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Abstract. The increasing availability of large collections of textual data online
gives rise to the challenge of developing methods to explore and organize large
document collections in a meaningful and pragmatic way. Thematic exploration
solutions allow users and organizations to effectively visualize document
clusters and browse them thematically or topically. Existing solutions provide
methods to topically visualize document clusters. However, they do not allow
the user to dynamically explore the clusters online by zooming in and out of the
cluster hierarchy. Also, most studies do not provide a solution for persisting the
document clusters offline to be re-used and visualized at a later time. In this
study, we design and implement a hierarchical indexing solution that allows
dynamic and interactive zooming of document clusters. Our solution consists of
two major components: 1) a dynamic indexing component that produces a
topical and hierarchical index for document clusters, and 2) a visualization
component that provides interactive and thematic exploration functionalities.
The index is dynamically updated online using incremental clustering following
the user’s exploration. Users can seamlessly zoom in and out of clusters to
explore topically related data. Our solution serves as a baseline for an
interactive cluster zooming solution and can be extended to support semantic
zooming and more advanced querying functionalities at a later stage.

Keywords: Data indexing, Hierarchical clustering, Incremental clustering,
Topical organization, Thematic exploration, Data zooming.

1 Introduction

Thematic exploration is the concept of allowing users and organizations to effectively
visualize document clusters and browse them thematically or topically. A common
technique in thematic exploration is grouping similar documents into clusters of
related topics. These clusters are then organized to produce effective visual
exploration methods for users. Few existing methods have addressed cluster-based
thematic exploration, e.g., [4-6]. While they organize groups of documents into
thematic clusters, nonetheless, most existing methods do not allow the user to
dynamically explore the clusters online by zooming in and out of the cluster
hierarchy. Also, most studies do not provide a solution for persisting the document
clusters offline to be re-used and visualized at a later time.

In this study, we present a new solution for cluster-based document exploration.
Our solution consists of two main contributions: i) an indexing component that

" The author is co-founder of the United Nations ESCWA Knowledge Hub (UNEKH), which framework
provided the main use case for this project.
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accepts as input a set of unstructured text documents and produces as output a
hierarchical and topical index structure of document clusters, and ii) an adapted
visualization component that provides seamless, interactive, and thematic exploration
of document clusters. Different from existing solutions, our proposal explicitly
addresses the issue of cluster formation, by 1) building a novel cluster index structure
adaptively following a two-phase process: hierarchical (offline) clustering for
priming; and incremental (online) clustering following the user’s exploration, and ii)
allowing interactive cluster exploration online using the generated cluster index
structure, where iii) the index is specifically designed to allow seamless zooming in
and out of the clusters, following the user’s needs. Our design is modular and allows
the decoupling of the indexing and visualization components as separate and fully
functional services, according to the user’s needs. Empirical results highlight the
effectiveness, efficiency, and practicality of our solution.

Section 2 reviews related works. Section 3 describes our proposed solution.
Section 4 presents our experimental tests. Section 5 concludes with future directions.

2 Related Work
2.1 Topical Exploration of Web Data

Providing techniques for Web data search, exploration, and visualization is gaining
importance, where topical exploration and result organization become essential to
allow easier and more effective access to the data. In [4], the authors introduce the
concept of inCloud to transform the flat organization of data into a special structure of
clustered topics using dedicated data aggregation and abstraction techniques. An
inCloud provides a high-level topical view of the data and consists of 3 main
components: i) a circle box, representing a cluster, which is a group of data that focus
on a specific topic, ii) a square box which representing a summary of the contents of
the cluster, and iii) an arrow, which represents the relationship between clusters. The
thicker the arrow is, the more connected the two clusters are. To build an inCloud, the
first step is to perform similarity evaluation on the input data and produce a similarity
graph where similarity links are added to connect the data nodes together. The second
step is to perform topical aggregation to identify a set of topical clusters within the
connected similarity graph. Clusters are formed by going through the similarity graph
and detecting those data nodes that are highly interconnected. To do this, the authors
in [7, 8] rely on the clique percolation method (CPM). CPM divides the graph into
sub graphs, where each sub-graph has & connected nodes. Two sub graphs are defined
as adjacent if they share k-1 nodes. In a subsequent study in [6], the authors
introduced inWalk, an interactive system for the exploration of linked data based on
the concept of inCloud from [4]. In [5], the authors build on the concept of inClouds
from [4] to define inClouds as entity-driven collections of Web resources aiming at
providing information organization structures. An inCloud is used to collect
information relevant for a given target entity. Hence, resources considered prominent
to the target entity are properly arranged and presented to the user. In [12], the authors
describe LDAExplore, a solution for organizing topic distributions using an
unsupervised LDA (Ladent Dirichlet Allocation) topic modeling method. It organizes
the generated topics according to their word distributions in the corpus, and allows
topical filtering and set operations, displaying different views of the document corpus,
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and grouping similar documents together according to their shared topics. In [10], the
authors introduce a dimensional clustering approach capable of selecting the set of
features to use for data clustering, which are then packaged into topical dimensions.
This provides a description of the similarity value that generates each cluster. Hence,
resources with the same degree of similarity but with different sets of matching
features are put in different clusters, resulting in more accurate clustering.

