Search 
 

Input: GSI         // SemIndex graph   
            TA           // Set of query selection terms 
                �              // Link distance value, designating semantic cover 
           {r, k}        // Range and k-nearest neighbor selection operators 
 
 

Ouput: Nd_Out    // List of query answers  
 

Begin 
 

Nd_Out = �                                                                                      
For each query term Ti � T                                       
{                                                                                                    

Step 0: Si = SimpleLesk(Ti, T, GSI)                         
Step 1: ni = getNodeID(Si, GSI)                              4 
Step 2: SP = findShortestPaths(ni, �, GSI)               
Step 3: Nd_ni = getDataNodeIDs(SP, GSI, Ai)                         
Step 4: Nd_Out = mergeAndRank(Nd_ni , Nd_Out)        

}  
   

   Step 5: Nd_Out = select(Nd_Out, {range, kNN})                                    
8    

Return Nd_Out                                                                                                  
End 
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Fig. 7. Pseudo-code of SemIndex Disambiguated Search (SI_DS) 
 

C. SemIndex Query As You TypeSearch (SI_QAYTS) 
This algorihtm allows the user to choose the proper meaning for 
every query keyword, by allowing her to choose the intended sense 
from the set of all possible senses provided by WordNet. Once the 
senses have been chosen, the algorithm pinpoints in the SemIndex 
graph the indexing nodes corresponding to the chosen senses, and 
then runs typical shortest patth search starting from the chosen index 
nodes. The pseudo-code of SI_QAYTS is basically the same as that of 
SI_DS, except for step 0 which becomes: Si = Manual(Ti, T, GSI), 
i.e., allowing the user to manually choose the proper meaning of 
every query term, among the list of possible meanings presented to 
the user through the system’s GUI (cf.  Fig. 10). Then, SI_DS resumes 
by identifying and only processing the starting index nodes 
corresponding to the term senses (synsets) chosen by the user. The 
algorithm’s main steps can be described as follows: 

  

1- Allow the user to choose the sense of each term in the query 
according to WordNet, 

2- Identify in the SemIndex graph the index nodes corresponding to 
the chosen senses, 

3- Run the resulting query, starting from the identified index nodes, 
as a typical SI_SS keyword containment query on SemIndex.  

 

D. SemIndex Parallel Semantic Search (SI_PSS) 
We have also introduced a parallelized version of algorithm SI_SS 
(cf.  Fig. 8), which preserves (more or less) the same workflow of the 
original algorithm except that it processes query terms and starting 
index nodes using multiple threads running in parallel. The 
algorithm’s main steps are described as follows:  
 

1- Every query term is assigned a dedicated thread, and is thus 
processed independently from other threads (lines 1-2).  

2- After identifying the starting nodes for a query term (line 4), 
every starting node is then assigned its own dedicated thread 
(line 5), allowing to: compute the shortest paths from the 
starting node to data nodes in the SemIndex graph (line 7), and 
then identify the reached data nodes designating potential query 
answers (line 8). 

3- Results are gradually merged (line 9) as they are produced by 
each thread, to rank and select (lines 10-12) query answers. 

 
The physical implementation of algorithm SI_PSS is configured to 
run as many threads as there are terms in the user query, where thread 
scheduling and parallel execution is left to the operating system.  

 

Algorithm SI_PSS     // Parallel_Semantic_Search 
 

Input:  GSI          // SemIndex graph 
            TA           // Set of query selection terms 
                �              // Link distance value, designating semantic coverage 
 

           {r, k}        // Range and k-nearest neighbor selection operators 
 

Ouput: Nd_Out    // List of query answers  
 

Begin 
 

Nd_Out = �                                                                                        
Create Thread for each query term Ti � T                   
{                                                                                                      

Step 1: Ni_In = getNodeIDs(Ti, GSI)       4 
Create Thread for each ni �Ni_In                                           
{ 

Step 2: SP = findShortestPaths(ni, �, GSI)                
Step 3: Nd_ni = getDataNodeIDs(SP, GSI, Ai)        
 

