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3E.C.E. Dept, Lebanese American University, 36, Byblos, Lebanon.

*Corresponding author(s). E-mail(s): joe.tekli@lau.edu.lb;
Contributing authors: anthony.yaghi@bmw.de; marc.kamradt@bmw.de;

raphael.couturier@univ-fcomte.fr;

Abstract
A main R&D pillar in the modern car manufacturing industry revolves around investigat-
ing the use of digital assets to train semantic segmentation models, before deploying them
in the real-world. Yet, training deep learning models requires huge amounts of data, where
there is a clear lack of datasets to facilitate 3D model training, especially for industrial
applications. To address this problem, we propose a new synthetic data generation pipeline
called 3DGENie designed to generate controlled 3D point clouds. 3DGENie uses state
of the art procedural layout generation to produce region layout trees. It then applies 3D
scene construction and asset randomization to produce scenes populated with 3D assets.
This allows different types of set-ups that are adequate for different kinds of industrial sce-
narios. Synthetic sensors are subsequently placed in the virtual environment to simulate
data capture from the 3D scenes as if monitored by real-world sensors, allowing to study
the influence of various environmental variables on model performance. 3DGENie uses
Nvidia Omniverse as its scene-building platform and Pixar’s Universal Scene Description
(USD) for 3D graphics representation to allow for seamless interchange across platforms.
While the main application focuses on the generation of car assembly lines, yet, 3DGENie
can be used across a range of fields, from autonomous vehicle development, to healthcare
virtualization, and augmented and virtual reality applications. Various experiments are
conducted to evaluate the quality of the generated 3D point clouds, using several semantic
segmentation models. Results highlight the quality and potential of the proposed pipeline.

Keywords: Synthetic Data, 3D Point clouds, Data Generation Pipeline, Procedural Generation,
Computer Vision, Semantic Segmentation.

1



1 Introduction
3D computer vision and perception is becoming critical in various industrial applications,
where digital twins and virtual assets show great promise for training computer vision
solutions. A main R&D pillar in the modern car manufacturing industry revolves around
investigating the usage of digital assets to train 3D computer vision models, before deploy-
ing them in the real-world. Yet, there is a clear absence of 3D vision datasets for industrial
applications, at least when compared with their 2D counterparts Xiao A.. et al. (2021). How-
ever, creating real datasets with the level of scale and complexity required in industry can
sometimes be expensive or even impractical, especially when generating 3D point cloud
datasets. This requires the usage of industry-scale 3D scanners to acquire accurate 3D map-
pings, followed by manual labelling, which entails huge financial, logistical, and temporal
challenges.

To address these challenges, we propose a novel synthetic data generation pipeline called
3DGENie designed to facilitate the generation of 3D point cloud datasets. It uses proce-
dural generation to produce region layout trees. It then applies 3D scene construction and
asset randomization algorithms to produce 3D scenes populated with 3D assets according to
user-chosen generation strategies, allowing different types of set-ups (e.g., generating a syn-
thetic assembly line requires layouts and randomizations that are different from generating a
supply chain storage post for instance). Synthetic sensor placement allows to simulate data
capture from the generated 3D scenes as if it were monitored by real-world cameras and sen-
sors. 3DGENie uses Nvidia Omniverse Nvidia (2024a) as its scene building platform which
leverages the latest achievements in GPU technology, and Pixar’s Universal Scene Descrip-
tion (USD) Nvidia (2024c) for 3D graphics representation to allow a seamless interchange
across multiple industry platforms. We conducted various experiments to evaluate the quality
of the generated 3D point clouds, using several deep learning semantic segmentation mod-
els. Results highlight the quality and potential of our pipeline. While our main application
focuses on the generation of synthetic car assembly lines, nonetheless, our solution can be
used across a range of fields, from autonomous vehicle development Song Z.. et al. (2024), to
healthcare virtualization Yunas M.. et al. (2023)Chen R.. et al. (2021), as well as augmented
and virtual reality applications Morbidoni C.. et al. (2020)Lu Y.. et al. (2023).

The remainder of this paper is organized as follows. Section 2 reviews the literature
around 3D datasets and data generation pipelines. Section 3 describes our 3DGENie pipeline.
Section 4 describes our experimental evaluation and results, before concluding in Section 5
with ongoing works and directions.

2 Related Work
This section will briefly cover real and synthetic point cloud datasets for machine learning as
well as synthetic data generation pipelines and procedural layout generation methods.

2.1 Point Cloud Datasets
Real-World datasets: SensatUrban Hu Q.. et al. (2021) and Semantics3D Hackel T.. et al.
(2017) are two real-world datasets in the area of urban and natural scenes. SensatUrban
Hu Q.. et al. (2021) leverages photogrammetry to offer point-level segmentation across 13
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semantic classes, utilizing a fixed-wing drone to capture aerial images that are then processed
into dense colored 3D point clouds, requiring approximately 600 hours of manual annotation.
This dataset stands out for its detailed representation of the urban landscapes. Conversely,
Semantics3D Hackel T.. et al. (2017) focuses on static scans to produce dense and accurately
annotated point clouds in both urban and natural settings. Its unique approach to colorizing
points via cube maps from different angles enriches the dataset’s visual details. Although
it encompasses fewer classes (8 in total) compared with SensatUrban Hu Q.. et al. (2021),
nonetheless, it provides high-quality and high-density point clouds. SemanticKIITI Behley
J.. et al. (2019) is a renowned dataset based on the odometry of the KITTI Vision Benchmark
Geiger A.. et al. (2012), which is derived from a lidar sensor mounted on a car as it travels
through various types of roads in Karlsruhe, Germany, including city traffic, residential areas,
highways, and countryside roads. The dataset provides accurate annotations for 28 categories
in a sequence of 22 scans. Moreover, the authors of the dataset made public the labeling tool
that was used to annotate the data. The annotation process was carried out by a team of human
annotators who spent a total of 1,700 hours on the task, including quality control. The authors
conducted multiple experiments on semantic segmentation and semantic scene completion
using state-of-the-art models to assess the quality and practical usage of their dataset.

