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Abstract

The generation and evaluation of chemical reactions remain challenging, with limited com-
prehensive studies addressing these issues. We introduce the Chemical Reaction (Rxn)
Systematic Assessment of Generation and Evaluation (ChemRxnSAGE) framework, an
adaptable end-to-end approach for evaluating the quality, validity, and diversity of machine-
generated chemical reactions. Combining automated validity filters with quality metrics and
expert insights, ChemRxnSAGE systematically eliminates invalid reactions. We test its ro-
bustness using generative models, including Recurrent Neural Networks and Variational Au-
toencoders, followed by validation using a chemical ”Turing test” with domain experts. Ad-
ditionally, we assess reaction feasibility through thermodynamic analysis and compare the
generated reactions against existing literature to ensure relevance and novelty. By combining
computational tools with expert-driven metrics, ChemRxnSAGE offers a comprehensive and
extendable solution that advances the state of chemical reaction generation and evaluation.

Introduction

Chemical reaction modeling is a critical compo-
nent of de novo drug design (DNDD), enabling
the design and planning of feasible chemical
transformations that support the development
of novel molecules. While advances in machine
learning (ML) have accelerated molecular gen-
eration, a key bottleneck remains in ensuring
the synthetic feasibility and diversity of reac-
tions proposed by these models. In recent years,
ML-powered approaches have made significant
strides in generating valid and diverse molecu-
lar structures;1–4 however, their application to
reaction synthesis remains comparatively un-
derexplored.

A successful de novo drug design method
should generate molecules that are syntheti-
cally accessible.5 Various tools such as RAs-
core,6 DFRscore,7 and BR-SAScore8 have been
developed to estimate synthetic feasibility, yet
these focus largely on molecular structures
rather than full reaction pathways. Bridging
this gap requires robust frameworks that can
evaluate the chemical validity and diversity of
reactions, which is an essential step toward the
development of viable synthetic routes for ML-
generated candidates.
While deep learning can enhance chemical
pathways for drug design and augment small
datasets to improve retrosynthesis models, its
adoption in de novo chemical reaction synthe-
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sis has so far been limited.9–12 This can be at-
tributed to the following challenges:

• Challenge 1: Difficulty in codifying
comprehensive chemical rules, coupled
with the scarcity of negative reactions,
i.e. reactions that do not occur chemi-
cally. Prior work has highlighted the im-
portance of incorporating negative data
to improve model performance,13 with re-
cent studies demonstrating enhanced ac-
curacy in state-of-the-art reaction out-
come prediction through the use of such
data.14 However, integrating negative re-
actions into the training process remains
nontrivial. This complicates the evalu-
ation of machine-generated chemical re-
actions, particularly in the absence of
negative data. Assessing the validity of
these reactions without relying on com-
putationally expensive simulations or ex-
pert annotation represents a substantial
barrier.

• Challenge 2: Limited diversity of gen-
erated reactions, restricting the discov-
ery of novel synthetic pathways. Ensur-
ing both the generation of a wide vari-
ety of reactions while maintaining valid-
ity is essential for broadening the space
of possible chemical reactions. To over-
come the limitations of chemical synthe-
sis planning based on existing transforma-
tion rules,15 which restricts reaction di-
versity, prior studies have advocated for
template-free approaches capable of pre-
dicting reaction outcomes16–18 and even
entirely novel reactions.9–12

• Challenge 3: Lack of standardized eval-
uation protocols, with existing works9–12

developing their own approach to assess
the quality of generated reactions, and
complicating the reproducibility and com-
parison of de-novo chemical reaction syn-
thesis.

This study introduces Chemical Reaction
(Rxn) Systematic Assessment of Generation
and Evaluation (ChemRxnSAGE), an adapt-
able end-to-end framework for evaluating the

quality, validity, and diversity of machine-
generated chemical reactions. ChemRxnSAGE
addresses the key challenges in de novo chemi-
cal reaction synthesis by integrating automated
validity checks and expert-driven evaluation
to assess machine-generated reactions without
heavily relying on costly simulations. It en-
sures reaction diversity and variety through
quantitative metrics and filters grounded in
chemical rules and enriched by the expertise of
domain experts. By providing a standardized
evaluation framework with common metrics,
ChemRxnSAGE facilitates direct comparisons
between models, establishing a consistent foun-
dation for future research while enhancing the
assessment of generated reactions.

Literature Review

Chemical Reactions Synthesis us-
ing Deep Learning

Conventional SMILES representation for reac-
tions19 presents significant challenges due to
its non-sequential format for molecular struc-
tures and the need for lengthy sequences to ac-
curately depict a reaction, making it difficult
to identify relationships between substructures
(see Supplementary Section S1 for background
on the SMILES format). Additionally, reac-
tion center identification requires atom-to-atom
mapping, which further complicates its use.
Consequently, a language model must learn
not only the semantics and syntax of SMILES
but also the intricate atom-to-atom mapping
rules.9,20 The introduction of the Condensed
Graph of Reaction (CGR) addresses these chal-
lenges by encoding complex reaction informa-
tion, including reactants, products, bond for-
mation, and bond breaking, into a more concise
and SMILES-like string representation.10

Despite the extensive literature on DL-powered
chemical compounds generation, few paper
tackled the de-novo generation of chemical reac-
tions. The authors in9 and12 propose the use of
Variational Autoencoders (VAEs)21 for chem-
ical reaction generation, employing SMILES
strings to encode Condensed Graphs of Reac-
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tions (CGRs) and SMILES reaction strings, re-
spectively.22 They train a sequence-to-sequence
autoencoder with bidirectional Long short-term
memory (LSTM) layers23 using reactions from
the USPTO database and NIST chemical ki-
netics database24 respectively (see Supplemen-
tary section S2 for background on VAEs and
LSTMs). The models’ latent spaces were sam-
pled for new points around the latent areas of
trained reactions which are then decoded into
novel chemical reactions. Additionally, these
two studies highlight the importance of ex-
pert analysis by validating the generated reac-
tions with thermodynamic calculations. Simi-
lar work10 also relies on CGR-encoded SMILES
to train on autoregressive LSTM model and a
Temporal Convolutional Network (TCN). Com-
pared with training a LSTMmodel alone, train-
ing a combination of LSTM and TCN mod-
els improved the quality of generated reac-
tions. The authors in10 also highlight that
different fine-tuning protocols significantly af-
fect the generative capabilities of the trained
model, which is particularly important when
applying the model to small datasets through
transfer learning. Recent work of11 uses trans-
formers, particularly the Transformer-XL archi-
tecture25 to generate Heck coupling reactions.11

The transformer model is trained on a dataset
of Heck reactions, generating a total of 4717 re-
actions. Out of these, 2253 novel Heck reactions
were validated by chemists. Authors in26 rely
on an autoregressive transformer-based mod-
els to represent the space of chemical reac-
tions highlighting the ability of transformers to
learn reactions types while being trained with
unannotated chemical reactions. Although the
trained model’s auto-regressive capability in26

is not evaluated (since chemical reactions gen-
eration is not discussed in the paper), yet a re-
action fingerprint is extracted from the model’s
learned representation, which is more informa-
tive than traditional molecular fingerprints.

