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Abstract. The increasing availability of large collections of textual data online 
gives rise to the challenge of developing methods to explore and organize large 
document collections in a meaningful and pragmatic way. Thematic exploration 
solutions allow users and organizations to effectively visualize document 
clusters and browse them thematically or topically. Existing solutions provide 
methods to topically visualize document clusters. However, they do not allow 
the user to dynamically explore the clusters online by zooming in and out of the 
cluster hierarchy. Also, most studies do not provide a solution for persisting the 
document clusters offline to be re-used and visualized at a later time. In this 
study, we design and implement a hierarchical indexing solution that allows 
dynamic and interactive zooming of document clusters. Our solution consists of 
two major components: 1) a dynamic indexing component that produces a 
topical and hierarchical index for document clusters, and 2) a visualization 
component that provides interactive and thematic exploration functionalities. 
The index is dynamically updated online using incremental clustering following 
the user’s exploration. Users can seamlessly zoom in and out of clusters to 
explore topically related data. Our solution serves as a baseline for an 
interactive cluster zooming solution and can be extended to support semantic 
zooming and more advanced querying functionalities at a later stage. 

Keywords: Data indexing, Hierarchical clustering, Incremental clustering, 
Topical organization, Thematic exploration, Data zooming. 

1   Introduction 

Thematic exploration is the concept of allowing users and organizations to effectively 
visualize document clusters and browse them thematically or topically. A common 
technique in thematic exploration is grouping similar documents into clusters of 
related topics. These clusters are then organized to produce effective visual 
exploration methods for users. Few existing methods have addressed cluster-based 
thematic exploration, e.g., [4-6]. While they organize groups of documents into 
thematic clusters, nonetheless, most existing methods do not allow the user to 
dynamically explore the clusters online by zooming in and out of the cluster 
hierarchy. Also, most studies do not provide a solution for persisting the document 
clusters offline to be re-used and visualized at a later time. 

In this study, we present a new solution for cluster-based document exploration. 
Our solution consists of two main contributions: i) an indexing component that 
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accepts as input a set of unstructured text documents and produces as output a 
hierarchical and topical index structure of document clusters, and ii) an adapted 
visualization component that provides seamless, interactive, and thematic exploration 
of document clusters. Different from existing solutions, our proposal explicitly 
addresses the issue of cluster formation, by i) building a novel cluster index structure 
adaptively following a two-phase process: hierarchical (offline) clustering for 
priming; and incremental (online) clustering following the user’s exploration, and ii) 
allowing interactive cluster exploration online using the generated cluster index 
structure, where iii) the index is specifically designed to allow seamless zooming in 
and out of the clusters, following the user’s needs. Our design is modular and allows 
the decoupling of the indexing and visualization components as separate and fully 
functional services, according to the user’s needs. Empirical results highlight the 
effectiveness, efficiency, and practicality of our solution. 

Section 2 reviews related works. Section 3 describes our proposed solution. 
Section 4 presents our experimental tests. Section 5 concludes with future directions.  

2 Related Work 
2.1  Topical Exploration of Web Data 

Providing techniques for Web data search, exploration, and visualization is gaining 
importance, where topical exploration and result organization become essential to 
allow easier and more effective access to the data. In [4], the authors introduce the 
concept of inCloud to transform the flat organization of data into a special structure of 
clustered topics using dedicated data aggregation and abstraction techniques. An 
inCloud provides a high-level topical view of the data and consists of 3 main 
components: i) a circle box, representing a cluster, which is a group of data that focus 
on a specific topic, ii) a square box which representing a summary of the contents of 
the cluster, and iii) an arrow, which represents the relationship between clusters. The 
thicker the arrow is, the more connected the two clusters are. To build an inCloud, the 
first step is to perform similarity evaluation on the input data and produce a similarity 
graph where similarity links are added to connect the data nodes together. The second 
step is to perform topical aggregation to identify a set of topical clusters within the 
connected similarity graph. Clusters are formed by going through the similarity graph 
and detecting those data nodes that are highly interconnected. To do this, the authors 
in [7, 8] rely on the clique percolation method (CPM). CPM divides the graph into 
sub graphs, where each sub-graph has k connected nodes. Two sub graphs are defined 
as adjacent if they share k-1 nodes. In a subsequent study in [6], the authors 
introduced inWalk, an interactive system for the exploration of linked data based on 
the concept of inCloud from [4]. In [5], the authors build on the concept of inClouds 
from [4] to define inClouds as entity-driven collections of Web resources aiming at 
providing information organization structures. An inCloud is used to collect 
information relevant for a given target entity. Hence, resources considered prominent 
to the target entity are properly arranged and presented to the user. In [12], the authors 
describe LDAExplore, a solution for organizing topic distributions using an 
unsupervised LDA (Ladent Dirichlet Allocation) topic modeling method. It organizes 
the generated topics according to their word distributions in the corpus, and allows 
topical filtering and set operations, displaying different views of the document corpus, 
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and grouping similar documents together according to their shared topics. In [10], the 
authors introduce a dimensional clustering approach capable of selecting the set of 
features to use for data clustering, which are then packaged into topical dimensions. 
This provides a description of the similarity value that generates each cluster. Hence, 
resources with the same degree of similarity but with different sets of matching 
features are put in different clusters, resulting in more accurate clustering.  