Step 4: Nd_Out = mergeAndRank(Nd_ni , Nd_Out)        
} 

    

    Step 5: Nd_Out = select(Nd_Out, {range, kNN})                                  
 

        Return Nd_Out                                                                                                
End 
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Fig. 8. Pseudo-code of SemIndex Parallel Semantic Search (SI_DS) 
 

 
 

 

Fig. 9. Main querying interface in upgraded SemIndex prototype 
 

VI. EXPERIMENTAL EVALUATION 

A. Prototype System 
We have implemented our new SemIndex algorithms and 
functionality using Java, and have used MySQL 5.6 as an RDBMS to 
store the data collection. The prototype’s GUI has also been 
upgraded to handle multiple options (launching multiple queries 
simultaneously) for customized search. Data sheets (in the form of 
Excel files) are automatically generated after every run of the system, 
storing all statistical and experimental data pertaining to the queries 
executed, including: CPU and SQL execution times, memory 
consumption, number of nodes visited in the SemIndex graph, 
number of retrieved results, as well as a various experimental metrics 



including precision, recall, f-value, and mean average precision 
(MAP). The main querying interface is shown in  Fig. 9, where one 
can see multiple querying options such as: Query Types, Link 
Distance, among others. New interfaces have also been developed to 
allow additional functionality such as: a dedicated interface allowing 
the user to choose proper meanings (synsets) for query keywords 
when running the Query-As-You-Type algorithm ( Fig. 10), as well as 
an interface to select relevant (versus non-relevant) data objects ( Fig. 
11) to be used as reference for computing experimental metrics (e.g., 
precision, recall, cf. Section VI.B). 
 

 
 
 

Fig. 10. Query-As-You-Type sub-interface 
 

B. Experimental Scenario 
We evaluated the performance of our SemIndex querying algorithms 
by assessing their: i) query processing time, and ii) the quality of 
returned results. We used IMBD movies dataset2 as an average-scale3 
input textual collection, including attribute movie_id and the 
combined textual contents of attributes title, year, plot, and info, with 
a total size of around 75 MBytes including more than 143k data 
(movie) objects, and more than 7 million index terms. We used 
WordNet 3.0 as our reference knowledge base, with a total size of 
around 26 Mbytes, including more than 117k synsets (senses). 
Detailed descriptions of both the textual collection and the 
knowledge base are provided in a technical report [32]. 

We formulated different queries organized in two categories: i) 
unrelated queries and ii) expanded queries. 
      

Table 2. Sample test queries used in our experiments. 
 

Query group Q1 – Unrelated queries Query group Q2 – Expanded queries 

ID Terms ID Terms 
Q1_1 “time” Q2_1 “car” 
Q1_2 “love”, “date” Q2_2 “car”, “muscle”
Q1_3 “fly”, “power”, “man” Q2_3 “car”, “muscle”, “classic” 
Q1_4 “robot”, “human”, “war”, “world” Q2_4 “car”, “muscle”, “classic”, “speed” 
Q1_5 “west”,“cowboy”,“peacekeeper”,“sheriff”, “law” Q2_5 “car”,“muscle”,“classic”,“speed”,“thrills” 

 
The first category consists of queries with varying numbers of 

selection terms (keywords), e.g., from 1 (single term query) to 5, 
where all terms are different and all queries are unrelated (i.e., 
queries with no common selection terms, cf. sample query group Q1 
in Table 2). The second category consists of queries with varying 
numbers of selection terms, where terms are different yet queries are 
related: such that each query expands its predecessor by adding an 
additional selection term to the latter (cf. sample query group Q2). 

Tests were carried out on a PC with an Intel I7 system with 2.9 
GHz CPU, 8GB RAM memory, and a 500 GB built-in NTFS disk 

                                                           
2  Internet Movie DataBase raw files are available from online 

http://www.imdb.com/. We used a dedicated data extraction tool (at 
http://imdbpy.sourceforge.net/) to transform IMDB files into a RDB.  