Most of the above approaches describe how to organize data clusters. Yet they
only briefly cover cluster exploration. They do not address dynamic navigation or
zooming within the clusters, nor do they address cluster loading for visualization.
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Fig. 1. Sample cluster visualizations from the literature

2.2 Cluster Visualization and Zooming

Few approaches have specifically addressed data cluster visualization and
exploration. Most of them revolve around the treemap visualization tool, e.g., [21]. In
[21], the authors describe a treemap based visualization that provides a rapid layout
for graph structures. They introduce the Focus+ context paradigm, in which a user
presses on a node in the treemap to view its surrounding nodes. They also introduce
the fisheye view zooming functionality allowing a user to select a cluster and zoom-in
to display its children clusters [26]. In [27], the authors present a treemap-based
visualization that applies Fuzzy c-means clustering to organize the data, and
visualizes the results on the basis of the highest and the second-highest membership
values within the treemap. Fuzzy c-means is applied iteratively to create a hierarchical
structure, where the first layer shows the clustered objects based on highest
membership value, and the second layer shows the clustering objects based on the
second-highest membership values (cf. Fig. 1). The hierarchy is limited to two levels,
allowing the user to click on a cluster and view its child clusters, and vice-versa. In
[18], the authors introduce the concept of cascading treemaps, using cascading
rectangles instead of the traditional nested rectangles. Cascading uses less space to
present the same containment relationship, and the space savings enable a depth effect
and natural padding between siblings in complex hierarchies. The authors provide one
level of parent-child zooming in their implementation [18].
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In short, most existing methods i) do not address the issue of cluster formation,
i.e., whether the documents are clustered offline or online, ii) do not discuss the issue
of cluster visualization loading, which also depends on cluster formation and the lack
of persistence of the clusters offline for re-use and visualization, and iii) do not
address dynamic navigation or zooming within the data clusters.

3 Proposal

The overall architecture of our solution is shown in Fig. 2. It consists of two main
components: i) an indexing component consisting of a two-phase process: hierarchical
clustering conducted offline for priming the index structure; and fast incremental
clustering conducted online to update the index structure following the user’s
exploration, and ii) a visualization component which is run online, and involves
cluster exploration and interactive zooming. We describe each of the components in
the following sub-sections.

3.1 Indexing Component

Our indexing component accepts as input a set of text documents, and performs
document preprocessing, clustering, and topical extraction from the generated
clusters, and then produces as output an index structure describing the topical
organization of the document clusters. The initial index structure is generated offline
using hierarchical clustering, and is subsequently updated online using fact
incremental clustering following the user’s exploration. The index structure is used as
input for the online visualization component to perform document cluster exploration
and zooming.
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Fig. 2 Overall architecture of our solution

3.1.1 Document Preprocessing and Feature Representation

First, the documents are serialized to extract their raw textual contents from the input
pdf documents. Second, all words are converted to their lowercase form, and all stop-
words and punctuations are removed from the text. Third, words are reduced to their
stems or roots, using stemming or lemmatization, following the users’ preference: 1)
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stemming converts all the words to their original syntactic forms (stems) using
syntactic stemming rules'; ii) lemmatization transforming words into their original
lexical forms using a lexical reference?. The documents are then processed for feature
representation, where each document is represented as a multi-dimensional feature
vector, where vector weights are computed using supervised TF-IDF weighting. We
introduce a supervised weighting scheme derived from a modified version of the
Term-Frequency Inverse-Category-Frequency (TF-ICF) scheme from [3]. Different
from existing approaches which are designed for document representation, we adapt
TF-ICF to produce weighted representations for the generated clusters. We augment
each document with the cluster features to improve clustering quality. To do so, we
represent each cluster by a TF-ICF vector where the dimensions represent distinctive
terms and the weight of each dimension reflects the frequency of occurrence of the
term in the documents belonging to the cluster. We then embed the new weighting
scheme within the documents’ original TF-IDF feature vectors to capture the
relationships between document terms and the generated clusters.