Most of the above approaches describe how to organize data clusters. Yet they 
only briefly cover cluster exploration. They do not address dynamic navigation or 
zooming within the clusters, nor do they address cluster loading for visualization. 

 

 

 

a. Two-level zooming approach from [27] b. Cascading cluster presentation from [18] 
 

Fig. 1. Sample cluster visualizations from the literature 
 

2.2 Cluster Visualization and Zooming 

Few approaches have specifically addressed data cluster visualization and 
exploration. Most of them revolve around the treemap visualization tool, e.g., [21]. In 
[21], the authors describe a treemap based visualization that provides a rapid layout 
for graph structures. They introduce the Focus+ context paradigm, in which a user 
presses on a node in the treemap to view its surrounding nodes. They also introduce 
the fisheye view zooming functionality allowing a user to select a cluster and zoom-in 
to display its children clusters [26]. In [27], the authors present a treemap-based 
visualization that applies Fuzzy c-means clustering to organize the data, and 
visualizes the results on the basis of the highest and the second-highest membership 
values within the treemap. Fuzzy c-means is applied iteratively to create a hierarchical 
structure, where the first layer shows the clustered objects based on highest 
membership value, and the second layer shows the clustering objects based on the 
second-highest membership values (cf. Fig. 1). The hierarchy is limited to two levels, 
allowing the user to click on a cluster and view its child clusters, and vice-versa. In 
[18], the authors introduce the concept of cascading treemaps, using cascading 
rectangles instead of the traditional nested rectangles. Cascading uses less space to 
present the same containment relationship, and the space savings enable a depth effect 
and natural padding between siblings in complex hierarchies. The authors provide one 
level of parent-child zooming in their implementation [18]. 
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In short, most existing methods i) do not address the issue of cluster formation, 
i.e., whether the documents are clustered offline or online, ii) do not discuss the issue 
of cluster visualization loading, which also depends on cluster formation and the lack 
of persistence of the clusters offline for re-use and visualization, and iii) do not 
address dynamic navigation or zooming within the data clusters. 

3 Proposal 

The overall architecture of our solution is shown in Fig. 2. It consists of two main 
components: i) an indexing component consisting of a two-phase process: hierarchical 
clustering conducted offline for priming the index structure; and fast incremental 
clustering conducted online to update the index structure following the user’s 
exploration, and ii) a visualization component which is run online, and involves 
cluster exploration and interactive zooming. We describe each of the components in 
the following sub-sections. 
 
3.1 Indexing Component 

Our indexing component accepts as input a set of text documents, and performs 
document preprocessing, clustering, and topical extraction from the generated 
clusters, and then produces as output an index structure describing the topical 
organization of the document clusters. The initial index structure is generated offline 
using hierarchical clustering, and is subsequently updated online using fact 
incremental clustering following the user’s exploration. The index structure is used as 
input for the online visualization component to perform document cluster exploration 
and zooming. 
 

 
 

Fig. 2 Overall architecture of our solution 

3.1.1 Document Preprocessing and Feature Representation 

First, the documents are serialized to extract their raw textual contents from the input 
pdf documents. Second, all words are converted to their lowercase form, and all stop-
words and punctuations are removed from the text. Third, words are reduced to their 
stems or roots, using stemming or lemmatization, following the users’ preference: i) 
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stemming converts all the words to their original syntactic forms (stems) using 
syntactic stemming rules1; ii) lemmatization transforming words into their original 
lexical forms using a lexical reference2. The documents are then processed for feature 
representation, where each document is represented as a multi-dimensional feature 
vector, where vector weights are computed using supervised TF-IDF weighting. We 
introduce a supervised weighting scheme derived from a modified version of the 
Term-Frequency Inverse-Category-Frequency (TF-ICF) scheme from [3]. Different 
from existing approaches which are designed for document representation, we adapt 
TF-ICF to produce weighted representations for the generated clusters. We augment 
each document with the cluster features to improve clustering quality. To do so, we 
represent each cluster by a TF-ICF vector where the dimensions represent distinctive 
terms and the weight of each dimension reflects the frequency of occurrence of the 
term in the documents belonging to the cluster. We then embed the new weighting 
scheme within the documents’ original TF-IDF feature vectors to capture the 
relationships between document terms and the generated clusters. [32] [20] 