3  Tests using large-scale TREC data collections and the Yago ontology as a 
reference KB are underway within a dedicated study. 

drive. The database (IMDB), knowledge graph (WordNet), and index 
files were stored on the disk drive’s main partition.  

 

 
 

 

Fig. 11.  Relevant data objects generator interface 
 

C. Query Processing Time 
We ran the same queries through the four SemIndex querying 
algorithms: SI_SS, SI_DS, SI_QAYTS, and SI_PSS. Fig. 12 provides 
average processing time results for all queries, plotted by varying the 
number of query terms k and SemIndex link distance threshold �. 
Note that when considering ��=1, algorithm SI_SS comes down to 
performing traditional keyword containment search using a 
traditional inverted index (cf.  Fig. 2).  

First, results of all four algorithms show that query execution 
time increases almost linearly with the number of query terms k 
(when fixing link distance �), and increases linearly with ��(when 
fixing k), highlighting the algorithms quadratic complexity levels. 
Second, results show that all four algorithms have very close query 
time levels when both k and � are small (=1 and 2), such that time 
difference increases as both k and � increase. This is due to the fact 
increasing either k or�� means increasing the number of nodes to be 
navigated in the SemIndex graph: increasing k means navigating the 
SemIndex graph starting from a larger number of initial nodes, and 
increasing�� means reaching deeper into the SemIndex graph structure 
to identify more semantically relevant results. Third, one can clearly 
realize that the most time consuming algorithm is SI_DS due to the 
overhead it adds to process the different possible meanings of every 
query term (for disambiguation) before navigating the SemIndex 
graph. Algorithms SI_SS and SI_QAYTS produced almost identical 
time levels (disregarding the manual effort required in SI_QAYTS4), 
whereas our parallel processing SI_PSS algorithm is clearly the most 
efficient of its counterparts, requiring almost 50% less time than 
SI_DS and almost 33.34% less time than SI_SS/SI_QAYTS with 
maximum k=5 and �=5.  

 

D. Query Result Quality 
Table 3 shows the precision, recall, f-value and MAP results obtained 
with the four SemIndex querying algorithms, averaged over all test  

                                                           
4   SI_QAYTS’s time shown in Fig. 12 does not encompass the time it took the 

testers to manually choose the meanings of query terms (which we did not 
consider to be part of the algorithm itself), but only considers actual algorithm 
(CPU and SQL) execution time. 



queries. Note that SI_SS and SI_PSS produce exactly the same query 
answers (recall that SI_PSS is a parallelized version of SI_SS), and 
hence their results are fused together in the below graphs. Results 
averaged per link distance � and number of query terms k are 
provided in Table 1. These highlight several observations.  

 

1) Precision and recall: One can realize that precision levels 
with all SemIndex algorithms, while fluctuating, generally increase 
with link distance (�) until reaching �=3 or �=4 where precision starts 
to decrease toward �=5. However, one can realize that recall levels 
steadily increase with � (with reduced fluctuation compared with 
precision). On one hand, this shows that the number of correct (i.e., 
user expected) results increases as more semantically related terms 
are covered in the querying process (with � > 1). On the other hand, 
this also shows that over-navigating the SemIndex graph to link terms 
with semantically related ones located as far as � � 3 hops away 
might include results which: i) are somehow semantically related to 
the original query terms, but which ii) are not necessarily interesting 
for the users. For instance, term “congo” (meaning: black tea grown 
in China) is linked to term “time” through �=5 hops in SemIndex 
(“time” >> “snap” >> “reception” >> “tea” >> “congo”). Yet, results 
(movie objects) containing term “congo” (e.g., movies about the 
country Congo, or its continent Africa) were not judged to be relevant 
by human testers when applying query “time” (testers were probably 
expecting movies about the passage of time or time travel instead, 
etc.)5. Many such examples occurred when running multiple term 
queries such as Q1_4 (consisting of terms “robot”, “human”, “war”, 
“world”)6, where movies like The Taking of Pelham One Two Three7 
and Showtime 8  (among others) where returned as results by 
SemIndex’s SI_SS when reaching �=5. Such results were deemed not 
relevant by the testers since they do not correspond to the semantics 
of the query. Note that returning noisy (incorrect) results along with 
correct ones does not affect recall, but rather affects precision.  