Table 2. Term Frequency - Inverse Cluster Frequency (TF-ICF) model adopted in our study

Variable | Description Variable Description
C|+1
TF/ = freq, ()= req, (1, ICF, =1 | +1
TF freq, (1) lZf q,, (1) ICF ; og(cm)“]
CF CF(t;) = freq,(C) TF-ICF TF—ICF’ =TF/ xICF,

We designate by D ={d;, d>, ..., dip} the set of documents, 7 ={t;, t,, ..., fj5} the set
of terms that occur in the documents in D (the vocabulary of D), and C ={c;, ¢, ...,
cic)} the set of generated clusters. We compute the TF-ICF of a term #,€T in cluster
¢jeC as shown in Table 2. TF represents the frequency of a term inside the set of
documents pertaining to the cluster ¢;, where more recurrent terms are assigned higher
TF scores. ICF represents the fraction of clusters that contain term #, where less
recurrent terms are assigned higher ICF scores. The less clusters term ¢ occurs in, the
more descriptive it will be in distinctively describing the clusters it occurs in, and vice
versa (the more clusters term # occurs in, the less expressive it will be in
distinguishing the clusters)?.

3.1.2 Hierarchical Document Clustering

One of the motivations of our study is to highlight the hierarchical relationships

between document clusters, to allow interactive cluster exploration and zooming.

Here, we perform clustering using the well-known Unweighted Pair-Group Method

with Arithmetic mean (UPGMA) average link hierarchical clustering method [13, 14],

although any form of hierarchical clustering can be utilized. Given n documents, we

construct a fully connected graph G with n vertices and nx(n-1) weighted edges. The
2

‘We adopt the Porter Stemmer [32] since it’s one the most effective and commonly used in the literature.

We adopt the WordNet lexical dictionary [20] to perform lemmatization, since it’s one of the most commonly used
machine-readable lexical knowledge bases in the literature.

Our approach is not restricted to TF-IDF/ICF (which performance is widely acknowledged, e.g., [25, 29]) and can utilize
other indexing schemes, e.g., LSI (Latent Semantic Indexing) [22], Word2Vec [9], and kernel functions [15].
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weight of an edge corresponds to the similarity (distance) between the connected
vertices. We adopt an agglomerative clustering approach where each edge in the
connected graph initially represents an individual cluster. Consequently, the nearest
two clusters (i.e., edges/documents) are combined into a higher-level cluster. This is
repeated iteratively at every step to combine the most similar clusters into higher-
level clusters, where the similarity between the clusters is computed as the average of
all similarities between their constituent edges (i.e., documents), i.e., the mean pair-
wise similarity between all pairs of matching documents from both clusters. We
utilize the cosine measure to compute document feature vector similarity, due to its
prominent usage in the literature, yet other vector similarity measures can be used
(e.g., Pearson Correlation Coefficient, Dice, Euclidian, e.g., [15, 30]). Fig 5 shows the
dendrogram produced for a sample set of 10 documents, grouped using hierarchical
clustering. Each internal node represents a cluster, and each leaf node represents an
individual document. For example, one can observe that documents #8 and #9 are
clustered together first, which means they’re most similar compared with all other
documents in the dataset. We can also observe that the root cluster, which contains all
10 documents, is split into two child clusters. These are examples of the kinds of
structural relationships we seek to highlight through our index structure.

Algorithm: Incremental_Clustering

Input: C // Set of initial document clusters
N // Stream of newly accessed documents
R // Set of initial cluster representatives
Thresh // Document similarity threshold

Output: Set of updated document clusters: C

Begin
For each new doc € S 1
Find max(Sim(doc, Repi)) where Repi € R // Find maximum similarity document Py
If max(Sim(doc, Repi)) > Thresh // If similarity above threshold, 3
Add doc to cluster ci having Rep; as representative // then add document to existing cluster 4
Update_Cluster_Representative(ci) // and update cluster representative 5
Else 6
Create new cluster Cnew // Otherwise, form new cluster 7
Add doc to Cnew 8
Designate doc as Repnew 9
Add cpew to C 10
EndIf 11
If user wishes to update threshold 12
Set Thresh as average similarity of all images in C 13
For each new clusterc € C 14
Find max(Sim(c, ci)) where ¢; € C 15
Combine ¢ with ¢; 16
Return C 17

End

Fig 3. Pseudo-code of incremental document clustering algorithm

3.1.3 Incremental Document Clustering

Following the initial hierarchical clustering phase, which is executed offline to prime
to index structure, a second phase of fast incremental clustering [1, 24] is executed
online to update the clusters produced in the previous phase by processing newly
accessed documents (cf. pseudo-code in Fig. 3). The new document is compared with
each of the existing cluster representatives using the aggregated similarities of their
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constituent documents from the previous clustering phase (cf. Fig. 3, lines 1-1). The
algorithm identifies the cluster having the highest similarity with the new document
(lines 3-5), and then decides whether the document should be placed in the cluster; or
whether a new cluster should be created around the document; based on a user chosen
(or system-generated) similarity threshold (lines 6-11). The newly formed clusters are
compared and combined with their most similar hierarchical counterparts (lines 14-
16), integrating seamlessly into the cluster hierarchy structure. The incremental
process continues online in the same manner as new documents are being explored.