 
Table 2. Term Frequency - Inverse Cluster Frequency (TF-ICF) model adopted in our study 
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We designate by D ={d1, d2, …, d|D|} the set of documents, T ={t1, t2, …, t|T|} the set 
of terms that occur in the documents in D (the vocabulary of D), and C ={c1, c2, …, 
c|C|} the set of generated clusters. We compute the TF-ICF of a term tiT in cluster 
cjC as shown in Table 2. TF represents the frequency of a term inside the set of 
documents pertaining to the cluster cj, where more recurrent terms are assigned higher 
TF scores. ICF represents the fraction of clusters that contain term ti, where less 
recurrent terms are assigned higher ICF scores. The less clusters term ti occurs in, the 
more descriptive it will be in distinctively describing the clusters it occurs in, and vice 
versa (the more clusters term ti occurs in, the less expressive it will be in 
distinguishing the clusters) 3. [9, 22]  [25, 29]  

3.1.2  Hierarchical Document Clustering 

One of the motivations of our study is to highlight the hierarchical relationships 
between document clusters, to allow interactive cluster exploration and zooming. 
Here, we perform clustering using the well-known Unweighted Pair-Group Method 
with Arithmetic mean (UPGMA) average link hierarchical clustering method [13, 14], 
although any form of hierarchical clustering can be utilized. Given n documents, we 
construct a fully connected graph G with n vertices and ( 1)

2

n n   weighted edges. The 

                                                 
1   We adopt the Porter Stemmer [32] since it’s one the most effective and commonly used in the literature. 
2  We adopt the WordNet lexical dictionary [20] to perform lemmatization, since it’s one of the most commonly used 

machine-readable lexical knowledge bases in the literature. 
3   Our approach is not restricted to TF-IDF/ICF (which performance is widely acknowledged, e.g., [25, 29]) and can utilize 

other indexing schemes, e.g., LSI (Latent Semantic Indexing) [22], Word2Vec [9], and kernel functions [15]. 
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weight of an edge corresponds to the similarity (distance) between the connected 
vertices. We adopt an agglomerative clustering approach where each edge in the 
connected graph initially represents an individual cluster. Consequently, the nearest 
two clusters (i.e., edges/documents) are combined into a higher-level cluster. This is 
repeated iteratively at every step to combine the most similar clusters into higher-
level clusters, where the similarity between the clusters is computed as the average of 
all similarities between their constituent edges (i.e., documents), i.e., the mean pair-
wise similarity between all pairs of matching documents from both clusters. We 
utilize the cosine measure to compute document feature vector similarity, due to its 
prominent usage in the literature, yet other vector similarity measures can be used 
(e.g., Pearson Correlation Coefficient, Dice, Euclidian, e.g., [15, 30]). Fig 5 shows the 
dendrogram produced for a sample set of 10 documents, grouped using hierarchical 
clustering. Each internal node represents a cluster, and each leaf node represents an 
individual document. For example, one can observe that documents #8 and #9 are 
clustered together first, which means they’re most similar compared with all other 
documents in the dataset. We can also observe that the root cluster, which contains all 
10 documents, is split into two child clusters. These are examples of the kinds of 
structural relationships we seek to highlight through our index structure.  [9, 22]  [25, 29] 
 
 

Algorithm: Incremental_Clustering 
 

Input:  C                                               // Set of initial document clusters 
S                                                // Stream of newly accessed documents 
R                                               // Set of initial cluster representatives 
Thresh                                       // Document similarity threshold 

 

Output: Set of updated document clusters: C 
 

Begin   
For each new doc  S  

                Find max(Sim(doc, Repi)) where Repi  ∈ R                                 // Find maximum similarity document 
    If max(Sim(doc, Repi)) > Thresh                                                   // If similarity above threshold, 

  Add doc to cluster ci having Repi as representative           // then add document to existing cluster  
  Update_Cluster_Representative(ci)                                   // and update cluster representative 

    Else 
  Create new cluster cnew                                                       // Otherwise, form new cluster                     
  Add doc to cnew 
  Designate doc as RepNew 
  Add cnew to C 

EndIf                                                                                         
 

If user wishes to update threshold 
Set Thresh as average similarity of all images in C 

 

For each new cluster c  C 
Find max(Sim(c, ci)) where ci  ∈ C 
Combine c with ci                                  

Return C 
End 

 

 
 

 
 
 

 
 
 
 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

 

12 
13 

 

14 
15 
16 
17 

 

Fig 3. Pseudo-code of incremental document clustering algorithm 
 
3.1.3 Incremental Document Clustering 

Following the initial hierarchical clustering phase, which is executed offline to prime 
to index structure, a second phase of fast incremental clustering [1, 24] is executed 
online to update the clusters produced in the previous phase by processing newly 
accessed documents (cf. pseudo-code in Fig. 3). The new document is compared with 
each of the existing cluster representatives using the aggregated similarities of their 
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constituent documents from the previous clustering phase (cf. Fig. 3, lines 1-1). The 
algorithm identifies the cluster having the highest similarity with the new document 
(lines 3-5), and then decides whether the document should be placed in the cluster; or 
whether a new cluster should be created around the document; based on a user chosen 
(or system-generated) similarity threshold (lines 6-11). The newly formed clusters are 
compared and combined with their most similar hierarchical counterparts (lines 14-
16), integrating seamlessly into the cluster hierarchy structure. The incremental 
process continues online in the same manner as new documents are being explored. 
 