While the aforementioned datasets provide high-quality 3D point cloud representations,
yet their production required huge amounts of time, manual labor, and resources, and their
usage remains limited to their real-world assets and scenarios.

CAD model-based datasets: ModelNet Wu Z.. et al. (2014) and ShapeNet Chang A.. et
al. (2015) are large labeled collections of 3D CAD models. The models are organized by
category and available to download under different formats like Object File Format (OFF),
OBJ, or even in voxel representation in the case of ShapeNet Chang A.. et al. (2015). While
CAD-based datasets allow design flexibility and extensibility to different application scenar-
ios, nonetheless, they show many limitations. First, the data representation does not resemble
the output of a real sensor like a depth camera or Lidar. The reason for it is the fact that
the methods used to generate the point clouds from the 3D CAD models do not emulate,
by design, how a real sensor operates. Second, the models themselves, being collected ran-
domly from online sources, do not guarantee realistic and high-quality data. The authors
mentioned a quality control step during the data collection step to curate only high-quality
models. However, this is probably not enough, especially for industry-grade applications,
since the quality of the dataset will still be limited by the quality of the publicly available
online models. OmniObject3D Wu T.. et al. (2023) presents another approach that revolves
around the scanning of daily objects (i.e., objects that we use every day, e.g., table, chair,
guitar, etc., in contract with industrial objects) to produce a dataset encompassing textured
meshes, point clouds, and multi-view images. A canonical pose is defined for each group
of objects, and common manipulations are performed on the objects to increase the authen-
ticity and variety of the dataset. However, OmniObject3D Wu T.. et al. (2023) generates its
point clouds from 3D meshes rather than direct capture from Lidar, which limits its capabil-
ity of mimicking the fidelity of real-world sensor data, particularly for industrial applications.
Also, it focuses on single-object scans which hinders its usage in more complex multi-object
annotation scenarios

Advanced annotation datasets: PartNet Mo K.. et al. (2019) contributes to the field by
introducing part-level annotations: in addition to labeling each individual object, the dataset
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contains hierarchical information on the parts that comprise every object. This approach
enables part-level object understanding using deep-learning models. The dataset contains
26,671 3D models made of 571,585 parts, which were collected from ShapeNetCore Chang
A.. et al. (2015) and augmented with additional models from the 3D Warehouse. Data
annotation was manually performed by a team of 66 trained professionals. While part-level
annotations are promising in different industrial applications, nonetheless the authors show
that state-of-the-art models do not perform well on fine-grained semantic segmentation. The
authors highlight the need to further investigate the interplay between part-level annotation
and whole object annotation, and the level of detail that is required in order to improve model
performance. ScanNet Dai A.. et al. (2017) presents a framework to streamline the capture and
annotation of RGB-D data for indoor scenes, resulting in a dataset with surface re- construc-
tions, 3D camera poses, and instance-level semantic segmentation. This dataset is created by
capturing RGB-D videos using a depth sensor and an iPads, followed by deep learning-driven
surface reconstruction and camera pose estimation. The dataset is then manually annotated,
resulting in instance-level segmentation and 3D CAD model alignment. This annotation pro-
cess is especially useful for algorithms aimed at interpreting complex indoor environments.
However, the quality of the annotations is not guaranteed since it was done using online
crowd sourcing. In a follow-up study, ScanObjectNN Uy M.A.. et al. (2019) leverages the
strengths of SceneNN Hua B.S. . et al. (2016) and ScanNet Dai A.. et al. (2017) to provide
high-quality real point clouds for indoor scenes. It offers dataset variants that simulate vary-
ing levels of classification difficulty, ranging from the vanilla variant, which presents objects
in their original form, to the background and perturbed variants, which introduce complexities
such as surrounding background points or inaccurately sized bounding boxes. These variants
are designed to closely replicate the challenges faced in real-world applications, effectively
bridging the gap between dataset benchmarks and the unpredictability of actual environments.
This work underscores the ongoing need for datasets that can effectively simulate the com-
plexity and variability of real environments. However, as mentioned previously, creating such
datasets from real point clouds is extremely challenging and time consuming. Hence the need
for faster and more efficient solutions, namely the creation of synthetic data pipelines.

Table 1 summarizes the properties of existing 3D point cloud datasets.

Table 1: Comparing 3D datasets.
Dataset # Models # Categories Annotations

ModelNet Wu Z.. et al. (2014) 151,128 models 660 Classification
ShapeNetCore Chang A.. et al. (2015) 51,300 models 55 Classification with parts annotation
PartNet Mo K.. et al. (2019) 573,585 parts in

26,671 models
24 Semantic, instance, and hierarchical segmen-

tation
ScanNet Dai A.. et al. (2017) 1,513 objects 20 Camera poses, surface reconstructions, and

instance segmentation
ScanObjectNN Uy M.A.. et al. (2019) 2,902 objects 15 Classification
OmniObject3D Wu T.. et al. (2023) 6,000 objects 190 Textured meshes, point clouds, images, videos
SensatUrban Hu Q.. et al. (2021) 7.6 km2 13 Semantic segmentation
Semantics3d Hackel T.. et al. (2017) 4B points 8 Semantic segmentation
SemanticKITTI Behley J.. et al. (2019) 43,552 scans 28 Semantic segmentation
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2.2 Synthetic Data Generation Pipelines
LiDAR simulations for autonomous vehicles: Recent advancements in synthetic 3D data
generation have mainly focused on improving realism and automation, particularly in the con-
text of LiDAR simulation for autonomous vehicles, e.g., Wang F.. et al. (2019) Manivasagam
S.. et al. (2020) Yue X.. et al. (2018). The LiDARsim Manivasagam S.. et al. (2020) project
challenges the conventional use of handcrafted virtual environments by proposing a method
that draws from real-world data to better replicate the complexities of real-world scenarios.
The method consists of two main stages: (i) creation of assets and (ii) simulation of the sensor
data. The first stage involves building a catalog of 3D static maps and dynamic object meshes
by capturing environmental data by driving a fleet of vehicles in various urban environments.
The second stage uses ray casting to create a physics-based rendering of the scene, which is
then refined using a deep neural network trained to introduce realistic deviations and sensor
noise, resulting in highly realistic LiDAR simulations. In Wang F.. et al. (2019), the authors
describe an automated method for generating synthetic LiDAR data using the CARLA, an
open-source autonomous driving simulator Dosovitskiy A.. et al. (2017). This method uses
virtual LiDAR sensors that employ ray casting mounted on an autonomous driving car inside
CARLA, so the LiDAR data can be collected automatically without human intervention. The
authors showed that training deep learning models with artificial data can lead to increased
accuracy and generalization. In Yue X.. et al. (2018), the authors introduce a framework for
generating point clouds and images from computer game environments, namely from Grand
Theft Auto V, to be used for autonomous driving applications. They utilize ray casting to
simulate LiDAR scans and offer a solution for data collection in user-configured scenarios.
Similar to Wang F.. et al. (2019), the lidar is mounted on a car that is autonomously driven in
the game world. However, the customization implemented for the scenes in both works in Yue
X.. et al. (2018)Wang F.. et al. (2019) are limited to changing the number and color of cars
and the basic environment variables like the weather and background, which is not sufficient
to cover a wide range of use and edge cases.