Algorithm: Index Construction

Input:
dendrogram_root: dendrogramNode // root node of the dendrogram
root_id: string //id of the root being passed to the function
doc_id_index: hashTable // documents and their respective IDs
cluster_topic_index: hashTable // extracted topics for every cluster

Variables:
children = dendrogram_root.children: list of dendrogramNode
Output:
doc_id_index: hashTable // documents and their respective IDs
Begin
cluster_topic_index[root_id] = dendrogram_root.topic
If length(children) != 0
higher_child_id = root_id + “.0”
lower_child_id = root_id +“.1”
If children[0].distance > children[2].distance
higher_child = children[0]
lower_child = children[2]
Else

© % ou s oW e —

higher_child = children[2]
lower_child = children[0]
Index_Construction(higher_child, higher_child_id, doc_id_index) 1

IndexConstruction(lower_child, lower_child_id, doc_id_index) 2
Else 13
doc_id_index[root_id]=dendrogram_root.document // reference to the document 14
Return doc_id_index 15

End

Fig 4. Pseudocode of our index construction algorithm

3.1.4 Index Construction

The purpose of our indexing component is to develop a structure that will store all the
necessary hierarchical cluster relationships offline, allowing for seamless online
cluster exploration and zooming by the user. These relationships include for each
cluster: i) the parent cluster, ii) the child clusters, iii) the sibling clusters, and iv) the
cluster’s order w.r.t. (with respect to) its siblings. To do so, we put forward an index
based on the Dewey numbering scheme [28], which allows reflecting all the above
mentioned relationships. Note that other labelling schemes such as pre-order labelling
(POL) and level-order father labelling (LAF) can be adapted to the task, e.g., [11, 17].
In Dewey order, each node is given a vector that describes the path from the
(dendrogram) structure’s root to the target (document) node. Consider our running
example dendrogram in Fig. 5, where each component of the path indicates the local
order of the ancestor node. Dewey order is considered to be lossless since each path
uniquely defines the absolute position of the node within the structure [28]. Also, the
ancestor path is implicitly encoded within the node id, which simplifies the retrieval
of the parent and child nodes [19], thus making it suitable for our index structure. The
pseudocode of our index construction algorithm is shown in Fig 4. It accepts as input
the dendrogram structure produced by the hierarchical document clustering algorithm,
and produces as output the hierarchical document index. The algorithm starts at the
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root node of the dendrogram and assigns it id =0 (line 1). It then checks if the node
has children nodes and generates their ids by appending the id of the parent to those
of the children (lines 2-4), taking into account the children’s relative order in the
dendrogram (lines 5-10). This is achieved by assigning the id concatenation .0 to the
child that is higher-up on the dendrogram hierarchy, and .1 to the lower child. The
algorithm is then invoked iteratively on each of the children nodes (lines 11-14) until
all nodes of the dendrogram have been assigned their ids.

The Dewey labelling of our running example dendrogram is shown in Fig 3.b.
One can observe that the root node, i.e., the cluster which encompasses all documents,
is labelled with id=0. This id defines the cluster as the root of the index. The two child
clusters of the root (i.c., the first-level nodes of the structure) are labeled as 0.0 and
0.1, according to their relative ordering in the dendrogram. Similarly, the id of any
given cluster is equal to the id of its parent concatenated with either O, 1, ..., or n,
where n is the number of children nodes of the parent. This enables efficiently
determining the parent-child relationships and sibling relationships between the
nodes. Also, the index keeps track of the relative ranking between cluster siblings.
This labelling allows determining all the required cluster relationships:

i. Determining the parent cluster: by removing the last id concatenation from the
target cluster label (e.g., the parent of node 0.0.0.0.0 is 0.0.0.0 by removing the
last .0).

ii. Determining the child clusters: by concatenating the target cluster label with the
relative order of the children clusters (e.g., the children nodes of 0.0.1 are
0.0.1.0,0.0.1.1, ..., 0.0.1.n considering » children nodes).

iii. Determining the sibling clusters: by toggling the final id concatenation with the
relative order of the sibling clusters (e.g., the siblings of cluster 0.0.0.1 are
0.0.0.0,0.0.0.2, ..., 0.0.0.n considering n sibling nodes).

iv. Determining the order between sibling clusters: based on the arithmetic order of
last id concatenation in the sibling labels (e.g., cluster 0.0.1 is higher on the
dendrogram that its sibling 0.0.2, since the .1 child comes first in terms of
relative ordering).