Algorithm: Index_Construction 
Input: 

dendrogram_root: dendrogramNode    // root node of the dendrogram 
root_id: string                                       // id of the root being passed to the function 
doc_id_index: hashTable                     // documents and their respective IDs 
cluster_topic_index: hashTable           // extracted topics for every cluster 

Variables: 
children = dendrogram_root.children: list of dendrogramNode   

Output: 
doc_id_index: hashTable                     // documents and their respective IDs 

Begin 
 cluster_topic_index[root_id] = dendrogram_root.topic  
 If length(children) != 0 
        higher_child_id = root_id + “.0”  
        lower_child_id = root_id + “.1” 

If children[0].distance > children[2].distance 
higher_child = children[0] 
lower_child = children[2] 

  Else 
higher_child = children[2] 
lower_child = children[0] 

  Index_Construction(higher_child, higher_child_id, doc_id_index) 
  IndexConstruction(lower_child, lower_child_id, doc_id_index) 
Else 

       doc_id_index[root_id]=dendrogram_root.document     // reference to the document 
 Return doc_id_index 
 

End 
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Fig 4. Pseudocode of our index construction algorithm 
 
3.1.4 Index Construction 

The purpose of our indexing component is to develop a structure that will store all the 
necessary hierarchical cluster relationships offline, allowing for seamless online 
cluster exploration and zooming by the user. These relationships include for each 
cluster: i) the parent cluster, ii) the child clusters, iii) the sibling clusters, and iv) the 
cluster’s order w.r.t. (with respect to) its siblings. To do so, we put forward an index 
based on the Dewey numbering scheme [28], which allows reflecting all the above 
mentioned relationships. Note that other labelling schemes such as pre-order labelling 
(POL) and level-order father labelling (LAF) can be adapted to the task, e.g., [11, 17]. 
In Dewey order, each node is given a vector that describes the path from the 
(dendrogram) structure’s root to the target (document) node. Consider our running 
example dendrogram in Fig. 5, where each component of the path indicates the local 
order of the ancestor node. Dewey order is considered to be lossless since each path 
uniquely defines the absolute position of the node within the structure [28]. Also, the 
ancestor path is implicitly encoded within the node id, which simplifies the retrieval 
of the parent and child nodes [19], thus making it suitable for our index structure. The 
pseudocode of our index construction algorithm is shown in Fig 4. It accepts as input 
the dendrogram structure produced by the hierarchical document clustering algorithm, 
and produces as output the hierarchical document index. The algorithm starts at the 
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root node of the dendrogram and assigns it id =0 (line 1). It then checks if the node 
has children nodes and generates their ids by appending the id of the parent to those 
of the children (lines 2-4), taking into account the children’s relative order in the 
dendrogram (lines 5-10). This is achieved by assigning the id concatenation .0 to the 
child that is higher-up on the dendrogram hierarchy, and .1 to the lower child. The 
algorithm is then invoked iteratively on each of the children nodes (lines 11-14) until 
all nodes of the dendrogram have been assigned their ids. 

The Dewey labelling of our running example dendrogram is shown in Fig 3.b. 
One can observe that the root node, i.e., the cluster which encompasses all documents, 
is labelled with id=0. This id defines the cluster as the root of the index. The two child 
clusters of the root (i.e., the first-level nodes of the structure) are labeled as 0.0 and 
0.1, according to their relative ordering in the dendrogram. Similarly, the id of any 
given cluster is equal to the id of its parent concatenated with either 0, 1, …, or n, 
where n is the number of children nodes of the parent. This enables efficiently 
determining the parent-child relationships and sibling relationships between the 
nodes. Also, the index keeps track of the relative ranking between cluster siblings. 
This labelling allows determining all the required cluster relationships: 
 

i. Determining the parent cluster: by removing the last id concatenation from the 
target cluster label (e.g., the parent of node 0.0.0.0.0 is 0.0.0.0 by removing the 
last .0). 

ii. Determining the child clusters: by concatenating the target cluster label with the 
relative order of the children clusters (e.g., the children nodes of 0.0.1 are 
0.0.1.0, 0.0.1.1, …, 0.0.1.n considering n children nodes). 

iii. Determining the sibling clusters: by toggling the final id concatenation with the 
relative order of the sibling clusters (e.g., the siblings of cluster 0.0.0.1 are 
0.0.0.0, 0.0.0.2, …, 0.0.0.n considering n sibling nodes). 

iv. Determining the order between sibling clusters: based on the arithmetic order of 
last id concatenation in the sibling labels (e.g., cluster 0.0.1 is higher on the 
dendrogram that its sibling 0.0.2, since the .1 child comes first in terms of 
relative ordering). 