Indoor room generation and flight simulations: More recently, ControlRoom3D Schult
J.. et al. (2023) introduced a method for generating 3D indoor room meshes using semantic
proxy rooms, providing an efficient alternative to manual 3D environment creation for AR/VR
applications. This approach facilitates the design of diverse and plausible room meshes, and
improves over previous methods by allowing the generation of multiple rooms from a single
proxy, albeit with limitations in variety and manual proxy definitions. STPLS3D Chen M.. et
al. (2022) addresses the challenge of creating large-scale annotated point clouds that blend
real and synthetic environments. The authors develop a pipeline that simulates drone flights
over city layouts and generates synthetic point clouds through a process that closely mirrors
real data collection methods. First, the cities are procedurally generated using CityEngine and
different 3D model variations for the buildings. Second, 2D images of the city are rendered
based on a recorded drone flight path. Third and finally, 3D reconstruction is done using
the images to generate point clouds. This solution opens new avenues for urban planning
and machine learning research, allowing to combine both real and synthetic data in order to
provide more layout realism in data generation.

To sum up, most data generation pipelines focus on LiDAR simulations, e.g., Wang F.. et
al. (2019) Manivasagam S.. et al. (2020) Yue X.. et al. (2018), and make use of predefined
scenes or proxy layouts Yue X.. et al. (2018) Schult J.. et al. (2023) and game simulators
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Table 2: Comparing 3D synthetic data generation pipelines.
Pipeline Techniques Simulation Engine Data Application

LiDARSim Manivasagam S.. et al. (2020) Ray casting NA Point clouds Autonomous Driving
Wang et al. Wang F.. et al. (2019) Ray casting CARLA Point clouds Autonomous Driving
Yeue et al. Yue X.. et al. (2018) Ray casting GTA V Point clouds Autonomous Driving
Karur et al. Karur K. et al. (2022) Ray casting Unity Point clouds Autonomous Driving
ControlRoom3D Schult J.. et al. (2023) Proxy layouts NA Meshes Room generation
STPLS3D Chen M.. et al. (2022) Layouts and photogrammetry NA Point clouds Urban planning and drones

Wang F.. et al. (2019) which can limit variety and realism in the generated data. In contrast,
3DGENie relies on procedural generation to allow for increased and controlled variety, and
uses Nvidia Omniverse as a powerful platform to allow more realism and support a wider
range of data and simulations.

Table 2 summarizes the properties of 3D data generation pipelines.

2.3 Procedural Layout generation
To address the variety and realism limitations of existing generation pipelines, and instead of
using existing simulators, predefined scenes, or static proxies to prime the generation process,
procedural layout generation algorithms are used as a means to dynamically prime the gen-
eration process following the user’s preferences and application scenarios. This subsection
briefly reviews existing procedural layout generation solutions.

Layout generation in video games: Layout generation is mostly used in video game
design, allowing the creation of dynamic and immersive worlds that enhance the player
engagement and replayability, e.g., No Man’s Sky, Minecraft, Sokoban, etc. It allows to
streamline the game development process and introduces a level of unpredictability and vari-
ation in gaming scenarios, by automatically generating scene layouts that transition from
conceptual designs to virtual environments. In the realm of gaming, this means creating
immersive and interactive environments that capture players’ attention. For instance, the
author in Barriga N. (2019) discusses different methods used for Procedural Content Genera-
tion in gaming to create maps, ecosystems, levels, etc. The authors in Davern S.. et al. (2023)
use procedural generation to produce narrative puzzles in adventure games, allowing to cre-
ate a large database of puzzle items, actions, rules, and goals, that can be used to generate
new puzzles and create new item properties that fulfil the users’ needs. In Zakaria Y.. et al.
(2022), the authors use procedural level generators with reinforcement learning to produce
Sokoban 2D grid-based puzzles. Results show better quality and higher diversity puzzles com-
pared with existing deterministic and long-short term memory generators. Empirical results
in Kumaran V.. et al. (2023) show that the proposed solution can transform natural language
descriptions into playable game levels that reflect their intended design objectives.

Enhancing virtual scene realism: In Bahrehmand A.. et al. (2017), the authors utilize
procedural generation to optimize spatial layouts using quality metrics and user preferences,
highlighting the potential for using procedural generation to fulfill specific user design objec-
tives and produce highly personalized and functional virtual environments. This involves
evaluating spatial configurations to optimize factors such as accessibility, visibility, and
visual appeal, with the aim of ensuring that the generated virtual scenes meet both the
practical requirements and aesthetic preferences of users. The authors show how procedu-
ral generation-based optimization is essential for enhancing the detail and realism of virtual
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environments, making them more suitable for a range of applications including simulations,
presentations, and interactive explorations. In Abdelmohsen S.. et al. (2017), the authors
explore the potential of using procedural generation beyond gaming, applying it for urban
planning and interior design. They utilize multiple heuristic algorithms to perform furni-
ture placement within residential spaces, considering factors such as functionality, aesthetics,
and user preferences. By automating this process, designers can efficiently generate multiple
layout options, thereby facilitating informed decision-making and tailored design solutions.