Distance
Doc_id Source file | Title (]

1 goal_1.pdf Ending poverty 06

goal_3.pdf Healthy lives & well-being 041 0.1.1

goal_4.pdf Quality education o 0414
goal_5.pdf Gender equality 04 0.1.1.1.0. 'r.

goal_6.pdf Clean water and sanitation ‘ 0.1.1.1.00
goal_8.pdf Decent work and economic growth
goal_10.pdf | Reduced inequality

goal_14.pdf | Life below water

goal_15.pdf | Life on land

goal_17.pdf | Partnerships to achieve the goal 00 - - Docs
s ) 5 4 3 6 7 10 2

T
e at: htps:/www.unescwa d sdg-fr k-metadata 000 001 010 0111010 | 0111000 | 011110
0110 0111011 0111001 011111

© o |~No|o|a|wn

=)

Availabl

a. Sample documents from the UN’s SDG dataset b. Dendrogram, with our Dewey-labelled nodes

Fig 5. Dendrogram structure produced for 10 sample documents selected from the UN’s
Sustainable Development Goals (SDGs) dataset, labeled following our Dewey labeling scheme

The index structure of our running example dendrogram is shown in Fig. 6. The
first table represents the cluster-document index, which stores the ids of the leaf nodes
(i.e., the individual documents). We do not store the ids of the internal nodes in this
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table (i.e., the document clusters) since they are determined from the ids of the leaf
nodes, as illustrated previously. The second table represents the cluster-topic index,
which stores the topics associated with every (internal and leaf) node (i.e., clusters
and individual documents), following the topic extraction task described in Section
3.1.5. Note that our index tables are sorted and indexes themselves, using binary
search tree indexing, to allow logarithmic search and retrieval time when performing
cluster exploration and zooming functionalities.

3.1.5 Topic Extraction

Topic extraction in our approach consists in identifying the most important keywords
describing the document clusters. The first step consists in producing the feature
vector representations describing every cluster. This is achieved by aggregating the
term/expression frequency (and augmented co-occurrence frequency) vectors of their
constituent documents. Consequently, we represent every cluster by its top-k
keywords, ranked following their term weights in the cluster feature vector.

Recent solutions have suggested using external knowledge sources such as
Wikipedia or Yago [23, 31], where the topics representing the clusters are identified
based on their semantic meaning, and might be selected from outside the clusters
themselves [30] (e.g., topic air pollution might be selected to describe a cluster
containing terms CO2 emissions and greenhouse gases, such that air pollution never
appears in the cluster). Yet we restrict our current study to syntactic topical extraction,
and report semantics to a dedicated study.

- Cluster-Topic index
» | Cluster_id Topic_list
PK [ 0o Sustainable development
Cluster-Document index 0.0 Biodiversity, protection
. . 0.1 Development, countries
Cluster_id Doc_id P
0.0.0 Oceans, conservation, sustainability
0.0.0 8 goal_14_oceans
0.0.1 Ecosystems, protection, restoration
0.0.1 9 goal_15_ecosystem
0.1.0 Water sustainability, management of water
0.1.0 5 goal_6_water 011 Fauality sustarablc v
0110 4| gool_s_gender 0Ll Eaolty,sustsinable lving -
011110 1| gool 1 tunger oLL0 Gender equalty, woren shpoueren
011111 2 goal_3_well-being LANG, SECUlTLy, Sustainav ity
) 0.1.1.1.0 Education, quality education, inclusive
0.1.1.1.0.0.0 7 goal_10_inequality
0.1.1.1.1 Health, healthy living
0.1.1.1.0.0.1 10 goal_17_partnerships 011110 Povert), end povert
01.1.1.0.1.0 3 goal 4_education 011111 Living, yh’ea\thshvmgy
0.1.1.1.0.1.1 1_8_empl t Y 2
6 goaL8_employmen 0.1.1.1.00 Health, sustainability
0.1.1.1.0.1 Development, equality, countries
0.1.1.1.0.0.0 Sustainable growth, countries
0.1.1.1.00.1 Economic growth, inclusive, sustainable
0.1.1.1.0.1.0 Implementation, strength, means
0.1.1.1.0.1.1 Inequality, reduce inequality, countries