Evaluating the Quality of Machine-
Generated Chemical Reactions

Evaluating chemical reactions generated by ma-
chine learning models is a persisting challenge

with several approaches proposed to assess the
validity, feasibility, novelty, and uniqueness of
generated reactions. There is no standardized
protocol to evaluate machine-generated reac-
tion, with different approaches being proposed,
each with their unique set of metrics and strate-
gies to vet the experimental feasibility of these
reactions.9–12 An overview of the proposed tech-
niques across recent works can be found in Ta-
ble 1.

Validity

The authors in9 employ two levels of validity as-
sessment in their pipeline. First, on the gener-
ative model’s level, they evaluate the accuracy
of their model in reconstructing both training
and validation data. To filter out unfeasible
reactions, they develop checks for stoichiomet-
ric balancing and chemically infeasible transfor-
mations based on heuristics, such as preventing
C-C bond cleavages or unbalanced hydrogens.
Similarly, the authors in12 also filter out unbal-
anced reactions. Both authors in9 and10 rely
on RDKit27 and CGRtools28 toolkit to check
for valence and aromaticity, ensuring that in-
valid CGR/SMILES or SMILES strings are dis-
carded. In contrast, the authors in11,12 consider
a generated reaction to be valid if its reactants
and products meet the criteria of the RDKit
molecular parser.27

Feasibility

To assess the chemical feasibility of the gen-
erated reactions, the authors in9,12 incorporate
reaction enthalpy as a proxy for thermodynamic
factors. In contrast, the authors in11 adopt a
more human-centric approach by involving 12
experimental chemists to provide feedback on
the validity and feasibility of the reactions. Ad-
ditionally, the authors in11 conduct an in-depth
analysis of the chemical reactions, focusing on
several intra- and intermolecular factors such as
regioselectivity, stereoselectivity, and chemos-
electivity. Using these factors, they identify
common issues, including chirality errors, car-
bon number errors, and reaction type errors.
They also experimentally validated eight rep-
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resentative generated reactions to confirm the
consistency of the experimental results with the
proposed reactions.

Diversity, Uniqueness, and Novelty

To assess the diversity of generated chemi-
cal reactions, the authors in10 calculate inter-
similarity scores among generated reactions and
compare them to those in the original dataset.
The authors in10–12 measure uniqueness by
computing the fraction of unique reactions in
their datasets, using CGR/SMILES encodings
and reaction SMILES strings. The authors in9

evaluate novelty by comparing hashed reaction
signatures of reaction centers and their environ-
ments to known reaction databases, identifying
five novel transformations among 13 that are
not in the training data. Similarly, the authors
in10 categorize reaction centers based on their
closest neighbors using hash codes, enabling the
detection of novel reaction centers not catego-
rized in the training data. In contrast, authors
in11,12 quantify novelty as the fraction of unique
generated reaction SMILES strings absent from
the training set.
To sum up, recent advancements in chemical re-
action modeling leveraging deep learning have
shown promising results. However, several key
challenges remain unaddressed. First, existing
solutions utilize different variations of chemical
rule codifications, which presents a major chal-
lenge to evaluating machine-generated chemical
reactions. Assessing the validity of these re-
actions without reverting to costly simulations
or expert knowledge presents a significant ob-
stacle. Second, the literature does not provide
a streamlined procedure for reaction filtering
and evaluation. Depending on the input format
(e.g., SMILES, CGR), defining and implement-
ing evaluation metrics becomes inconsistent.
Most methods9–12 filter out only the reactions
whose compounds do not follow valid SMILES
syntax, focusing on molecular fragments rather
than overall reaction. While additional heuris-
tics are proposed,9 these are not incorporated
into a standardized and reproducible process,
and were only applied for CGR strings. Simi-
larly, measuring novelty in CGR strings differs

significantly from in SMILES, as novel reaction
centers are easier to identify in CGR strings.
This highlights the need for data-type-agnostic
metrics that can be applied whether the model
was trained with reaction SMILES or CGR
strings. Third, existing methods lack standard-
ized evaluation protocols: where assessing the
quality of generated reactions ranges from using
fully automated techniques10 to requiring vary-
ing levels of expert involvement (e.g., analysis of
reaction centers,11 or reaction enthalpies,9,12 or
experimental validation11). This diversity com-
plicates the benchmarking and comparison of
different models for de-novo chemical reaction
synthesis.

Methods

To address the limitations mentioned earlier, we
introduce the ChemRxnSAGE framework: a
novel framework for the Chemical Reaction
(Rxn) Systematic Assessment of Generation
and Evaluation. The ChemRxnSAGE frame-
work generates chemical reactions using an
integrated DL module combining Long-Short
Term Memory (LSTMs) and Variational Au-
toencoders (VAEs). It combines the reac-
tants and products SMILES into one reaction
SMILES format, adding the necessary tokens
to delineate chemical sequences. It assesses
the quality and diversity of chemical reactions
through a set of metrics and filters developed in
collaboration with domain experts, providing a
comprehensive view of the model’s capability to
generate reactions, and capturing their inherent
diversity, similarity, and faithfulness to a refer-
ence dataset. ChemRxnSAGE is highly extensi-
ble, supporting any generative models, reaction
data formats, and new evaluation metrics in a
generalized workflow. ChemRxnSAGE’s overall
architecture is shown in Figure 1. It consists of
four main modules: i) Data Preprocessing, ii)
Deep Learning-based Generation, iii) Chemical
Validity Filtering and iv) Quality Evaluation.
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Table 1: Comparison of Chemical Reaction Evaluation Frameworks