Advancements in procedural layout generation show the technology’s versatility and how
it can be used in different fields, from virtual environment design for gaming, to urban plan-
ning and interior layout design, which is a desirable property for 3DGENie. By leveraging
procedural generation 3DGENie aims to produce 3D scenes that are geometrically accurate,
varied, and optimized for realism and customizability.

2.4 Generative AI
In recent years, generative AI for 3D data, including point clouds, has seen major break-
throughs Yang Z.. et al. (2022); Kong L.. et al. (2023); Yang G.. et al. (2019). Even though
these methods have shown promising results in generating synthetic point clouds, nonethe-
less, they mainly focus on generating single objects rather than detailed scenes. In addition,
the generated point clouds lack instance and semantic segmentation labels, which limit their
usage in supervised computer vision tasks. Consequently, such methods are not currently
used to create labelled synthetic datasets, and are outside of the scope of this work. However,
combining and integrating generative AI models within existing synthetic data generation
pipelines is a promising direction to be investigated in the future.

3 3DGENie Synthetic Data Generation Pipeline
We propose a new synthetic data generation pipeline called 3DGENie designed to generate
controlled 3D point clouds. An overview of 3DGENie is depicted in Figure 1, and consists of
three main steps: (i) layout generation, (ii) scene creation, and (iii) data generation. First, it
uses procedural layout generation to produce region layout trees. Second, it applies 3D scene
construction and asset randomization to produce scenes populated with 3D assets. Third,
it places synthetic sensors in the virtual environment to simulate data capture from the 3D
scenes as if monitored by real-world sensors.

3.1 Layout Generation
The first step of the pipeline is layout generation, which lays the foundation for the 3D scenes
that will be constructed in subsequent steps. Unlike synthetic images which can be gathered
in bulk from a single scene, we can only generate a single point cloud scan from a scene,
which is a significant limitation for 3D synthetic data generation. To address this issue, we
propose using layout generation to automatically generate thousands of layouts from simple
user input. Users can combine different generation techniques to cover different requirements.
For instance, in our present use case where we replicate an automotive assembly line envi-
ronment, we use a mix of algorithms for procedural map generation to achieve the desired
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Fig. 1: 3DGENie data generation pipeline.

layouts. Most importantly, 3DGENie is extensible to using additional or alternative gener-
ation techniques, such as evolutionary, generative, or adversarial AI models, following the
user’s needs.

3.1.1 Layout Generation Components and Properties

We start first by introducing the main components and properties that are used in our Layout
Generation process.

Component 1. Layout- It describes the different regions that make out the virtual envi-
ronment, and the spatial relations between them in 2D space (Figure 2. b). We represent a
layout as a list of regions, organized hierarchically in a tree where each node can have zero
or multiple children. A layout acts like a blueprint for constructing the 3D scenes.

Component 2. Region- It is a rectangular area defined by its position in 2D space (x,
y) and dimensions (w, h). A region has a region type and an orientation (described below),
forming the building block of a scene layout and a main component of the layout generation
algorithm.

Property 1. Region type- It describes the content of a region and is visualized throughout
this work as the color of the region. Region types are defined by the user in the form of an
input and can be linked to a specific group of 3D models. In addition, a region type can be
either ’final’ or ’non-final’. A region with a final region type cannot be further divided by the
algorithm, whereas a non-final region can be further divided into smaller final or non-final
regions.

Property 2. Region orientation- regions are inherently oriented in 2D space with the
following values: ”up”, ”down”, ”left” or ”right”, allowing to play a major role both when
generating children regions and when building the final 3D scene. For example, if we generate
a path for smart transportation robots (STR) Nassif J.. et al. (2024) and then divide it further
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Fig. 2: Sample input list representation (a) and output layout tree (b) for the layout generation
algorithm

into regions where we have an STR, it is crucial to know the orientation of the path in order
to correctly orient the children’s region accordingly.

3.1.2 Region Generators

These are functions that take as an input a region and divide it into a list of smaller chil-
dren regions. Region generators exhibit a stochastic behavior, so if they are executed multiple
times using the same parameters, the outputs would be different. The accumulation of this
randomness over multiple generation steps allows to generate different layouts from a sin-
gle input. In our current implementation, we consider three kinds of region generators and
their use cases for our industrial applications (Figure 3). Our pipeline is extensible to more
generators as needed.

Generator 1. (Figure 3. Assembly line) - it creates the area where an assembly line
will go, adding a path for forklifts and STRs running parallel to the assembly line. This is
usually the first generator executed to create an assembly line region spanning the entire
scene. It randomizes the position as well as the orientation of the main assembly line, and
also randomizes the number of paths and their spacing.

Generator 2. (Figure 3. Random Rooms) - given a range of room sizes (min width,
max width, min height, and max height) and the number of rooms (min, max), this generator
places rooms randomly inside the parent region. We use this generator to populate empty
regions with different formations of pallet cages, boxes, and racks. This generator is mainly
used in the initial stages of the generation process to roughly define large areas which will be
divided further down the line to add more details.

Generator 3. (Figure 3. Grid)- it divides the parent regions into a grid with a user
specified cell size, where each cell is converted into a region with the appropriate type and
orientation. A common use case for this generator is to create the arrangements of stackable
pallet cages in the area designated for them. A useful strategy we identified based on our test
runs is to use a random rooms generator followed by a grid generator.
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Fig. 3: Visualization of different region generators.

Fig. 4: (a) Use-case 1 (b) Use-case 2 (c) Use-case 3 (d) Samples from SORDI library.