 
 

Doc_id Source file Title 

1 goal_1.pdf Ending poverty 

2  goal_3.pdf Healthy lives & well-being 

3  goal_4.pdf Quality education 

 4  goal_5.pdf Gender equality 

5  goal_6.pdf Clean water and sanitation

6  goal_8.pdf Decent work and economic growth 

7  goal_10.pdf Reduced inequality 

8  goal_14.pdf Life below water 

9  goal_15.pdf Life on land 

10 goal_17.pdf Partnerships to achieve the goal 
 

Available at: https://www.unescwa.org/ehandbook-sdg-framework-metadata 
 

 

 
 

a. Sample documents from the UN’s SDG dataset  b. Dendrogram, with our Dewey-labelled nodes 
 

 

Fig 5. Dendrogram structure produced for 10 sample documents selected from the UN’s 
Sustainable Development Goals (SDGs) dataset, labeled following our Dewey labeling scheme 

 
The index structure of our running example dendrogram is shown in Fig. 6. The 

first table represents the cluster-document index, which stores the ids of the leaf nodes 
(i.e., the individual documents). We do not store the ids of the internal nodes in this 
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table (i.e., the document clusters) since they are determined from the ids of the leaf 
nodes, as illustrated previously. The second table represents the cluster-topic index, 
which stores the topics associated with every (internal and leaf) node (i.e., clusters 
and individual documents), following the topic extraction task described in Section 
3.1.5. Note that our index tables are sorted and indexes themselves, using binary 
search tree indexing, to allow logarithmic search and retrieval time when performing 
cluster exploration and zooming functionalities. 

 
3.1.5  Topic Extraction 
 

Topic extraction in our approach consists in identifying the most important keywords 
describing the document clusters. The first step consists in producing the feature 
vector representations describing every cluster. This is achieved by aggregating the 
term/expression frequency (and augmented co-occurrence frequency) vectors of their 
constituent documents. Consequently, we represent every cluster by its top-k 
keywords, ranked following their term weights in the cluster feature vector.  

Recent solutions have suggested using external knowledge sources such as 
Wikipedia or Yago [23, 31], where the topics representing the clusters are identified 
based on their semantic meaning, and might be selected from outside the clusters 
themselves [30] (e.g., topic air pollution might be selected to describe a cluster 
containing terms CO2 emissions and greenhouse gases, such that air pollution never 
appears in the cluster). Yet we restrict our current study to syntactic topical extraction, 
and report semantics to a dedicated study.  
 

 

 
 
 
        Cluster-Document index 
 

 Cluster_id Doc_id  
 0.0.0 8 goal_14_oceans 
 0.0.1 9 goal_15_ecosystem 
 0.1.0 5 goal_6_water 
 0.1.1.0 4 goal_5_gender 
 0.1.1.1.1.0 1 goal_1_Hunger 

 0.1.1.1.1.1 2 goal_3_well‐being 
 0.1.1.1.0.0.0 7 goal_10_inequality 

 0.1.1.1.0.0.1 10 goal_17_partnerships 

 0.1.1.1.0.1.0 3 goal_4_education 
 0.1.1.1.0.1.1 6 goal_8_employment 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Cluster-Topic index 
 

Cluster_id Topic_list
 0 Sustainable development

0.0 Biodiversity, protection

0.1 Development, countries

0.0.0 Oceans, conservation, sustainability

0.0.1 Ecosystems, protection, restoration 
0.1.0 Water sustainability, management of water  
0.1.1 Equality, sustainable living

0.1.1.0 Gender equality, women empowerment 
0.1.1.1 Living, security, sustainability

0.1.1.1.0 Education, quality education, inclusive 
0.1.1.1.1 Health, healthy living

0.1.1.1.1.0 Poverty, end poverty

0.1.1.1.1.1 Living, healthy living

0.1.1.1.0.0  Health, sustainability
0.1.1.1.0.1 Development, equality, countries

0.1.1.1.0.0.0 Sustainable growth, countries

0.1.1.1.0.0.1 Economic growth, inclusive, sustainable 

0.1.1.1.0.1.0 Implementation, strength, means

0.1.1.1.0.1.1 Inequality, reduce inequality, countries
 

 

Fig 6. Index structure for sample dendrogram structure produced in Fig. 5 

3.2 Visualization Component 

The visualization component takes as input our index structure, and uses it to allow 
interactive exploration and seamless zooming functionalities of the document clusters. 
Our visualization component is decoupled from the index structure, where the index 
can be used with other visualization tools following the user’s preferences. 