Framework Chemical
Feasibil-

ity
Checks

Reaction
Enthalpy
Evalua-
tion

Expert
Feedback

Diversity Uniqueness Novelty Type of
Data

Bort et al.9 CGR/SMILES

Buin et
al.10

CGR/SMILES

Wang et
al.11

Reaction
SMILES
Strings

Tempke &
Musho12

Reaction
SMILES
Strings

Our
Method

Reaction
SMILES
Strings

Data Preprocessing Module

We use the dataset prepared for retrosynthesis
in.29 It is based on a filtered patent data set,
derived from an open-source patent database
first coined in,30 containing 50,000 reactions
in SMILES format and classified into 10 reac-
tions classes. The dataset is divided into train,
validation, and test sets, following a 80-10-10
split. We then preprocess all three datasets to
eliminate all reagents while keeping the reac-
tants and products in the reactions canonical-
ized. We also split the reactions with more than
one product into separate reactions each with
only one product. To prepare the dataset for
training, we combine the reactants and prod-
ucts SMILES into one reaction SMILES format.
We add tokens at both the start and end of the
sequences to indicate the beginning (BOS) and
ending (EOS) of a sentence, as shown in Fig-
ure 2. Next, we remove any sequences longer
than 200 tokens. The remaining sequences are
then tokenized and padded, using a vocabulary
size of 56 (see Supplementary Table 1 for the
overview of parameters used in database gen-
eration and model training, with corresponding
rationales.). The reaction classes distribution
in the training dataset is displayed in Figure 3.
We utilize RDKit27 to transform the chemical

reactions into atom-pair fingerprints,31 captur-
ing their structural and chemical properties. To
analyze and compare the distribution of these
reactions to the generated reactions, we ap-
ply Uniform Manifold Approximation and Pro-
jection (UMAP) to project them in a lower-
dimensional space. The resulting 2D visualiza-
tion is presented in Figure 4.

Figure 2: Reaction format with Example Reac-
tion Sequence
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Figure 1: Overview of the ChemRxnSAGE Framework

Figure 3: Training Dataset Distribution

Figure 4: UMAP of Fingerprints of Training
Dataset Colored by Reaction Classes

Deep Learning-based Generation
Module

In this work, we will use two DL archi-
tectures for our experiments: LSTM models
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and VAEs (with an LSTM backbone). We
rely on these two architectures due to their
proven effectiveness in low-data settings and
computational efficiency, making them well-
suited for rapid experimentation. While diffu-
sion models have demonstrated strong perfor-
mance in molecular generation,32,33 they typ-
ically require larger datasets and greater com-
putational resources.34 Importantly, ChemRxn-
SAGE is model-agnostic: the framework is de-
signed to readily integrate diffusion-based or
transformer-based architectures in future work,
and these extensions are part of our planned
roadmap.
We train a Long-Short Term Memory (LSTM)
auto-regressive model to learn chemical reac-
tion sequences. The model is optimized using
Maximum-Likelihood Estimation (MLE) with
a categorical cross-entropy loss function. We
present four variations of the LSTM model,
each with an increasing number of layers, 256
hidden units per layer, and a dropout rate of
0.5. The hyperparameters for these models are
listed in Table 2. We train all four variations for
200 epochs using the Adam optimizer,35 record-
ing both training and validation losses through-
out the process. We present also two varia-
tions of the VAE model: a vanilla VAE model
(VAEvanilla) and a VAE with KL cost anneal-
ing/ linear β warmup (VAEβ warmup) both in-
spired by work of36 (see detailed overview of
hyperparameters used in Table 2). Both mod-
els use an LSTM encoder-decoder architecture,
and are trained for 200 epochs using Maximum
Likelihood Estimation (MLE) with an SGD op-
timizer for cross-entropy loss. For the second
model, a variable weight β is added to the KL
loss term and is increased linearly from 0 to
1 over the first 50 epochs and then it is kept
constant over the remaining training epochs.
Ramping β up from 0 to 1 over the first 50
of 200 epochs allows the model to first learn
meaningful latent codes before strong KL regu-
larization sets in, therefore avoiding posterior
collapse and aligning with common warm-up
heuristics in literature.36 To stabilize models’
optimization, the learning rate decays with each
iteration if the current loss exceeds the best loss
achieved so far, continuing until the learning

rate reaches its minimum value. For both the
LSTM and VAE models, the loss function is
configured to ignores padding tokens, as these
are just placeholders and not real data. Ignor-
ing padding tokens in the loss function is a stan-
dard practice in sequence modeling to ensure
learning focuses only on meaningful data, im-
proving training efficiency and accuracy.

Chemical Validity Filtering Mod-
ule

Verifying the chemical validity of the generated
chemical reactions is a challenging task. To our
knowledge, there are no set rules that chemists
follow to ensure that a generated reaction at
hand can occur naturally. Instead, organic and
synthetic chemists usually rely on their expe-
rience, previous works, and chemical databases
to look for similar reactions that might occur
with similar functional groups. Trying to frame
chemical validity as a supervised ML problem
is equally hard since the literature only cov-
ers ”positive” or chemically valid reactions and
does not consider ”negative” or chemically in-
valid reactions meaningful to publish. There-
fore, in this paper we propose an alternative
way to circumvent these issues by proposing
several heuristics designed with the help of a
domain expert in synthetic and organic chem-
istry, with only the reactions that pass all filters
being selected for the next evaluation steps:

• Structural Validity (Fstructural): De-
veloped to filter out chemical reactions
that do not follow the format defined
in Figure 2. It will then evaluate
the SMILES syntax of the reactants
and products using the RDKit molecular
parser and will eliminate compounds not
meeting the RDKit criteria.27 Only the
reactions meeting the structural validity
criteria will be evaluated with the follow-
ing filters.

• Illogical usage of elements in prod-
ucts (Fillogical-use): Eliminates all reac-
tions that introduce elements that do not
exist in the reactants to the products.
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Table 2: Hyperparameters for training the LSTM and VAE models

Hyper-
parameters

LSTML=1 LSTML=2 LSTML=3 LSTML=4
VAEvanilla

(enc/dec)
VAEβ warmup

(enc/dec)

Batch size 64

Sequence
length

200

Vocabulary
size

56

Number of
LSTM
layers (L)

1 2 3 4 1/1 1/1

Dropout
probability

0.5 0.5 0.5 0.5 0.5/0.5 0.5/0.5

Hidden
layer size

256 256 256 256 1024/1024 1024/1024

LSTM
embedding
size

64 64 64 64 512/512 512/512

Nb of β
warm-up
epochs

- - - - 0 50

• Illogical Operations on Rings
(Frings): Eliminate all reactions that con-
tribute to:

– Addition of an atom into a ring,

– Replacement of an atom in a ring
while the ring stays of the same size,

– Transformations that lead to addi-
tion/removal of atom(s) in a ring,

– Transformations that lead to addi-
tion/removal of carbon atom(s) in a
ring.

• Illogical Operations on Chains
(Fchains): Eliminates reactions that con-
tribute to:

– Transformations that lead to addi-
tion/removal of atom(s) in a chain

– Transformations that lead to addi-
tion/removal carbon(s) in a chain

• Eliminating reactions allowing
Phosphorus-Oxygen bond cleavage

(FPO-bond): Eliminates all reactions that
allows the cleavage of bonds between
Phosphorus and Oxygen in the reactants.