While the output of different region generators can vary widely, we introduce region prop-
erty providers, including region type providers and region orientation providers allowing to
randomize and control region properties based on user preferences and the parent region on
which the region generator is operating. For instance, to create a storage pile area arranged in
a grid and containing random collections of objects (Figure 4. a), we use a grid region gen-
erator with a random region type provider. However, to create a lane in the factory plan for
smart transportation robots (STR) and forklifts (Figure 4. b), or to create an assembly line
where we have alternating regions of a car then an empty space (Figure 4. c), we use the grid
region generator with stochastic or sequential region type providers.
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Algorithm 1 LayoutGeneration

Input: inputF ile is a JSON file for the input strategy
Output: The root node of the generated layout tree
Begin

1: layouts← [EmptyLayout]
2: generators← extractGenerators(inputF ile)
3: for idx ∈ generators do
4: if generators[idx] == Merge then
5: mergedLayout←Merge(layouts[−1])
6: layouts.append(mergedLayout)
7: else
8: generatedLayout← ExecuteGenerators(layouts[−1], generators[idx])
9: layouts.append(generatedLayout)

10: return layouts[−1]
End

3.2 Layout Generation Algorithm
The pseudo-code for the procedural layout generation process is described in Algorithm 1. It
accepts as input a list of elements where each element represents a level in the generation pro-
cess, starting from the higher (broader) levels and going toward the lower (and more detailed)
levels. Every element in the list, i.e., every level description, is represented as a key-value dic-
tionary where: the keys are the region types, and the values are the region generators (Figure
3). The first step in the generation process is to parse the input and build an equivalent gener-
ation dictionary composed of region generators with the correct input parameters which will
be applied to an empty layout (Algorithm 1, lines 1-2). Adding a new region generator can be
performed in a scalable and extensible manner following two steps: adding a new generator
class, and then adding this class to the region generator dictionary. The second step consists
in generating the output tree using the previously parsed input (Algorithm 1, line 8). Using
a breadth-first approach (Algorithm 2, lines 2-5), the tree is traversed level by level until the
maximum depth is reached (Algorithm 2, line 6). At each level, generate new regions based
on the input (Algorithm 2, line 9). The generated regions are then used to build the tree it
is traversed (Algorithm 2, lines 10-20). In addition, a special merge layer operation is intro-
duced (Algorithm 1, lines 4-6) to solve a problem that could arise from defining multiple
region generators for the same region type at different levels of the generation process. The
merge layer operation allows identifying and merging identical and bordering regions into a
more compact form regardless of the region generator used (Figure 3). This makes it easier
to introduce and use new generators, thus improving the pipeline’s extensibility.

The algorithm produces as output a 2D layout (Algorithm 1, line 12) that will serve as the
foundation for constructing 3D scenes using the scene creation (step #2) of the pipeline. The
output layout consists of a tree structure where each node represents a region, and its child
nodes represent the regions that result from the execution of a region generator on that node.
For leaf nodes, 2D images of the appropriate size and color are generated. For a non-leaf node,
the already generated images of tne node’s children are combined using depth-first traversal.
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Algorithm 2 ExecuteGenerators
Input: root The root node of the starting tree, generators: Region generators
Output: The root node of the expanded layout tree
Begin

1: function ExecuteGenerators(root, generators)
2: queue← EmptyQueue
3: queue.put(root)
4: while queue is not empty do
5: node← queue.get()
6: if node.depth ≥ generators.size or node.gen = None then
7: continue
8: else
9: regions← node.gen.generate(node.region)

10: for region in regions do
11: gen← None
12: for node.depth+ 1 < i < len(generators) do
13: if region.type ∈ generators[i] then
14: gen← generators[i][region.type]
15: break
16: childNode← RegionNode(region, gen, node.depth+ 1)
17: node.addChild(childNode)
18: queue.put(childNode)

19: return root
End

3.3 Scene Creation
Scene creation is step # 2 in the 3DGENie pipeline (Figure 1), following layout generation.
It transforms the 2D layout trees into detailed and realistic virtual scenes (Figure 5. a, c). The
main goal is to populate virtual scenes with 3D assets following the generated layout tree
structure.

3.3.1 Scene Construction

We adopt Nvidia Omniverse Nvidia (2024a) as our scene building platform, since it leverages
the latest advancements in GPU technology to allow for industry-grade scalability moving
forward (in contrast with using legacy game engines used in existing solutions, cf. Section
2.2). In addition, Omniverse provides the required tools for building our extensions to parse
the layout tree and assemble virtual 3D scenes. In addition, we use high-fidelity physics
simulation Nvidia (2024b) and virtual sensors within IsaacSim Nvidia (2024a) during data
generation (step #3 of the pipeline). We also adopt Pixar’s Universal Scene Description (USD)
Nvidia (2024c) for 3D graphics representation to allow for seamless interchange across
platforms.

In addition, we use BMW Group’s SORDI library Abou Akar C.. et al. (2024) (Figure 4.
d), which includes a comprehensive collection of realistic and simulation-ready 3D assets that
cover a wide range of industrial objects. Each region in the layout is associated with a set of
assets, we randomly choose one of these assets when creating the region to introduce more
variety. Thus, our scenes are not only detailed and realistic, but also diverse, reflecting the
complexity of real-world industrial environments.
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3.3.2 Scene Randomization

Randomization plays an important role in breaking patterns and biases that may arise in a
scene, which will have a negative effect on machine learning models that use the gener-
ated data. By introducing randomization to an asset’s placement and properties, we improve
our synthetic data and support the development of robust machine learning models. Ran-
domization can also help simulate the unpredictable nature of real-world scenarios. In this
context, we make use of IsaacSim Replicator Nvidia (2024a) to introduce additional random-
ization by modifying various aspects of the scene, including, but not limited to, the visibility,
arrangement, and colors of objects.

3.4 Data Generation
The third and last step of the 3DGENie pipeline is data generation, which enables the gen-
eration of not only point clouds but also photo-realistic images and other forms of data.
The process of data generation is twofold: (i) sensor placement, and (ii) data collection and
storage.

(a) Reconstructed scene - Sample 1
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(b) Generated point cloud - Sample 1

(c) Reconstructed scene - Sample 2

(d) Generated point cloud - Sample 2
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(e) Reconstructed scene - Sample 3

(f) Generated point cloud - Sample 3
Fig. 5: Samples from 3DGENie: (a, c, e) Reconstructed scenes; (b, d, f) Generated point
clouds.