PK

FK 
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3.2.1 Cluster Exploration 

We adopt two types of hierarchical visualizations in our current tool (other 
visualizations can be added in the future): treemap and circle packing (cf. Fig. 7). 
Both visualizations are designed to initially display the root of the dendrogram as the 
most comprehensive and zoomed-out cluster, highlighting the most generic 
information and topical representation of the document dataset (cf. Fig 7.a). Then, as 
the user scrolls to zoom-in, the inner nodes of the dendrogram representing the more 
specific levels of the cluster hierarchy are displayed (cf. Fig 7.b and c) along with 
their representative topics extracted from the index. Zooming in and out is done in a 
seamless way using the mouse scrolling action. Users can also click on any target 
cluster to zoom inside of it and acquire its children clusters and their topics, providing 
a more detailed description of the target cluster.  
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 a. Root level #1 b. Zoom at level #2 c. Zooming at level #  

(reaching the leaf nodes) 
 

 

Fig 7. Cluster visualizations using treemap and circle packing tools 
 

3.2.2  Hierarchical Zooming  

We consider two approaches for zooming in and out of the hierarchical clusters: i) 
sequentially according to the dendrogram structure, and ii) by grouping sibling 
clusters, bypassing the dendrogram structure (cf. Fig. 8). Using the former approach, 
each zoom (or scroll) operation consists in increasing or decreasing the dendrogram’s 
hierarchical level by 1 (i.e., 1 level depending on the direction of the zoom/scroll, 
cf. Fig. 8.a). Using the latter approach, each zoom (or scroll) operation groups the 
existing siblings together, leaving the lone clusters untouched. The siblings to be 
grouped are identified through their Dewey labels from the index (Fig. 8.b). 

While zooming sequentially may be more straightforward, following the structure 
of the dendrogram, yet it might also be tedious and might take too long for the user to 
zoom-in or out of the data, especially when a large number of deeply nested clusters 
are involved. Zooming by grouping may alleviate the task of zooming in and out of 
largely nested clusters, allowing for faster zooming operations focused on the cluster 
siblings, rather than the dendrogram hierarchy. Nevertheless, users can choose the 
zooming approach that is most adapted to their needs. 
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a. Zooming sequentially according to dendrogram structure 
 

 

 
 

b. Zooming by grouping sibling clusters 
 

 

Fig 8. Hierarchical zooming approaches: sequential (a) and by grouping (b) 
 
Algorithm: Zooming_Out 
Input: 

current_clusters: list           // clusters displayed on the screen  
doc_id_index: hashTable      // documents and their IDs 
cluster_topic_index: hashTable  // cluster topics 
zoom_type: string           // sequential or grouping 

Variables: 
zoom_seq: list         // clusters to zoom sequentially  
max_depth: int           // max depth of current clusters 

Output: 
current_clusters: list      // updated clusters displayed on screen 

Begin  
If zoom_type == grouping 

   If length(current_clusters) != 1 
  For every clusterj in current_clusters 

   sibling= getSibling(clusterj)      
    If sibling in current_clusters Then 

       append getParent(clusterj)  to current_clusters  
       remove clusterj  from current_clusters 
   remove sibling from current_clusters 

  For every clusterk in current_clusters 
            displayCluster(clusterk) 

 

Else if zoom_type == sequential 
   If length(current_clusters) != 1 

  For every clusterj in current_clusters      
    If clusterj.depth > max_depth 
      max_depth = clusterj.depth 

      For every clusterj in current_clusters      
   sibling= getSibling(clusterj)       

     If sibling in current_clusters Then 
   append getParent(clusterj)  to zoom_seq 

next_parent= getLowestParent(zoom_seq)   
append next_parent  to current_clusters  
remove clusterj  from current_clusters 
remove sibling from current_clusters 
For every clusterk in current_clusters 
      displayCluster(clusterk) 

End 
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Algorithm: Zooming_In 
Input: 

current_clusters: list     
doc_id_index: HashTable  
cluster_topic_index: HashTable  
zoom_type: string           

Variables: 
max_depth: int   // max depth of current clusters 

Output: 
current_clusters: list     

Begin 
 If zoom_type == grouping 
   If length(current_clusters) != rows(doc_id_index) 

 For every clusterj in current_clusters 
    append(clusterj+.0)  to current_clusters  
    append(clusterj+.1)  to current_clusters  

 remove clusterj  from current_clusters 
   For every clusterk in current_clusters 

         displayCluster(clusterk) 
  

Else if zoom_type == sequential 
 If length(current_clusters) != rows(doc_id_index)  

For every clusterj in current_clusters      
    If clusterj.depth > max_depth 
      max_depth = clusterj.depth 
  next_parent= getLowestParent(zoom_seq)   
  append(next_parent +.0)  to current_clusters  
  append(next_parent +.1)  to current_clusters  

      remove next_parent from current_clusters 
        For every clusterk in current_clusters 

         displayCluster(clusterk) 
End 
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a. Zooming-out algorithm  b. Zooming-in algorithm  
 