Quality Evaluation Module

The evaluation of the quality of the generated
data is divided into two parts: i) an auto-
mated validation process using in-house devel-
oped metrics and heuristics, and ii) an expert
evaluation process in the form of a ”chemical”
Turing test. The quality evaluation module’s
overall architecture is shown in Figure 1.

Automated Evaluation

We introduce several metrics that allow the
comparison of models and the quality and di-
versity of the generated reactions, namely: i)
similarity to the training dataset, ii) reaction
class diversity, and iii) sample diversity. The
framework is modular, extensible and can inte-
grate further metrics as needed.
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Table 3: Metrics Equations

FpSim(Ŷfp, Yfp) = 1− 1

n

∑
ŷfp∈Ŷfp

min
yfp∈Yfp

DistJaccard(yfp, ŷfp) ∈ [0, 1]

where DistJaccard(yfp, ŷfp) = 1−
|yfp ∩ ŷfp|
|yfp ∪ ŷfp|

and Ŷfp and Yfp are the sets of generated and training reactions fingerprints respectively and n is
the number of generated chemical reactions.

a. Average Similarity of Generated Reaction Fingerprints to Training Dataset
Representatives (FpSim)

StrSim(Ŷ , Y ) = 1− 1

n

∑
ŷ∈Ŷ

min
y∈Y

DistCosine(y, ŷ) ∈ [0, 1]

where DistCosine(y, ŷ) = 1− y · ŷ
|y∥ŷ|

and Ŷ and Y are the sets of generated and training reactions SMILES respectively and n is the
number of generated chemical reactions.

b. Average Similarity of Generated Reaction SMILES to Training Dataset
Representatives (StrSim)

JSS(P∥P̂ ) = 1−
√
JSD(P∥P̂ ) ∈ [0, 1]

where JSD(P∥P̂ ) =
D(P∥M) +D(P̂∥M)

2
Given that C = {c1, c2, . . . , c10} is the set of reaction classes, P is a vector expressing the

probability distribution of reactions belonging to each class, where each element P (ci) denotes
the probability of a sample belonging to class ci in the training dataset. For the generated set of

reactions, the distribution P̂ is defined similarly.
D is the Kullback–Leibler divergence and M is a mixture distribution of P and P̂ .

c. Jensen-Shannon Similarity Between Generated and Training Reaction Class
Distributions (JSS)

IntDiv(ŷ1...ŷn) = 1− 1

n2

∑
i,j∈Ŷ

Jaccard(ŷi, ŷj) ∈ [0, 1]

d. Average Dissimilarity between Generated Reaction Fingerprints (IntDiv)

NV Sclass(Ŷfp, Yfp) =
1

|C|
∑
c∈C

VS(ŷfp,c, yfp,c)

nc
∈ [0, 1]

where VS is the Vendi Score with order q = 0.1 and nc is the number of reactions in a reaction
class c

e. Average Normalized Vendi Score Across Reaction Classes (NVSclass)
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Similarity to the Training Dataset To un-
derstand the similarity of the generated reac-
tions with respect to the original dataset on
both syntactical and structural levels, we de-
velop two similarity metrics: i) StrSim and ii)
FpSim. The former measures the average simi-
larity of the generated reactions to those in the
training dataset based on their SMILES strings
(StrSim), while the latter measures the aver-
age similarity between their corresponding re-
action fingerprints (FpSim). Reactions are en-
coded as difference fingerprints of length 2048,
computed by subtracting the fingerprint of the
reactants from that of the products. Molecules
are represented using atom-pair fingerprints,31

in which atoms are characterized by atomic
number, number of π electrons, atom degree,
and, optionally, chirality. To perform the sim-
ilarity assessment, representative reactions are
selected from each of the ten reaction classes.
The top 5% representatives of the ten reaction
classes are selected using the k-medoids algo-
rithm,37 a proportion empirically chosen to bal-
ance coverage of chemical diversity within each
class and computational efficiency during simi-
larity evaluation.
To compute StrSim, we calculate the average
cosine similarity between the generated reac-
tions and the selected representatives based on
their SMILES encoding (cf. Table 3). Co-
sine similarity is a widely used metric in nat-
ural language processing and information re-
trieval for comparing text representations due
to its effectiveness in measuring angular simi-
larity in high-dimensional vector spaces, inde-
pendent of vector magnitude.38 This property
is valuable for comparing tokenized SMILES
strings, which represent chemical reactions as
sequences of discrete symbols. Moreover, cosine
similarity has been successfully applied to sev-
eral chemical contexts in attention-based mod-
els including reaction classification and similar-
ity assessment,39,40 supporting its relevance for
this task. For computing FpSim, the average
Jaccard (Tanimoto) similarity is used (cf. Ta-
ble 3). The Jaccard index is widely recognized
and validated in cheminformatics41–43 for its ef-
fectiveness in capturing substructural similarity
by quantifying the overlap between molecular

fingerprints. A higher StrSim or FpSim indi-
cates stronger resemblance between generated
reactions and the representative reactions from
the training data. A model can however achieve
FpSim or StrSim scores of 1 by generating reac-
tions very similar to these representatives, in-
dicating the model possibly overfitting on the
representative set and consequently failing to
produce diverse reactions within each reaction
class.

Reaction Class Diversity The training
dataset, as previously shown in Figure 3, in-
cludes a diverse yet imbalanced set of reactions
from ten reaction classes. It is crucial to under-
stand whether the model is able of generating
a similarly diverse set of reactions covering all
the ten reaction classes. However, the gener-
ated reactions are not labeled with a reaction
class, therefore an auxiliary neural classifier
was trained to classify the reactions based on
their classes. To solve this problem, we trained
a fully-connected neural networks model on
the reaction fingerprints using the Adam opti-
mizer35 and Cross-Entropy loss, with overfit-
ting monitored on a validation set (See Supple-
mentary Table 2 for details about the model
design and training hyperparameters). The
weights of the neural classifier achieving the
lowest validation loss and least overfitting are
saved and used to predict the reaction classes
of all generated reactions. To measure the di-
versity across all classes, we use the Jensen-
Shannon Divergence (JSD) to compare the
reaction classes distribution of the generated
dataset to the training dataset.44 The JSD be-
tween two probability distributions P and P̂ is
shown in Equation c in Table 3.The JSD cannot
be used as a distance metric since it does not
satisfy the triangle inequality, while its square
root does.45 We then convert the square root
of the JSD into the Jensen-Shannon Similarity
(JSS) index. The JSS is bounded between [0, 1],
with higher values indicating greater diversity
in the generated reactions and a distribution
more similar to the training dataset.