 

2) F-value and MAP: levels clearly increase with the increase of 
link distance �, whereas they show the same fluctuating behavior 

                                                           
5    Even though testers had difficulty agreeing on the results of single keyword queries as 

mentioned previously, yet such cases occurring at link distance �=4 or 5 were clearly 
deemed irrelevant by all testers. 

6    Query Q1_4 = { “robot”, “human”,  “war”, “world”} 
7   2009 movie starring Denzel Washington and John Travolta, about a train hijacking in 

New York city. 
8    2002 comedy movie starring Eddy Murphy and Robert De Niro, about police officers 

starring in a reality TV show.  

with the increase of the number of keywords k. First, f-value levels 
confirm the precision and recall levels obtained above, where the 
determining factor affecting retrieval quality remains link distance �, 
whereas an increase in the number of keywords k tends to reduce 
system recall with lower values of � and increase recall with higher 
values of �. Second, MAP levels seem to concur with those of f-value, 
such that the ranking of relevant results compared with non-relevant 
ones in the queries’ result lists seems to increase with the increase of 
��and fluctuate (based on the values of �) with the increase of k. In 
other words, increasing � not only allowed retrieving more relevant 
results, but also allowed dropping non-relevant ones (from the 
selected top 100 results of the query result list), and consequently  
improved the ranking of relevant results w.r.t. non-relevant ones in 
the query result list. 

 
 

Table 3. Precision, recall, f-value, and MAP results obtained with 
SemIndex query processing algorithms, averaged per link distance (�) and 
per number of terms (k) (graphs are provided in the technical report [32]). 
 

a. Average precision (PR) results 
 

 �=1 �=2 �=3 �=4 �=5  k=2 k=3 k=4 k=5  Avg. 
SI_(P)SS  0.2758 0.3234 0.5193 0.3805 0.3189  0.4226 0.3632 0.2502 0.4184  0.3636 

SI_DS 0.0833 0.4259 0.4487 0.3563 0.2866  0.3595 0.1941 0.2218 0.5053  0.3202 
SI_QAYST 0.2758 0.2758 0.3762 0.1687 0.1678  0.7882 0.5268 0.1760 0.1946  0.2528 

 

b. Average recall (R) results 
 

SI_(P)SS 0.0327 0.0570 0.1487 0.3358 0.4684  0.2570 0.2219 0.1656 0.1895  0.2085 
SI_DS 0.0063 0.0288 0.1191 0.3551 0.5026  0.1632 0.1651 0.2586 0.2227  0.2024 

SI_QAYST 0.0327 0.0327 0.0508 0.0801 0.1192  0.1769 0.1448 0.0629 0.0361  0.0631 
 

c. Average f-Value results 
 

SI_(P)SS 0.1543 0.1902 0.3340 0.3581 0.3711  0.3398 0.2888 0.1937 0.3038  0.2815 
SI_DS 0.0448 0.2274 0.2839 0.3507 0.3403  0.2614 0.1725 0.2000 0.3637  0.2494 

SI_QAYST 0.1543 0.1543 0.2135 0.1225 0.1327  0.2896 0.1958 0.0672 0.0692  0.1554 
 

c. Average mean average precision (MAP) results 
 

SI_(P)SS 0.0273 0.0443 0.0982 0.2264 0.3002  0.1708 0.1222 0.1377 0.1264  0.1393 
SI_DS 0.0045 0.0226 0.0711 0.2488 0.3195  0.0829 0.0781 0.1864 0.1856  0.1333 