Fig 9. Pseudocodes of our zooming algorithms 
 
The pseudocodes for our zooming algorithms are shown in Fig. 9. They accept as 
input the index structure produced by the indexing component, the list of clusters 
currently displayed on the screen, and the zoom type (i.e., sequential or by grouping). 
The algorithms are invoked following mouse-scroll events. In case of zooming out 
while grouping, the algorithm will determine the sibling IDs of all the currently 
displayed clusters (cf. Fig. 9.a, line 4). It will then check whether these siblings exist 
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on the screen and belong to the current clusters list (line 5). If a pair of siblings exists 
in the current cluster list, it is grouped. All sibling pairs are grouped at once to zoom 
out. A similar logic is applied for zooming-in with groups (cf. Fig. 9.b), where the IDs 
of the children are generated and those new children will be displayed. For zooming 
out sequentially, the algorithm will start by determining the set of currently displayed 
clusters with the highest depth value (Fig. 9.a, lines 13-15). These clusters are 
candidates for zooming. Next, the algorithm checks whether these clusters currently 
have their siblings on the screen. After determining the existing siblings, the 
algorithm compares the IDs of the potential parents to determine the parent that is 
lowest on the dendrogram (Fig. 9.a, line 20). The corresponding sibling pair is 
grouped. Similarly, when zooming in sequentially (Fig. 9.b), the cluster with the most 
depth and the lowest ID is split into its child clusters to zoom in. 

4 Experimental Evaluation 

4.1  Prototype Implementation 

We have implemented our indexing component using the Python programming 
language. We perform i) data serialization using PDFToText, ii) text preprocessing 
and feature extraction using NLTK, iii) clustering and dendrogram building using 
SciPy. We store the index tables in SQLite, a lightweight relational database 
commonly used for on-disk data storage. We have implemented our visualization 
component using JavaScript, creating the visualizations using D3.js, a popular 
visualization framework designed for efficiently handling large datasets. Our 
implementation and test data are available online on github1. 

4.2 Experimental Protocol 

4.2.1 Performance Experiments 

We conducted experiments to assess both our indexing and visualization components. 
Indexing component: we evaluate offline indexing by measuring: i) index 

building time: the time to preprocess, cluster, extract the topics, build and update the 
index structure, while varying the size of the dataset; ii) index size in-memory: the 
size of the index tables stored in-memory, while varying the size of the dataset.  

Visualization component: we evaluate the online visualization by measuring: i) 
cluster visualization time: the time needed to load the interface and document clusters, 
while varying the size of the input index; ii) cluster zooming time: the time needed to 
perform the zooming action and load the zoomed cluster visualizations, while varying 
the size of the index.  

 
4.2.2  Qualitative Experiments 

We created an online survey2 to evaluate the quality of our solution. We considered 
five evaluation criteria to evaluate the overall tool’s usability, including: i) stability, 

                                                 
1   https://github.com/HalaSaadeh/LAU-ECE-Research-cluster-indexing and https://github.com/HalaSaadeh/LAU-

ECE-Research-cluster-visualization 
2   Available at: https://forms.gle/gugpZcM9jyzrvuPG9 
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ii) look and feel, iii) ease of use, iv) responsiveness, and v) user interface (cf. Table 3) 
We considered four additional criteria to evaluate the usefulness of key 
functionalities, including: i) zooming intuitiveness, ii) topic descriptiveness, iii) 
treemap exploration intuitiveness and iv) circle packing exploration intuitiveness (cf. 
Table 4). We also requested from the testers to perform a set of predefined tasks and 
asked them to rate their satisfaction accordingly: Task 1: Find a document and a 
cluster where the document does not belong; Task 2: Find a cluster that has a weak 
relationship with other clusters; Task 3: Find two clusters that have a strong 
relationship with each other; Task 4: Find two documents that have similar topics; 
Task 5: Find two documents that have distinct topics. Testers were instructed to 
separately rate every evaluation criterion and every task on an integer scale from 0 to 
4 (i.e., from highly dissatisfied to highly satisfied). 

 
Table 3. Overall tool’s usability criteria 

 

Criterion Description Evaluation question 
Stability It is the ability of the software tool to function 

over a long period of time without crashing.  
Given the criterion’s description, how satisfied are 
you with the stability of the software tool?  

Look and Feel It refers to the first impression a user has after 
using the software tool.  

Given the criterion’s description, how satisfied are 
you with the look and feel of the software tool?  

Ease of Use It describes how easy and straightforward it is 
to use and manipulate the software tool.  

Given the criterion’s description, how satisfied are 
you with the ease of use of software tool?  

Responsiveness It refers to the time it takes the software tool to 
perform a certain action or behavior such as 
the cluster zooming.  

Given the criterion’s description, how satisfied are 
you with the responsiveness and overall speed of 
this application functionalities?  

User Interface It is the means through which a user controls a 
software application and interacts with it.  

Given the criterion’s description, how satisfied are 
you with the interface of this software tool?  