Sample Diversity Measuring the diversity
of the reactions without relying on a ref-
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erence might provide more insights on the
model capacity to generalize beyond the train-
ing dataset. A model that produces samples
highly similar to those seen during training may
be at risk memorization, either by generating
the same reactions in the training dataset or
duplicates of few reactions (mode collapse). To
measure the intrinsic diversity of the generated
reactions and identify mode collapse, we use the
Vendi Score,46,47 a metric inspired from quan-
tum mechanism and ecology that provides a
reference-free measure of the diversity of a gen-
erated dataset. It is calculated as the exponen-
tial of the Shannon entropy of the eigenvalues
of a similarity matrix. It estimates the number
of effective unique samples in a dataset and is
more sensitive to the increases in the number of
modes compared to average similarity of sam-
ples in the generated dataset.
We next propose five metrics capable together
of capturing an overview of the generated sam-
ples diversity:

• Percentage of Unique Reactions
(UniqPct) The simplest approach quan-
tifies the proportion of distinct reactions.
A higher uniqueness score indicates that
the model generates fewer duplicate and
can produce a varied dataset with less
redundancy.

• Average Dissimilarity/Diversity be-
tween Generated Reaction Finger-
prints (IntDiv): Another common
method to measure the average dissim-
ilarity (or diversity) between compounds
using their molecular fingerprints.48 For
all generated reactions, their correspond-
ing atom-pair fingerprints are generated
and the average of the Jaccard distance of
all samples to each other are calculated
(see Equation d in Table 3). A higher
IntDiv score indicates that the generated
reactions fingerprints are less similar to
each other and therefore these reactions
are more diverse.

• Normalized Vendi Score q=0.1
(NVSq=0.1): We used the Vendi Score
with a small order q = 0.1 to measure

diversity with high sensitivity to rarer
classes. A Vendi Score with order of
q = 0.1 would have a higher value when
less common classes of the generated
dataset are more diverse. We also nor-
malize the obtained Vendi Score based on
the size of the generated dataset to get a
better overview on the percentage of ef-
fective unique samples across the dataset.

• Normalized Vendi Score q=∞
(NVSq=∞): We use the Vendi Score
with a infinite order to measure duplica-
tion and memorization indirectly. A high
Vendi Score of order q=∞ would suggest
that the model might be generating large
groups of very similar reactions (reflecting
the possibility that it might be memoriz-
ing the dataset47). We also normalize the
obtained Vendi Score based on the size
of the generated dataset to get a better
overview on the percentage of effective
unique samples across the dataset.

• Average Normalized Vendi Score
Across Classes (NVSclass): The Vendi
Score (q = 1) is reported to fail in
datasets with strong class imbalance,49 a
common phenomenon in many ML set-
tings including de-novo reaction synthe-
sis. We use the Vendi Score with or-
der q = 1 instead as a proxy for diver-
sity within each reaction class. We nor-
malize the Vendi Score calculated for ev-
ery reaction class and then average all
scores to get a more granular overview of
the diversity within each reaction class.
The average Normalized Vendi Score per
Class (NVSclass) would represent the aver-
age percentage of unique elements across
all reaction classes (Equation e in Ta-
ble 3). A higher score would mean that
the model is generating diverse reactions
across all reaction classes.

Novelty To evaluate the model’s ability to
produce new and previously unseen reactions
during the training procedure, we propose the
Novelty Percentage (NovPct), which is the
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percentage of reactions in the generated dataset
that are not found in the training dataset.

Domain-Based Evaluation

After training all models, we sample them to
generate a dataset of chemical reactions match-
ing the size of the original training dataset. We
then evaluate these generated datasets using
the previously mentioned metrics and filters.
We choose the top three models for human eval-
uation based on their performance metrics and
the highest percentage of reactions passing the
filters .

Chemical Turing Test We develop a
”chemical” Turing test to understand the qual-
ity of the generated reactions as assessed by
domain experts versus real reactions inspired
by previous works.9,11 Originally, the Turing
test is used to test whether machine-generated
language can fool a human reader as if it is
a human-written one. In this work, we adapt
the Turing test to chemical reactions genera-
tion to understand i) if the machine-generated
reactions are confused to be human-created,
and ii) if these reactions are actually chemi-
cally valid and can occur naturally. To keep
the evaluation manageable, we select only 10
reactions each representing our reaction type
per model, in addition to 10 reactions from the
training dataset, which are then shuffled, re-
sulting in a total of 40 chemical reactions (See
Supplementary Information for the complete
chemical Turing test). Several domain experts
were invited to fill out the survey. They have
no previous knowledge of the differences be-
tween the reactions and were encouraged to
analyze the reactions thoroughly. Understand-
ing whether the chemists can be fooled by the
machine-generated reactions would provide in-
sights into the quality of the machine-generated
reactions, possibly showcasing the innovative
power of ML algorithm in coming up with novel
chemical reactions. This limited sample size is
not intended to provide statistically conclu-
sive results but rather offers a complementary,
human-centered evaluation of generation qual-
ity and helps identify representative reactions

for subsequent chemical analysis.

Reaction Enthalpy Calculations Out of
the reactions selected for the chemical Turing
test, six reactions, two per model, that were
rated as valid by the majority of experts are
shortlisted for further analysis. The structures
in the reactions are updated and the equations
are balanced for atom stoichiometry. The fea-
sibility of the reactions is determined by ther-
modynamic analysis, particularly reaction en-
thalpy (∆H). ∆H is tackled using density func-
tional theory (DFT) computations. DFT com-
putations are carried out using GAUSSIAN09
and GAUSSIAN16.50 The proposed reactants
and products of the new reactions are sub-
jected to energy minimized using MM2 force
field.51,52 Then, the geometries are optimized
using B3LYP/6-311G(d,p) level of theory. The
lowest energy stationary point is verified with
frequency calculations. A single point calcula-
tion for all starting materials and products at
the same level of theory is used to compute ∆H
for the reactions.9

Literature Search with Scifindern53 To
check whether the reactions have been previ-
ously reported in the literature, all reaction
are searched against the SciFindern reaction
database.53

Results

Experimental Data and Set-up

All experiments using the ChemRxnSAGE
Framwork, spanning training, generation,
and evaluation, were performed on a system
equipped with an NVIDIA A40 GPU, dual-
socket Intel Xeon Gold 6438Y+ CPUs (32 cores
per socket, 2 threads per core), and 1 TB of
system memory. The dataset comprised 50,000
chemical reactions, split into training, valida-
tion, and test sets following an 80-10-10 ratio,
resulting in 40,000, 5,000, and 5,000 reactions,
respectively. After preprocessing, the reactions
were reduced to 39,555 (train), 4,935 (valida-
tion), and 4,956 (test) (see Supplementary Ta-
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ble 1). For reaction generation, each model was
run across five random seeds (0, 42, 250, 350,
and 1000), and the results were averaged across
these runs. All metrics were very stable with
low variation over the five runs (see Supplemen-
tary Tables 4,5 and 6 for standard deviation
measurements for all metrics). Model losses
and validity metrics were tracked throughout
training, with model weights saved at the end
of each epoch (See Supplementary Figures 3, 4,
5, 6, 7 and 8). The weights corresponding to
the epoch with the highest overall validity were
used for evaluation. Benchmarking of chem-
ical reactions generation and evaluation was
conducted using the hardware and software en-
vironment detailed earlier (See Supplementary
Figure 9). Code for model training, evaluation
and visualization of results is available onlinea.