3.4.1 Sensors placement

In our current use case focusing on generating car assembly lines, we want to generate point
clouds that cover the whole scene to maximize the amount of the collected data. We use the
2D layout generated in step #1 of 3DGENie as a basis for strategically positioning sensors
within the scene. To achieve optimal placement, we employ a genetic algorithm characterized
by the following parameters: sensor: a circle with a center and a fixed radius, x: desired
number of sensors, chromosome: list of x sensor centers, fitness: evaluated based on the union
of covered pixels and their region types. It is possible to use the same scenes generated from
the first two steps of the pipeline to generate synthetic data in different ways.
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3.4.2 Data Collection and Storage

Consequently, 3DGENie generates the point cloud data and converts them into a suitable
storage format. This includes not only raw sensor outputs like points in 3D space in the case
of LiDAR, but also the annotations required to train machine learning models. 3DGENie
converts the raw data produced within Omniverse into formats that are usable for training
machine learning models, supporting an extensible library of formats including SORDI Abou
Akar C.. et al. (2024) and Semantic KITTI Behley J.. et al. (2019). This ensures that the
datasets generated by 3DGENie are compatible with existing models, frameworks, and tools.

3.5 Complexity Analysis
The complexity of the 3DGENie pipeline comes down to O(L × RL), where R is the aver-
age branching factor, i.e., the number of regions a generator produces, and L is the number
of levels in the layout tree, and simplifies to O(RL). It comes down to the complexity of
its main LayoutGenerator (Algorithm 1) and its constituent ExecuteGenerators
(Algorithm 2). More formally:

• Let L be the number of levels,
• Let G be the average number of generators per level,
• Let R be the average branching factor, i.e., the number of regions a generator produces,
• Let D be the depth of the tree,
• Let N be the total number of nodes in the tree. With each node being expanded only once

per level, the total number of nodes N is determined by the branching factor R and the
number of levels L, as a geometric series which sums to:

N =
RL − 1

R− 1

Time Complexity for Algorithm 2 - ExecuteGenerators: The complexity for
processing each node involves generating regions (cf. Algorithm 2, 2 line 9), finding the
appropriate generator (cf. lines 10-17) and finally creating the tree nodes (cf. lines 18-20).
Considering that region generation requires O(R), given that finding the appropriate gen-
erator is a dictionary lookup which requires O(1), and given that the creation of the node
required O(1), hence, the time complexity for each node becomes O(R). Since there are N
nodes in the tree, the total time complexity for ExecuteGenerators becomes:

O(N ×R) = O(
RL − 1

R− 1
×R) = O(

RL+1 −R

R− 1
)

This simplifies to O(RL). Note that, based on our experiments L usually has a lesser value
(∈ [2, 5]) compared with R (∈ [10, 20]).

Time Complexity for Algorithm 1 - LayoutGeneration: The algorithm first parses
the input (cf. Algorithm 1, lines 1-2) then iterates over the layers (cf. line 3), applying either
the Merge (cf. lines 4-6) operation or ExecuteGenerators (cf. lines 8-9). Initializing the
layouts list and extracting generators from the inputFile are constant-time operations,
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O(1). The for loop iterates over each generation level, so it runs L times, where L is the
number of levels. Thus, the time complexity for LayoutGeneration becomes:

O(L×RL)

4 Experimental Evaluation
We have empirically tested 3DGENie to evaluate the quality of its synthetically generated 3D
point clouds. The goal of our evaluation is to verify the following hypothesis: 3DGENie can
generate synthetic point clouds capable of enhancing the accuracy of semantic segmentation
models in real-world tasks. We conducted multiple experiments which we organize in two
groups: (i) mixing real and synthetic data, and (ii) training on synthetic and fine-tuning on
real Data. We first describe our test data and the models used, and then we present our empir-
ical results. The system implementation, experimental datasets, and test results are available
online 1.

4.1 Experimental Data
4.1.1 Real Data

A dataset of real 3D point cloud scans was prepared from car assembly lines. The scans were
created using the NavVis VLX 2 NavVis (2024) wearable laser scanning system, capable of
generating colored and high-density point clouds. The scans were labelled manually by indus-
try experts, using a dedicated point cloud labelling tool, developed in Omniverse, providing
user friendly controls for navigation and 3D manipulation such as translation, rotation, and
scaling. To maintain an acceptable point density, each scene is cropped into smaller chunks,
and then random down-sampling to 25,000 points is performed on each. The final down-
sampled real dataset comprises 1,224,995 points organized in 10 classes (cf. Table 3). We use
50% of the data for training and the other 50% as a test dataset.

4.1.2 Synthetic data

We used 3DGENie to generate the synthetic point cloud dataset. To create the input strategies,
we studied the layout of different areas within multiple car manufacturing plants, by visiting
the sites in person and capturing multiple images and videos. We also used the available
3D scans created for the car assembly lines as references. Consequently, we generated 499
virtual scenes, each scene covered using 40 cameras configured to capture point clouds with a
similar density to real data. We cleaned the data by removing point clouds containing a small
number of points or a small percentage of labelled points. In addition, we used the generated
semantic segmentation to remove any point clouds that contain only background points. We
randomly selected a sub-sample of the point clouds, requiring an acceptable training time of
around 10 hours on average per model, using an Nvidia A100 GPU. The resulting synthetic
dataset comprises 19,849,968 points and covers the 10 classes considered in the real dataset
(cf. Table 3).

1Please contact the authors to request access to the data and implementation
2The point cloud distribution among the classes reflects the real-world distribution of the assets in the scanned factory floors.
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Table 3: Real and synthetic point cloud datasets2.

Class Name # points in real dataset # points in synthetic dataset

Background 9,98,260 (81.5%) 4,931,280 (25%)
Pallet 14,303 (1.17%) 254,597 (1.28%)
Rack 8,574 (0.7%) 2,797,079 (14%)
Car 8,933 (0.73%) 4,131,134 (20.8%)
Jack 14,090 (1.15%) 2,531 (0.013%)
Stillage 70,972 (5.8%) 5,096,091 (25.67%)
Storage cabinet 87,646 (7.15%) 2,270,590 (11.4%)
Dolly 1,400 (0.11%) 56,680 (0.25%)
Forklift 10,862 (0.87%) 70,289 (0.35%)
Small load carrier 9,955 (0.81%) 239,697 (1.2%)
Total 1,224,995 19,849,968

4.2 Semantic Segmentation Models
We selected three different semantic segmentation models, each known for its unique
approach to processing point clouds, in order to assess the effectiveness of the generated
synthetic data in improving model performance.