 
Table 4. Key functionalities’ usefulness criteria 

 

 
4.3  Experimental Results 

4.3.1 Performance Experiments 

The time complexity of our offline hierarchical clustering and index priming 
simplifies to O(N2) time where N represents the number of documents. The 
complexity of our online incremental clustering and index update comes down to 
O(NC) where C represents the number of clusters, and it simplifies to O(N) since C 
is usually << N. Space complexity also simplifies to O(N), and comes down to the 
size of the cluster-document index table. 

We conducted our performance experiments on a set of United Nations (UN) 
documents acquired from the UN’s Manara portal1, by varying the dataset size from 

                                                 
1 https://manara.unescwa.org/home 

Criterion Description Evaluation question 
Zooming 

Intuitiveness 
It reflects how easy it is for a user to zoom in 
and out of the document clusters using the tool    

Given the criterion’s description, how satisfied 
are you with the tool’s zooming functionality? 

Topic 
Descriptiveness 

It reflects how easy it is for a user to understand 
the topic associated with a document or cluster. 

Given the criterion’s description, how satisfied 
are you with the topics generated by this tool? 

Treemap 
exploration 

It refers to the visualization exploration of the 
document clusters using treemap. 

How satisfied are you with the visualizing the 
clusters using treemap?  

Circle packing 
exploration 

It refers to the visualization fexploration of the 
document clusters using circle packing 

How satisfied are you with the visualization of 
the clusters using circle packing?  
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1000-to-10,000 documents, with document size averaging 2,630 KB per document. 
Tests were conducted on a personal computer with Intel(R) Core(TM) i7-8750H 
processor with 2.4 GHz processing speed and 16 GB of RAM. Results in Fig. 10.a 
show almost linear time for data preparation. Results in Fig. 10.b show polynomial 
time for offline index priming which is mainly due to the quadratic time of the 
hierarchical clustering process, and linear time for online index update following the 
linear time performance of incremental clustering. Results in Fig. 11.a show that 
index size increases linearly with the number of documents in the dataset. On the one 
hand, index priming is conducted offline and will not affect the user’s experience. On 
the other hand, index update occurs online and is seamless w.r.t. user exploration 
given i) the efficiency of our incremental clustering process and most importantly ii) 
the limited number of documents being explored online and being added to the index 
(e.g., while our time experiments in Fig. 10.b and Fig. 11.b varies the number of 
documents in the thousands, yet a typical user usually explores tens of documents at a 
time and those are incrementally integrated into the index almost instantaneously). 
Results in Fig. 11.b highlight our solution’s logarithmic (almost constant) time in 
loading the clusters and performing cluster zooming. 

 
  

 
a. Data preparation b. Index building: hierarchical priming (offline) 

and incremental update (online) 
 

 

Fig 10. Data preparation and index build time 
 

 

 
 

 

 
 

b. Index size in memory b. Online index exploration and zooming time 
 

 

Fig 11. Index size in memory (a) and online exploration and zooming time (b) 

4.3.2   Qualitative Experiments 

A total of 20 testers (senior engineering students) were invited to contribute to the 
experiment. Testers were invited to run the tool using an executable version shared 
online, presented with the same use case consisting of a dataset of 50 documents 
representing the UN’s Sustainable Development Goals (SDGs) extended from our 
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running example1. They were subsequently asked to fill the online survey criteria and 
task ratings. Results in Fig. 12, aggregated for every criterion and every task, show 
that most testers are satisfied with the tool’s usability and the usefulness of its cluster 
exploration and zooming functionalities, producing overall average ratings of 4.68/5 
and 4.60/5 considering the combined usability and usefulness criteria respectively. 
Results also show that users were mostly satisfied with the assigned tasks, producing 
an overall average 4.64/5 rating. 
 

 

 

  
 

 
a. Overall tool usability b. Functionality usefulness 

 

b. User task satisfaction 
 

Fig 12. Average ratings for tool quality, functionality usefulness, and user task satisfaction 
 

5 Conclusion 
 

This study introduces a hierarchical indexing solution for dynamic and interactive 
zooming of document clusters. Different from existing solutions which do not address 
the issue of cluster formation and do not allow dynamic exploration and zooming, our 
solution i) builds a novel cluster index structure adaptively using hierarchical (offline) 
clustering for index priming; and incremental (online) clustering for index update, ii) 
allows interactive cluster exploration online, where iii) the index is designed for 
seamless zooming in and out of the clusters. The design is modular and allows 
decoupling the indexing and the visualization as separate services. Empirical results 
highlight the efficiency and practicality of the solution. We are currently building a 
querying layer on top of the indexing and visualization components. We are also 
extending our TF-IDF text features to consider cluster-based features using term-
cluster relationships [2]. Extending TF-IDF to consider supervised learning schemes 
[3] and machine learning (ML) based techniques such as BERT, transformers, and 
Large Language Models (LLMs) is another direction [33]. We also plan to investigate 
different clustering algorithms (e.g., constrained agglomerative and spectral [16, 29]), 
to allow speed-ups and reduced index building time. 
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