Automated Evaluation

The classifier trained to predict the chemical
reaction was evaluated on a separate test set
and achieved a 97% accuracy (see Supplemen-
tary Table 3). This high performance aligns
with the observation that most reaction classes
are well separated in the latent space, how-
ever classes such as Acylation and related pro-
cesses, Heteroatom Alkylation and Arylation,
and C–C bond formation exhibit greater over-
lap (Figure 4). The classifier was then used
to predict the reaction classes of the reactions
generated by the models. The generative mod-
els were trained and evaluated using previously
proposed metrics and filters, with results pre-
sented in Tables 4, 5 and 6. As shown in Table
4, the VAEβ warm-up model emerged as the best-
performing model, achieving a Foverall score
of 37.39%, closely followed by the LSTML=3

model at 36.45% and the VAEvanilla model at
32.81%. The VAEβ warm-up model demonstrated
robustness in generating chemical reactions
that passed Frings and FPO-bond with success
rates of 100% and 99.65%, respectively, effec-
tively avoiding illogical operations on rings and
preserving P–O bonds.
The VAEβ warm-up model, unlike the other mod-

ahttps://github.com/anisdismail/ChemRxnSAGE

els, struggled the least with generating reac-
tions that passed the Fillogical-use filter (86.46%)
but performed poorly on Fchains (48.92%).
When comparing the generated chemical reac-
tions of the VAEβ warm-up model and LSTML=1

before and after applying the filters to the train-
ing dataset, as visualized in Figures 6a and 6b,
we note that the filters remove many outlier
reactions that are not similar to the training
dataset. Across all reaction classes in Fig-
ure 5, the filtering procedure of the generated
reactions by VAEβ warm-up resulted in a reduc-
tion of 40% to 70% of the reactions (Figure
5c), with no clear correlation with the reaction
class abundance. The filtering procedure made
the reaction distribution farther from the orig-
inal reaction class distributions, except for the
Deprotection reaction class, where the filtering
helped refine the reactions to follow the train-
ing dataset distribution.
Regarding similarity and diversity results (Ta-
ble 5), the LSTML=3 model achieved the high-
est score for JSS, followed closely by the
VAEβ warm-up model. All the models exhib-
ited similarly high values for StrSim around
0.86 and very high NovPct around 99%, while
for FpSim, the LSTML=3 model demonstrated
the highest score (0.1721), with the LSTML=2

model coming second (0.1685) and VAEvanilla

third (0.1665). Regarding the diversity re-
sults (Table 6), all models had very high scores
for IntDiv around 0.97 as well a high num-
ber of unique reactions (UniqPct) with val-
ues all around 99%. For NVSq=0.1, LSTML=1

ranked the highest score (95.96%) followed
by LSTML=4 and VAEβ warm-up (95.02% and
94.61% respectively). Similarly, for class di-
versity, LSTML=1 ranked the highest score
for NVSclass (81.18%) followed by LSTML=4

(76.30%) and VAEvanilla model (73.68%). Fi-
nally, for measuring duplication and memoriza-
tion, NVSq=∞ highlights that VAEβ warm-up and
LSTML=3 have the lowest scores (0.23% and
0.24% respectively) and therefore the lowest
levels of memorization.
Compared with the LSTML=1 model, the
VAEβ warm-up model generated more chemical
reactions that passed the filtering procedure
(Figures 6a and 6b). Additionally, it produced
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Table 4: Summary of filter metrics across generative models

Models

Metrics
Fstructural↑ Fillogical-use↑ Frings↑ Fchains↑ FPO-bond↑ Foverall↑

LSTML=1 0.6720 0.5792 1.0000 0.4617 0.9934 0.1785

LSTML=2 0.7298 0.7784 1.0000 0.5550 0.9957 0.3139

LSTML=3 0.7843 0.7814 1.0000 0.5966 0.9968 0.3645

LSTML=4 0.7923 0.6623 1.0000 0.4929 0.9953 0.2574

VAEvanilla 0.8793 0.7834 1.0000 0.4783 0.9959 0.3281

VAEβ warm-up 0.8871 0.8646 1.0000 0.4892 0.9965 0.3739

Table 5: Summary of similarity, novelty and reaction classes diversity metrics across generative
models

Models

Metrics
JSS↑ FpSim↑ StrSim↑ NovPct↑

LSTML=1 0.8128 0.1445 0.8693 0.9998

LSTML=2 0.8728 0.1685 0.8653 0.9987

LSTML=3 0.9019 0.1721 0.8650 0.9984

LSTML=4 0.8518 0.1567 0.8646 0.9990

VAEvanilla 0.8668 0.1665 0.8646 0.9953

VAEβ warm-up 0.8791 0.1652 0.8628 0.9959

Table 6: Summary of samples diversity metrics across generative models

Models

Metrics
IntDiv↑ NVSq=0.1↑ NVSq=∞↓ NVSclass↑ UniqPct↑

LSTML=1 0.9699 0.9596 0.0044 0.8118 0.9993

LSTML=2 0.9729 0.9406 0.0028 0.7168 0.9979

LSTML=3 0.9735 0.9393 0.0024 0.6992 0.9980

LSTML=4 0.9722 0.9502 0.0033 0.7630 0.9988

VAEvanilla 0.9723 0.9382 0.0026 0.7368 0.9978

VAEβ warm-up 0.9727 0.9461 0.0023 0.7166 0.9981
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a more diverse set of reactions, spanning a wider
range of reaction classes and covering more ar-
eas of the training dataset’s latent space (Figure
7).
When comparing the diversity of chemical
reactions after filtering (Figure 8), we note
while VAEβ warm-up had a higher JSS score than
LSTML=1, LSTML=1 seems to have higher or
equal proportions of its generated reactions be-
longing to rarer classes than VAEβ warm-up, and
generates lower proportions for the more dom-
inant classes. Interestingly, LSTML=1 records
higher diversity scores across all classes than
VAEβ warm-up (see Figure 9 and Supplementary
Table 7).