Fig 6. Index structure for sample dendrogram structure produced in Fig. 5

3.2 Visualization Component

The visualization component takes as input our index structure, and uses it to allow
interactive exploration and seamless zooming functionalities of the document clusters.
Our visualization component is decoupled from the index structure, where the index
can be used with other visualization tools following the user’s preferences.
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3.2.1 Cluster Exploration

We adopt two types of hierarchical visualizations in our current tool (other
visualizations can be added in the future): treemap and circle packing (cf. Fig. 7).
Both visualizations are designed to initially display the root of the dendrogram as the
most comprehensive and zoomed-out cluster, highlighting the most generic
information and topical representation of the document dataset (cf. Fig 7.a). Then, as
the user scrolls to zoom-in, the inner nodes of the dendrogram representing the more
specific levels of the cluster hierarchy are displayed (cf. Fig 7.b and c¢) along with
their representative topics extracted from the index. Zooming in and out is done in a
seamless way using the mouse scrolling action. Users can also click on any target
cluster to zoom inside of it and acquire its children clusters and their topics, providing
a more detailed description of the target cluster.
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Fig 7. Cluster visualizations using treemap and circle packing tools

3.2.2 Hierarchical Zooming

We consider two approaches for zooming in and out of the hierarchical clusters: i)
sequentially according to the dendrogram structure, and ii) by grouping sibling
clusters, bypassing the dendrogram structure (cf. Fig. 8). Using the former approach,
each zoom (or scroll) operation consists in increasing or decreasing the dendrogram’s
hierarchical level by 1 (i.e., £1 level depending on the direction of the zoom/scroll,
cf. Fig. 8.a). Using the latter approach, each zoom (or scroll) operation groups the
existing siblings together, leaving the lone clusters untouched. The siblings to be
grouped are identified through their Dewey labels from the index (Fig. 8.b).

While zooming sequentially may be more straightforward, following the structure
of the dendrogram, yet it might also be tedious and might take too long for the user to
zoom-in or out of the data, especially when a large number of deeply nested clusters
are involved. Zooming by grouping may alleviate the task of zooming in and out of
largely nested clusters, allowing for faster zooming operations focused on the cluster
siblings, rather than the dendrogram hierarchy. Nevertheless, users can choose the
zooming approach that is most adapted to their needs.
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Fig 8. Hierarchical zooming approaches: sequential (a) and by grouping (b)

Algorithm: Zooming_Out
Input:
current_clusters: 1ist
doc_id_index: hashTable
cluster_topic_index: hashTable
zoom_type: string
Variables:
zoom_seq: list
max_depth: int
Output:
current_clusters: 1ist
Begin B
If zoom type == grouping
If length(current clusters) != 1
For every cluster; in current_clusters
sibling= get Sibling(cluster;)
If sibling in current_clusters Then
append getParent(clusterj) to current_clusters
remove cluster; from current clusters
remove sibling from current_clusters
For every clusterc in current _clusters
displayCluster (clusterx)

// clusters displayed on the screen
// documents and their IDs

// cluster topics

// sequential or grouping

// clusters to zoom sequentially
// max depth of current clusters

// updated clusters displayed on screen

Else if zoom_type == sequential
If length(current clusters) != 1
For every cluster; in current_clusters
If clusterjdepth > max_depth
max_depth = cluster;.depth
For every cluster; in current_clusters
sibling= getSibling(cluster))
If sibling in current clusters Then
append getParent(clusterj) to zoom_seq
next_parent= getLowestParent (zoom_seq)
append next parent to current clusters
remove cluster; from current_clusters
remove sibling from current_clusters
For every cluster, in current_clusters
displayCluster (clustery)

a. Zooming-out algorithm

Algorithm: Zooming_In
Input:
current_clusters: 1ist
doc_id_index: HashTable
cluster_topic_index: HashTable
zoom_type: string

Variables:
max_depth: int //' max depth of current clusters
Output:
current_clusters: 1ist
Begin
If zoom_type == grouping
If length(current_clusters) != rows(doc_id_index)

For every clusterj in current clusters
append(clusterj+.0) to current_clusters
append(clusterj+.1) to current clusters
remove cluster; from current_clusters

For every cluster. in current_clusters
displayCluster (clusterc)