SI_QAYST 0.0275 0.0275 0.0394 0.0482 0.0605  0.0768 0.0456 0.0289 0.0111  0.0406 

 
3) Comparing SemIndex algorithms: results show that SI_SS 

(same for SI_PSS) surpasses its SI_DS and SI_QAYTS algorithms in 
all four precision, recall, f-value, and MAP metrics (cf. Table 3). 
Concerning SI_SS (SI_PSS) versus SI_DS, results indicate that i) 
navigating the SemIndex graph considering all possible meanings 
(senses) of every query keyword (as done by SI_SS and SI_PSS) 
produced more relevant and better ranked results, whereas ii) 
disambiguating query terms first, and then navigating the graph 

 

 

 

 

 

 

 

 

 

 
 

a. N# of query terms k = 1 
 
b. N# of query terms k = 2 

 
c. N# of query terms k = 3 

 
d. N# of terms k = 4 

 
e. N# of terms k = 5 
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Fig. 12. Comparing average query execution time of SI_SS with its three variants: SI_DS, SI_QAYTS, and SI_PSS, while varying link 
distance threshold �, and fixing the number of query terms k. 



starting from the disambiguated senses’ nodes (as done by SI_DS), 
produced less relevant and worse ranked results. However, the worst 
results (in terms of both relevance and ranking) were obtained with 
SI_QAYTS. In fact, in designing SI_QAYTS, we intuitively thought 
that allowing the user to choose the proper meanings (senses) for 
query terms before processing (before SemIndex navigation) would 
be the most promising approach, especially when the user considers 
that she/he knows the exact meanings of the terms utilized to 
formulate the query. Yet, it turns out that choosing the meanings of 
terms can be a very delicate task in most cases. First, the user might 
be confused when trying to choose among a large number of very 
close or semantically related meanings for a given term (e.g., 
choosing the right meaning for query Q1_4’s term “world” in 
WordNet: sense#1 - everything that exists, sense#2 – reality as in 
how things appear, sense#3 – people in general, sense#4 – Planet 
earth, sense#5 – the human race, and three more other senses). 
Second, the user chosen meaning could be very different from the 
one intended by the data creator (e.g., when processing query Q1_59 
through SI_QAYTS, most users chose for term “peacekeeper” its 
sense#1 in WordNet: someone who keeps peace. Yet, we realized that 
the meaning of “peacekeeper” that was more closely related to 
Q1_5’s intended (golden truth) results (i.e., western movies) was 
sense#3: the pistol of a law officer in the old West. 

To sum up, SI_SS (SI_PSS) seem(s) more effective than the 
other alternative algorithms. 
 
 

VII.  CONCLUSION 
The main goal of our study was to complete the design and 
development of SemIndex’s query evaluation engine. To this end, we 
upgraded SemIndex by designing and implementing new components 
and functionality, including: i) dedicated weight functions, associated 
with the different elements of SemIndex, allowing semantic query 
result selection and ranking, coupled with iii) a dedicated relevance 
scoring measure, required in the query evaluation process in order to 
retrieve and rank relevant query answers, iii) various alternative 
query processing algorithms (in addition to the main algorithm), as 
well as iv) a dedicated GUI interface allowing user to easily 
manipulate the prototype system. Preliminary experiments highlight 
SemIndex’s effectiveness and efficiency, considering different 
querying algorithms, different semantic coverages, and a varying 
number of query keywords. 

We are currently conducting an extended experimental study to 
evaluate SemIndex’s properties in terms of i) genericity: to support 
different types of textual (structured, semi-structured, NoSQL) data 
collections, and different semantic knowledge sources (general 
purpose like Yago [18] and Google [19]), ii) effectiveness: evaluating 
the interestingness of semantic-aware query answers considering 
different query answer weighting and ranking (result ordering) 
schemes, in comparison with IR-based indexing, query expansion, 
and query refinement methods, and iii) efficiency: to reduce the 
index’s building and query processing costs, using customozed 
multithreading, index fragmentation, and sub-graph mining 
techniques [13]. 
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9 Query Q1_5 = {“west”, “cowboy”, “peacekeeper”, “sheriff”, “law”} 
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