Table 7: Percentages of reactions as reported in
the survey for models and reference dataset

Source Invalid↓ Valid↑ Human↑ Machine↓
Reference 31.67% 68.33% 63.33% 36.67%

VAEvanilla 75.00% 25.00% 43.33% 56.67%

LSTML=3 58.33% 41.67% 46.67% 53.33%

VAEβ warm-up 53.33% 46.67% 46.67% 53.33%

Table 8: Computation of reaction enthalpies
(∆HDFT ) at B3LYP/6-311G(d,p) level of the-
ory calculations.

Reaction Nb
∆HDFT kcal/mol
(298.15K, 1.00 Atm)

1 -19.01

2 -3.45

3 -24.24

4 -27.53

5 -8.86

6 -23.56

Domain-Based Evaluation

Both VAE models and the LSTML=3 were se-
lected for domain evaluation due to their su-
perior scores for Foverall. Six domain experts
having a doctoral or master’s degree in either
Organic or Synthetic Chemistry were invited to

Figure 5: Distribution of Reaction Classes in
Real and Generated Data. a) Original vs.
VAEβ warm-up before filtering; b) Original vs.
VAEβ warm-up after filtering; c) Absolute relative
differences.
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(a) (b)

Figure 6: UMAP of reaction fingerprints before and after filtering. (a) LSTML=1, (b) VAEβ warm-up.

Figure 7: Comparison of UMAP of Reaction Fingerprints Across a) Original, b) LSTM L=1 and c)
VAEβ warm-up
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Figure 8: Proportion of reaction classes for
LSTML=1 and VAEβ warm-up, averaged across
seeds.

complete the survey. The survey results (Table
7) revealed that the VAEβ warm-up achieved the
highest percentage of valid reactions (46.67%)
and the closest resemblance to the human-
generated dataset (46.67%). The survey re-
sults reinforced our previous observations that
the VAEvanilla achieved the best performance
according to the surveyed chemists. 46.67%
of the reactions generated by the VAEβ warm-up

are claimed to be chemically valid by the sur-
veyed chemists, which showcases that the gen-
erative power of the VAEβ warm-up. Not only
the VAEβ warm-up was able to generate valid re-
actions, but it also is the model that was able
to fool the respondents to consider its reac-
tions as human-generated. Although none of
the models was able to beat the human score
and pass the Turing test, it becomes clear that
the VAEβ warm-up is the most promising candi-
date achieving 46.67% versus 63.33%, which is
the smallest difference compared to the other
models.
The reactions which were voted as valid by the
majority of the respondents were selected for
further analysis (Table 9). Regarding the feasi-
bility of the reactions, a thermodynamic anal-
ysis, particularly reaction enthalpy (∆H) was
performed and the results are shown in Table
8. It is noted that all reactions 1-6 were found
to be exothermic. Using SciFindern 53 search
(Table 10), experimental procedures were found

Figure 9: NVS comparison for LSTML=1 and
VAEβ warm-up, averaged across seeds.

for the reactions 1 and 3. Only similar reactions
were found in literature for reactions 2,4,5, and
6.

Discussion

In this work, we introduced the ChemRxn-
SAGE framework, which enabled the analysis
of several generative models for chemical reac-
tion modeling across multiple dimensions. We
used the framework to evaluate all models’ per-
formance in generating valid reactions and then
assessed their novelty, diversity, and similarity
relative to a reference dataset.
The VAE models demonstrated their robust-
ness in generating chemical reactions that suc-
cessfully passed filters with a high number of
reactions overall, excelling in avoiding illogi-
cal operations on rings and the breaking of P-
O bonds. The VAE models along with the
LSTML=3 had the highest overall scores, which
is expected as these models had higher capaci-
ties compared to the other tested models. How-
ever, challenges were observed in generating re-
actions that met filters related to atom and
chain consistency. Notably, some generated re-
actions included products with atoms absent
from the reactants, and chain operations fre-
quently led to errors, such as the addition or
removal of atoms. These issues can be at-
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Table 9: The generated chemical reaction equations are non-balanced (”Before”) and balanced
(”After”) to account for reactant(s) and product(s) of both sides and for the atom stoichiometry.
Additional reagents or side products were included.

Reaction
Nb

Model Reaction

1 LSTML=4
Before

After

2 LSTML=4

Before

After

3 VAEvanilla

Before

After

4 VAEvanilla
Before

After

5 VAEβ warm-up

Before

After

6 VAEβ warm-up

Before

After
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Table 10: SciFinder Search to identify experimentally reported reactions.

Reaction
Number

SciFindern 53 Results

1 This acylation reaction was reported at a temperature of 0 °C in 95% yield.54

2
A reaction on this particular amine with a tert-butyl bromoacetate as starting materials is not

found, however, the alkylation of primary arylamines with ethyl bromoacetate is reported at room
temperature in 100% yield.55

3
The benzylic bromination of this particular substrate was reported in literature using

azobisisobutyronitrile catalyst in carbon tetrachloride at 48 °C in 66% yield56

4

This transformation requires several steps and is not as such found as a one-step process in
literature. Specifically, the nitrile needs to be removed and replaced by a nitro group on the

adjacent carbon. The 5-membered ring of the indoline unit is expanded to a six-membered ring by
insertion of a methylene (-CH2-) group to form 1,2,3,4-tetrahydroisoquinoline. The nitrogen of the
indoline group is converted into a carbamate by an acylation reaction. This last step is reported in

literature for related molecules in 87% yield at room temperature.57

5

The reaction is a reduction of an aromatic aldehyde, specifically benzaldehyde. This particular
reaction on this particular substrate is not found in SciFindern.53 The reduction can be

accomplished by a range of reducing agents. An example of a reported reaction with H2 and
catalyst is carried out at room temperature in near quantitative yield58

6

A reaction on this particular aryl halide as starting material is not found in literature, however, the
nucleophilic aromatic substitution of an aryl chloride with anhydrous tetramethylammonium

fluoride to prepare an aryl fluoride at 80 °C in 98% yield is reported using anhydrous
tetramethylammonium fluoride.59

tributed to the limitations of the LSTM net-
work used as a backbone for the VAE models,
as its performance degrades with increased se-
quence length. For example, an LSTM network
may struggle to ”remember” all tokens in reac-
tants, leading to inaccuracies in products. Sim-
ilarly, tracking atoms within long chains, par-
ticularly those with numerous methyl and func-
tional groups, presents difficulties. Rings, typi-
cally represented by shorter SMILES sequences,
are less affected by these issues. Addition-
ally, the inherent nature of SMILES strings be-
ing very long and lacking geometric and struc-
tural context makes training a model to meet
such constraints even harder. Another chal-
lenge we faced is that the dataset we used lacked
atom-to-atom mapping making training mod-
els that can identify reaction centers and eval-
uating the unmapped generated reactions even
more challenging without analyzing their reac-
tion centers. To address these limitations, au-
thors in10 and9 incorporate CGR strings merg-
ing reactants and products into a single graph
with atom-to-atom mapping and use dedicated
SMILES encodings for CGRs.