Else if zoom_type == sequential
If length(current clusters) ! = rows(doc_id_index)
For every cluster; in current_clusters
If clusterj.depth > max_depth
max_depth = cluster;.depth
next_parent= getLowestParent (zoom_seq)
append(next_parent +.0) to current_clusters
append(next_parent +.1) to current_clusters
remove next parent from current clusters
For every cluster, in current_clusters
displayCluster (clusterc)

b. Zooming-in algorithm

R LI S

Fig 9. Pseudocodes of our zooming algorithms

The pseudocodes for our zooming algorithms are shown in Fig. 9. They accept as
input the index structure produced by the indexing component, the list of clusters
currently displayed on the screen, and the zoom type (i.e., sequential or by grouping).
The algorithms are invoked following mouse-scroll events. In case of zooming out
while grouping, the algorithm will determine the sibling IDs of all the currently
displayed clusters (cf. Fig. 9.a, line 4). It will then check whether these siblings exist
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on the screen and belong to the current clusters list (line 5). If a pair of siblings exists
in the current cluster list, it is grouped. All sibling pairs are grouped at once to zoom
out. A similar logic is applied for zooming-in with groups (cf. Fig. 9.b), where the IDs
of the children are generated and those new children will be displayed. For zooming
out sequentially, the algorithm will start by determining the set of currently displayed
clusters with the highest depth value (Fig. 9.a, lines 13-15). These clusters are
candidates for zooming. Next, the algorithm checks whether these clusters currently
have their siblings on the screen. After determining the existing siblings, the
algorithm compares the IDs of the potential parents to determine the parent that is
lowest on the dendrogram (Fig. 9.a, line 20). The corresponding sibling pair is
grouped. Similarly, when zooming in sequentially (Fig. 9.b), the cluster with the most
depth and the lowest ID is split into its child clusters to zoom in.

4 Experimental Evaluation

4.1 Prototype Implementation

We have implemented our indexing component using the Python programming
language. We perform i) data serialization using PDFToText, ii) text preprocessing
and feature extraction using NLTK, iii) clustering and dendrogram building using
SciPy. We store the index tables in SQLite, a lightweight relational database
commonly used for on-disk data storage. We have implemented our visualization
component using JavaScript, creating the visualizations using D3.js, a popular
visualization framework designed for efficiently handling large datasets. Our
implementation and test data are available online on github'.

4.2 Experimental Protocol

4.2.1 Performance Experiments

We conducted experiments to assess both our indexing and visualization components.

Indexing component: we evaluate offline indexing by measuring: i) index
building time: the time to preprocess, cluster, extract the topics, build and update the
index structure, while varying the size of the dataset; ii) index size in-memory: the
size of the index tables stored in-memory, while varying the size of the dataset.

Visualization component: we evaluate the online visualization by measuring: 1)
cluster visualization time: the time needed to load the interface and document clusters,
while varying the size of the input index; ii) cluster zooming time: the time needed to
perform the zooming action and load the zoomed cluster visualizations, while varying
the size of the index.

4.2.2 Qualitative Experiments

We created an online survey? to evaluate the quality of our solution. We considered
five evaluation criteria to evaluate the overall tool’s usability, including: 1) stability,

! https:/github.com/HalaSaadeh/LAU-ECE-Research-cluster-indexing and https:/github.com/HalaSaadeh/L AU-
ECE-Research-cluster-visualization

2 Available at: https:/forms.gle/gugpZcM9jyzrvuPG9
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it) look and feel, iii) ease of use, iv) responsiveness, and v) user interface (cf. Table 3)
We considered four additional criteria to evaluate the usefulness of key
functionalities, including: i) zooming intuitiveness, ii) topic descriptiveness, iii)
treemap exploration intuitiveness and iv) circle packing exploration intuitiveness (cf.
Table 4). We also requested from the testers to perform a set of predefined tasks and
asked them to rate their satisfaction accordingly: Task I: Find a document and a
cluster where the document does not belong; Task 2: Find a cluster that has a weak
relationship with other clusters; Task 3: Find two clusters that have a strong
relationship with each other; Task 4: Find two documents that have similar topics;
Task 5: Find two documents that have distinct topics. Testers were instructed to
separately rate every evaluation criterion and every task on an integer scale from 0 to
4 (i.e., from highly dissatisfied to highly satisfied).