RandLA-Net Hu et al (2019): introduces an architecture that directly infers per-point
semantics for large-scale point clouds. It uses random point sampling, which is computation-
ally efficient, but can discard key features by accident. To overcome this, the model introduces
a novel local feature aggregation module that progressively increases the receptive field for
each 3D point, effectively preserving geometric details.

SparseConvNet Graham B.. et al. (2018): stands out for its use of sparse convolutional
operations, enabling it to process sparse point clouds efficiently. The authors introduced a
novel sparse convolutional operation tailored specifically to process sparse data. SparseCon-
vNets offers the same performance as other state-of-the-art convolutional models at a lower
computational cost, making it a good candidate for our experiments that use large synthetic
datasets.

PVCNN Liu Z.. et al. (2019): combines the efficiency of point-based processing with the
structural advantages of volumetric convolutions, and offers a balanced approach to semantic
segmentation. The PVCNN model is capable of achieving high accuracy at lower memory
usage, making it computationally and memory efficient.

By using models with vastly different architectures, we aim to prove the value of the
generated synthetic point clouds across a wide range of applications. In addition, we analyse
and compare the performance of those models in a real-world industrial application, providing
new insights for future research.

4.3 Semantic Segmentation Models
We used three different semantic segmentation models, each known for its unique approach to
processing point clouds, in order to assess the effectiveness of the generated synthetic data in
improving model performance. RandLA-Net Hu et al (2019): introduces an architecture that
infers per-point semantics for large-scale point clouds. It uses random point sampling, which
is computationally efficient, but can discard key features by accident. To overcome this, the
model introduces a novel local feature aggregation module that progressively increases the
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receptive field for each 3D point, effectively preserving geometric details. SparseConvNet
Graham B.. et al. (2018): stands out for its use of sparse convolutional operations, enabling
it to process sparse point clouds efficiently. The authors introduced a novel sparse convolu-
tional operation tailored specifically to process sparse data. SparseConvNets offers the same
performance as other state-of-the-art convolutional models at a lower computational cost,
making it a good candidate for the experiments that use large synthetic datasets. PVCNN Liu
Z.. et al. (2019): combines the efficiency of point-based processing with the structural advan-
tages of volumetric convolutions, and offers a balanced approach to semantic segmentation.
The PVCNN model is capable of achieving high accuracy at lower memory usage, making it
computationally and memory efficient.

By using models with different architectures, the experiments aim to prove the value of the
generated synthetic point clouds across a wide range of applications. In addition, we assess
their performance in a real-world industrial application, providing new insights for future
research.

4.4 Experimental Results
We conducted two sets of experiments: (i) mixing real and synthetic data, and (ii) training on
synthetic data and fine-tuning on real data.

4.4.1 Experiment 1: Mixing Real and Synthetic Data

- The first set of experiments investigate how adding synthetic data, at varying proportions,
affects the performance of different semantic segmentation models. It aims to evaluate the
impact of using synthetic point clouds in the context of limited real-world datasets. To do so,
10 training datasets are created by varying the proportion of synthetic-to-real data: starting
from 0% synthetic (purely real) and increasing by 10% increments up to 90% synthetic. To
compensate for the different dataset sizes due to the incremental addition of synthetic data,
the number of training epochs is adjusted to ensure model convergence. A testing dataset with
0% synthetic data is used to test the models performance. Each model is trained 2 different
times with on each training dataset, including a total of 60 training runs. Model weights and
sample point clouds with inferred semantics are saved during frequent checkpoints, where
the best checkpoint from each run is used for testing. The below evaluation metrics are used,
averaged across the different training runs:

• Acc (Accuracy) per class: ratio of correctly predicted points for each class over the total
number of points in the class, highlighting class-wise predictive success.

• IoU (Intersection over Union) per class: where A is the set predicted points, and B is the
set of ground truth points for a specific class.

• mAcc: mean accuracy across all classes.
• mIoU: mean IoU across all classes.

Results: The mAcc and mIoU results in Table 4 and Fig. 6 clearly show that mixing
real and synthetic data improved the performance of all models when compared with training
on real data only. All models exhibit the same behavior: an increase in performance over a
range of the synthetic data ratio and a sharp decline in performance if we keep adding more
synthetic data. For RandLaNet, the range goes from 40% to 60%, with 40% showing the best
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Table 4: mAcc and mIoU of the models across the datasets variant mixing
real and synthetic data.

Ratio mAccuracy mIoU
RandLaNet PVCNN SparseConvUNet RandLaNet PVCNN SparseConvUNet

0% 0.20 0.33 0.33 0.15 0.25 0.23
10% 0.19 0.31 0.38 0.14 0.24 0.30
20% 0.20 0.33 0.35 0.16 0.25 0.23
30% 0.16 0.32 0.34 0.11 0.24 0.22
40% 0.25 0.36 0.26 0.20 0.27 0.16
50% 0.20 0.30 0.17 0.13 0.23 0.11
60% 0.24 0.18 0.31 0.17 0.14 0.19
70% 0.10 0.20 0.12 0.08 0.15 0.07
80% 0.17 0.19 0.10 0.15 0.13 0.07
90% 0.02 0.11 0.04 0.02 0.07 0.03

Fig. 6: Graphical results of Experiment 1.

performance. PVCNN performs best with 40% synthetic data. SparseConvUnet benefits from
adding 10% to 30% of synthetic data, with the best performace being at 10%.
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Table 5: mAcc and mIoU of the models after following a pre-train and fine
tune process.