Analyzing the validity of generated chemical re-
actions proved challenging, yet the procedure
followed in this paper effectively assessed re-
action quality. The initial distribution of gen-
erated reactions suffered from numerous out-
liers and potentially invalid reactions. Applying
the developed filters effectively reduced outliers,
aligning the filtered generated dataset’s distri-
bution more closely with the original dataset.
Furthermore, the reaction class distribution of
the filtered generated set highlights that the
VAEβ warm-up struggled in generating reactions
belonging to the heteroatom alkylation and ary-
lation, acylation and related processes, and C-
C bond formation, which required extensive fil-
tering and shifting the reaction class distribu-
tion away from the original dataset distribution.
These reaction classes typically involve bond
cleavages around reaction centers that may oc-
cur adjacent to long carbon chains, consistent
with our previous finding that models often
struggle to generate reactions while maintain-
ing chain consistency.
Our framework also helped shed some light on
the diversity and similarity of the generated re-
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actions to the training dataset. The LSTML=1

surprisingly achieved the lowest similarity to
the training dataset’s top representatives com-
pared to the other models. Its inability to gen-
erate reactions similar to the top representa-
tives of the training dataset could be related
to the fact that this model could be possibly
underparametrized. The LSTML=3 and VAE
models had the highest FpSim scores and the
highest similarity to the reaction class distri-
bution of the training dataset. The trend gen-
erally increased as the capacity of the LSTM
models increased, with the scores peaking for
LSTM with 3 layers instead of 4, potentially
highlighting that LSTML=4 is overfitting and
at risk of higher memorization. On the other
hand, The β warm-up seems to helped re-
duce posterior collapse allowing the VAE to
learn informative latent representations of re-
actions and capture better chemical grammar
than other models, as evidenced by the higher
validity and similarity scores, and lower levels
of memorization.
Due to the random sampling nature of reac-
tion generation, we see that all models score
very high for novelty percentages. Very high
similarity scores were observed when compar-
ing the string similarity of the models. We hy-
pothesize that this may be attributed to the
syntactical nature of reaction SMILES, as they
inherently share numerous similar components,
such as carbon bonds, ring structures, repre-
sentation syntax, and padding. These shared
elements could contribute to inflated similarity
scores, potentially skewing the scores.
Different NVS metrics helped in debugging fur-
ther the differences in diversity between all
models. For instance, at q = 0.1, LSTML=1

surprisingly achieved the highest results, and
not any of the VAE models. This trend may
arise due to LSTML=1’s possibly generating re-
actions with higher intra-class variance, making
the NVSq=0.1 which is more sensitive to rarer
classes score higher. LSTML=1’s higher dataset
proportions for rarer classes explain its higher
NVS at q = 0.1, while still retaining higher
overall NVS scores than the VAEβ warm-up across
all classes. The VAEβ warm-up might be over-
fitting to larger classes, struggling to generate

diverse set of reactions across all classes espe-
cially rarer classes. Another possibility is that
the learned latent space of the VAE may not be
expressive enough, allowing it to succeed in gen-
erating diverse reactions with simpler transfor-
mations, but limiting its ability to handle more
complex reactions.
The survey results indicate that respondents
found it challenging to differentiate between
machine-generated and human-generated reac-
tions. Moreover, the machine-generated reac-
tions selected for further analysis were not only
thermodynamically feasible but contained po-
tentially novel ones that were not previously
reported in the literature. These findings align
with our objective to promote a deeper under-
standing of reaction differences and, with the
aid of generative models, enable more innova-
tive approaches to analyzing patterns in exist-
ing reactions and designing novel ones. While
the results of the survey confirm that the mod-
els of higher capacity achieve higher scores ap-
proaching those of human-generated reactions,
a significant gap remains between machine and
human generation. This highlights the need for
further research to develop models better suited
for generating de novo chemical reactions.
Several limitations and opportunities for future
work emerged during this study. Our current
models exhibit limitations in capturing long-
range dependencies and subtle structural nu-
ances in chemical reactions, leading to inaccu-
racies in reaction generation and reduced diver-
sity. Our current models rely on SMILES repre-
sentations, which do not retain 2D or 3D coordi-
nates of individual atoms, contributing to errors
in reaction mapping and generation. Filters ap-
plied in the current workflow can also produce
false positives, which reduces their robustness
and specificity. To address these issues, future
work could explore expanding beyond SMILES
to incorporate CGR representations and atom-
to-atom mapping, enhancing structural and ge-
ometric understanding. Refining filters through
improved atom mapping could then reduce false
positives and improve the pipeline’s reliability.
Additionally, adopting more advanced model
architectures, such as transformers25 or diffu-
sion models,60 would increase the capacity to

20



capture long-range dependencies and complex
structural patterns. Leveraging larger datasets
with more granular reaction type labels would
further support generalization and diversity in
generated reactions. Addressing these limita-
tions would enable our framework to evolve and
tackle more complex challenges, driving innova-
tion in chemical reaction generation and evalu-
ation.

Conclusion

Generating and evaluating chemical reactions
remains a significant challenge, with limited
research addressing this area. In this paper, we
introduce ChemRxnSAGE, a standardized
and extensible end-to-end DL-based framework
for evaluating the quality, validity, and diver-
sity of machine-generated chemical reactions.
ChemRxnSAGE combines LSTMs and VAEs
to generate new reactions, and provides an ex-
tensible battery of automated validity filters
with quality metrics to systematically elim-
inate invalid reactions. The framework was
tested with multiple LSTM and VAE models,
considering expert feedback to assess the diver-
sity, novelty, and similarity of generated reac-
tions to reference datasets. A chemical ”Turing
test” involving domain experts, along with en-
thalpy calculations and literature comparisons
via SciFindern,53 validated the generated re-
actions. Results demonstrated that the VAE
model with linear β warm-up training followed
by the LSTM model with three layers con-
sistently produced the most valid and diverse
reactions across reaction classes, closely resem-
bling real chemical reactions. The superior
performance of VAEs over LSTMs can be at-
tributed to their greater capacity and ability to
learn a structured latent space, enabling better
generalization to novel reactions. By combining
automated analysis with expert evaluation, the
framework bridges computational tools with
domain-specific knowledge, facilitating both
discovery and reproducibility. We hope that
this work paves the way for the development of
new algorithms, fostering innovation in chemi-
cal reaction generation and evaluation.
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