Table 3. Overall tool’s usability criteria

Criterion Description Evaluation question
Stability It is the ability of the software tool to function Given the criterion’s description, how satisfied are
over a long period of time without crashing. you with the stability of the software tool?
Look and Feel It refers to the first impression a user has after Given the criterion’s description, how satisfied are
using the software tool. you with the look and feel of the software tool?
Ease of Use It describes how easy and straightforward it is Given the criterion’s description, how satisfied are
to use and manipulate the software tool. you with the ease of use of software tool?
Responsiveness It refers to the time it takes the software tool to  Given the criterion’s description, how satisfied are
perform a certain action or behavior such as you with the responsiveness and overall speed of
the cluster zooming. this application functionalities?
User Interface It is the means through which a user controls a  Given the criterion’s description, how satisfied are
software application and interacts with it. you with the interface of this software tool?
Table 4. Key functionalities” usefulness criteria
Criterion Description Evaluation question
Zooming It reflects how easy it is for a user to zoom in Given the criterion’s description, how satisfied
Intuitiveness and out of the document clusters using the tool are you with the tool’s zooming functionality?
Topic It reflects how easy it is for a user to understand Given the criterion’s description, how satisfied
Descriptiveness the topic associated with a document or cluster. are you with the topics generated by this tool?
Treemap It refers to the visualization exploration of the How satisfied are you with the visualizing the
exploration document clusters using treemap. clusters using treemap?
Circle packing It refers to the visualization fexploration of the How satisfied are you with the visualization of
exploration document clusters using circle packing the clusters using circle packing?

4.3 Experimental Results
4.3.1 Performance Experiments

The time complexity of our offline hierarchical clustering and index priming
simplifies to O(N?) time where N represents the number of documents. The
complexity of our online incremental clustering and index update comes down to
O(NxC) where C represents the number of clusters, and it simplifies to O(NV) since C
is usually << N. Space complexity also simplifies to O(N), and comes down to the
size of the cluster-document index table.

We conducted our performance experiments on a set of United Nations (UN)
documents acquired from the UN’s Manara portal!, by varying the dataset size from

! https://manara.unescwa.org/home
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1000-t0-10,000 documents, with document size averaging 2,630 KB per document.
Tests were conducted on a personal computer with Intel(R) Core(TM) i7-8750H
processor with 2.4 GHz processing speed and 16 GB of RAM. Results in Fig. 10.a
show almost linear time for data preparation. Results in Fig. 10.b show polynomial
time for offline index priming which is mainly due to the quadratic time of the
hierarchical clustering process, and linear time for online index update following the
linear time performance of incremental clustering. Results in Fig. 11.a show that
index size increases linearly with the number of documents in the dataset. On the one
hand, index priming is conducted offline and will not affect the user’s experience. On
the other hand, index update occurs online and is seamless w.r.t. user exploration
given 1) the efficiency of our incremental clustering process and most importantly ii)
the limited number of documents being explored online and being added to the index
(e.g., while our time experiments in Fig. 10.b and Fig. 11.b varies the number of
documents in the thousands, yet a typical user usually explores tens of documents at a
time and those are incrementally integrated into the index almost instantaneously).
Results in Fig. 11.b highlight our solution’s logarithmic (almost constant) time in
loading the clusters and performing cluster zooming.
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Fig 10. Data preparation and index build time
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Fig 11. Index size in memory (a) and online exploration and zooming time (b)

4.3.2 Qualitative Experiments

A total of 20 testers (senior engineering students) were invited to contribute to the
experiment. Testers were invited to run the tool using an executable version shared
online, presented with the same use case consisting of a dataset of 50 documents
representing the UN’s Sustainable Development Goals (SDGs) extended from our
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running example'. They were subsequently asked to fill the online survey criteria and
task ratings. Results in Fig. 12, aggregated for every criterion and every task, show
that most testers are satisfied with the tool’s usability and the usefulness of its cluster
exploration and zooming functionalities, producing overall average ratings of 4.68/5
and 4.60/5 considering the combined usability and usefulness criteria respectively.
Results also show that users were mostly satisfied with the assigned tasks, producing
an overall average 4.64/5 rating.
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Fig 12. Average ratings for tool quality, functionality usefulness, and user task satisfaction

5 Conclusion

This study introduces a hierarchical indexing solution for dynamic and interactive
zooming of document clusters. Different from existing solutions which do not address
the issue of cluster formation and do not allow dynamic exploration and zooming, our
solution 1) builds a novel cluster index structure adaptively using hierarchical (offline)
clustering for index priming; and incremental (online) clustering for index update, ii)
allows interactive cluster exploration online, where iii) the index is designed for
seamless zooming in and out of the clusters. The design is modular and allows
decoupling the indexing and the visualization as separate services. Empirical results
highlight the efficiency and practicality of the solution. We are currently building a
querying layer on top of the indexing and visualization components. We are also
extending our TF-IDF text features to consider cluster-based features using term-
cluster relationships [2]. Extending TF-IDF to consider supervised learning schemes
[3] and machine learning (ML) based techniques such as BERT, transformers, and
Large Language Models (LLMs) is another direction [33]. We also plan to investigate
different clustering algorithms (e.g., constrained agglomerative and spectral [16, 29]),
to allow speed-ups and reduced index building time.
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