Epochs mAccuracy mIoU
RandLaNet PVCNN SparseConvUNet RandLaNet PVCNN SparseConvUNet

0 0.02 0.09 0.05 0.01 0.04 0.04
20 0.10 0.15 0.16 0.09 0.14 0.07
40 0.06 0.14 0.14 0.04 0.13 0.06
60 0.08 0.15 0.13 0.04 0.13 0.06
80 0.06 0.18 0.14 0.04 0.16 0.06
100 0.08 0.15 0.12 0.05 0.13 0.05
200 0.15 0.10 0.10 0.11 0.09 0.04
300 0.22 0.24 0.04 0.03 0.05 0.02

4.4.2 Experiment 2: Train on Synthetic and Fine-tune on Real Data

Here, another strategy for using synthetic point clouds is examined, by first training on purely
synthetic datasets then fine-tuning on a small real dataset. The aim is to evaluate the impact
of training on synthetic data only, versus training purely on real data. The number of training
epochs is varied during the first stage, starting from a low number of 20 epochs, and gradually
increasing it until the models converge. Here, all of the synthetic dataset is used for training.
The models are fine tuned by training them on a dataset of real point clouds only, until they
converge. Similarly, all of the real dataset is used for fine-tuning. Each model is trained 5
times on the synthetic dataset, with different numbers of epochs. The latest checkpoint from
each training run is used as a starting point for fine-tuning.

Results: All three models achieved better results compared with training on real data
only, as can be seen in Table 5 and Fig. 7. RandLaNet Hu et al (2019) witnessed an increase
of 13% for mAcc and 10% for mIoU. The performance of SparseConvNet Graham B.. et al.
(2018) improved by 11% for mAcc and 3% for mIoU.As for PVCNN Liu Z.. et al. (2019),
we achieve an increase of 9% and 12% in mAcc and mIoU respectively. Performance steadily
increased as we increased the number of training epochs in the first stage, then it reached a
tipping point where training the models further led a to a decrease in performance following
the fine-tuning phase. This behavior is not clear if we look only at the mAcc because the high
percentage of background points is dominating, which is why IoU is usually a better metric to
use for evaluating segmentation tasks. By examining the results, we realized that increasing
the number of training epochs allowed the models to converge to a more specific and local
solution suitable for the synthetic data, which explains why fine-tuning in the second stage
became less effective here.

4.4.3 Extreme Label Scarcity

Here we repeated Experiments 1 and 2 in a more extreme scenario. We considered a realistic
logistics scenario with the following 3 classes: pallet, rack, and small load carrier. In doing
so, we reduce the number of labeled data to 2.68% of the total real points. We then repeated
Experiment 1 to test if the synthetic data generated by 3DGENie can still prove useful. The
results in Table 6 and Fig. 8 show that all models produce a gain of 5% to 10% over only real
data. The best performance for all the models is achieved when using all the synthetic data,
where this effect kicks in and becomes clearly noticed around the 80% ratio.
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Fig. 7: Graphical results of Experiment 2.

Table 6: mAcc and mIoU under extreme label scarcity.

Ratio mAcc Gain (%) mIoU Gain (%)
RandLaNet PVCNN SparseConvUNet RandLaNet PVCNN SparseConvUNet

10% -0,03 -1,67 -0,18 2,01 -2,33 -0,16
20% 0,11 -0,42 -1,39 1,89 -0,56 -1,44
30% -1,08 -3,31 -3,54 1,39 -3,19 -3,79
40% -1,41 -4,41 -1,92 0,87 -10,7 -2,31
50% -0,14 -1,66 -3,10 1,49 -1,96 -3,31
60% -0,24 -6,31 -3,07 1,39 -6,68 -3,24
70% 21,77 -1,01 -2,08 12,45 -1,77 -2,17
80% -0,15 23,26 3,24 1,72 -0,27 2,38
90% 0,40 7,97 7,21 1,72 -2,57 5,02
100% 24,53 34,35 18,90 21,31 8,49 16,03

4.4.4 Complexity Analysis Experiment

We previously derived the time complexity of our approach by analyzing the different algo-
rithms. In this section, we conduct the required experiments to prove that our previous
analysis is correct. A dummy region generator is developed whose time complexity is propor-
tional to its branching factor, we then conduct multiple runs by fixing L and varying R or the
other way around. We keep track of the CPU time for each run and report the results in Table
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Fig. 8: Graphical results for the extreme label scarcity experiment.

7 and Fig. 9. As can be seen, especially from the graph in Fig. 9, the execution time is linearly
proportional to R and exponentially proportional to L, confirming our previous finding that
the complexity of our algorithm is O(L×RL).

L = 4 R = 5
R RL Time (ms) L Time (ms)
10 10000,00 103 3 1
11 14641,00 135 4 16
12 20736,00 188 5 43
13 28561,00 242 6 168
14 38416,00 316 7 810
15 50625,00 400
20 160000,00 1313

Table 7: Results of complexity analysis.

5 Conclusion
This paper introduces 3DGENie, a pipeline for synthetic 3D point cloud data generation. It
uses procedural generation to produce region layout trees, and applies 3D scene construction
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(a) RL (b) L

Fig. 9: 3DGENie execution time in function of R and L.

and asset randomization to produce scenes with 3D assets. Synthetic sensors are used to sim-
ulate data capture from the 3D scenes as if monitored by real-world sensors. 3DGENie uses
Nvidia Omniverse Nvidia (2024a) as its scene building platform and Pixar’s Universal Scene
Description (USD) Nvidia (2024c) for 3D graphics representation to allow for seamless inter-
change across platforms. We conducted various experiments to evaluate the performance of
multiple computer vision models performing both training and fine-tuning using 3DGENie’s
synthetic data. Results consistently showed improved performance across all models. More
importantly, our empirical study was conducted in a real-world car manufacturing setting,
proving the value of synthetic point clouds for industrial applications.

We are currently extending 3DGENie to support additional forms of annotations to per-
form instance segmentation Vu T.. et al. (2023), object recognition Lu G.. et al. (2023), and
6D pose estimationZou L.. et al. (2024). We are also building on 3DGENie to generate a
range of synthetic data types, including simulating LiDAR for capturing detailed geometry
Manivasagam S.. et al. (2020) Yue X.. et al. (2018), and RGB-D sensors for applications
requiring color and depth information Dai A.. et al. (2017). We also aim to develop a library
of randomization techniques to enhance the realism of the generated data, including textures,
occlusions, light conditions, and material degradation Nassif J.. et al. (2024) Abou Akar C.. et
al. (2024), etc., where realism remains a primary requirement in industrial applications.
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